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ABSTRACT

Cloud computing has emerged as a viable alternative to traditional computing infrastructures, offering various
benefits. However, the adoption of cloud storage poses significant risks to data secrecy and integrity. This article
presents an effective mechanism to preserve the secrecy and integrity of data stored on the public cloud by
leveraging blockchain technology, smart contracts, and cryptographic primitives. The proposed approach utilizes
a Solidity-based smart contract as an auditor for maintaining and verifying the integrity of outsourced data. To
preserve data secrecy, symmetric encryption systems are employed to encrypt user data before outsourcing it. An
extensive performance analysis is conducted to illustrate the efficiency of the proposed mechanism. Additionally,
a rigorous assessment is conducted to ensure that the developed smart contract is free from vulnerabilities and to
measure its associated running costs. The security analysis of the proposed system confirms that our approach can
securely maintain the confidentiality and integrity of cloud storage, even in the presence of malicious entities. The
proposed mechanism contributes to enhancing data security in cloud computing environments and can be used as
a foundation for developing more secure cloud storage systems.
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1 Introduction

Cloud computing has arisen as an alternative to traditional computing infrastructures. It offers
users the convenience of accessing a diverse range of computing resources, such as storage, servers,
and applications, as per their requirements via the Internet. This computing paradigm encompasses
three core service models: Platform as a Service, Infrastructure as a Service, and Software as a Service.
Among the various offerings, cloud storage services present unique advantages. These include resource
accessibility from any location, cost-effectiveness, and the removal of the hassle associated with
managing hardware and software in-house. However, the transition to cloud storage poses significant
risks to data security, specifically data secrecy and integrity. A recent report has shown that 73%
of companies are concerned about cloud security [1]. Data secrecy refers to data protection from
unauthorized access, which is typically achieved through cryptographic methods. On the other hand,
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data integrity ensures that data remains unaltered and authentic, which is often maintained using hash
functions and digital signatures.

Verifying the integrity of data stored on the cloud poses a significant challenge for users as they
usually delete their local copies once data has been uploaded to the cloud [2]. Regularly downloading
data for integrity checks is not practical due to bandwidth constraints [3]. That is, many researchers
have proposed the use of a third-party auditor to check the integrity of cloud storage. Ensuring the
security of third-party auditors is an essential challenge due to the potential for malicious behavior.
Recently, researchers have started exploring blockchain technologies to eliminate the reliance on
third-party auditors. Blockchain technology provides a secure, transparent, and trustless method for
verifying transactions in various applications, including supply chain management [4], healthcare [5],
and cloud storage [6]. Smart contracts can be utilized on top of the blockchain network to replace
traditional third-party auditors, ensuring data integrity and promoting honesty. However, existing
research studies suffer from inefficiency as they require extensive computation overhead and do not
adequately address the privacy of user data files.

In this article, we aim to address the limitations of current research by introducing an efficient
and privacy-preserving mechanism that guarantees both the integrity and secrecy of data stored on
the public cloud. To achieve this, we leverage blockchain and smart contract technologies to perform
periodic data audits, as they are well-known for their ability to provide data immutability. In addition,
we leverage cryptographic primitives to maintain data secrecy by encrypting the user data stored on
the cloud.

The contributions of this article are as follows. Firstly, we propose an efficient scheme to preserve
the confidentiality and integrity of cloud storage by leveraging smart contracts, blockchain oracles,
and symmetric cryptographic algorithms. Smart contracts and blockchain oracles are primarily used
to verify data integrity, while cryptographic algorithms are used to maintain the secrecy of outsourced
data. Secondly, we implement the proposed system, including its smart contract and oracle interface.
We implement the system’s smart contract as a data auditor using the Solidity language. We employ
a Chainlink oracle interface to facilitate communication between the smart contract and the cloud
storage. Thirdly, we conduct extensive performance analysis to demonstrate the efficiency of our
system. Fourthly, we conduct a vulnerability assessment to ensure that the developed smart contract
is free from bugs and errors and measure the cost associated with running such smart contracts.
Additionally, we discuss how our proposed scheme can securely preserve the confidentiality and
integrity of cloud storage, even in the presence of malicious entities.

This article is structured as follows. Related work is discussed in Section 2. We introduce the design
and implementation of our proposed scheme in Sections 3 and 4. In Section 5, we present the findings
concerning performance evaluation and smart contacts. We provide a security analysis of the system
in Section 6 and conclude the article in Section 7.

2 Related Work
2.1 Data Integrity Verification Using Third-Party Auditors

Previous studies led by Juels et al. [7] have developed the concept of Proofs of Retrievability, which
allows a verifier to confirm the authenticity and retrievability of a specific file. Shacham et al. [8]
have built on this concept by integrating Boneh-Lynn-Shacham (BLS) signatures and pseudorandom
functions, resulting in reduced times for queries and responses. Additionally, Ateniese et al. [9] have
introduced the Provable Data Possession model, which allows users to verify if their data, hosted
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on untrustworthy servers, is unaltered without retrieving it. These approaches, however, require
continuous communication between the user and the service provider, which can lead to significant
performance burdens for the user.

To mitigate the impact on user performance, incorporating a third-party auditor for verification
purposes has been suggested. For instance, Zhu et al. [10] introduced a data integrity verification
approach that uses a short signature algorithm, ensuring privacy while enabling public auditing via
a centralized auditor. Similarly, Ping et al. [11] developed a scheme for data integrity checks using
algebraic signatures and elliptic curve cryptography. This approach delegates the role of verifying
outsourced data integrity to an intermediary. Moreover, Lu et al. [12] proposed a more efficient
auditing method where the third-party auditor generates block tags and conducts integrity checks,
relieving the user of these tasks. Furthermore, Huang et al. [13] designed a privacy-preserving data
integrity system that takes different data auditing frequencies into consideration. The system aims to
reduce the auditing costs that third-party auditors charge for users who do not regularly verify their
data files. However, ensuring the security of third-party auditors remains a critical issue that this article
aims to address.

2.2 Data Integrity Verification Using Blockchain Technology

In the realm of blockchain-based research, a significant focus has been on applications within
cloud storage that replace traditional third-party auditors with blockchain technology to manage and
permanently record auditing tasks, thus ensuring mutual honesty among participants. In this context,
Huang et al. [14] introduced a collaborative blockchain system to audit cloud data storage. Here,
instead of a single auditor, consensus nodes collectively perform auditing tasks and maintain data
integrity against diverse threats. However, some models exclude blockchain from essential verification
processes. Yue et al. [15] developed a blockchain scheme that utilizes Merkle trees and random
challenge numbers to verify the integrity of cloud data. Wei et al. [16] created a system that allows
multiple parties to collaboratively verify data trustworthiness by utilizing blockchain’s smart contract
features to track data modifications. Shu et al. [17] developed a decentralized framework that operates
similarly to a traditional third-party auditor, but with reduced risks of compromised auditors and
hostile blockchain miners due to its self-governing structure. Tian et al. [18] introduced a blockchain-
enabled secure de-duplication and collective auditing methodology for distributed storage systems.
This methodology incorporates a dual direction shared auditing process, facilitating decentralized
public auditing without the need for a traditional intermediary. Zhao et al. [19] presented a blockchain-
supported public auditing scheme, offering conditional anonymity and privacy preservation. It is
designed to withstand man-in-the-middle attacks and ensure the integrity of stored data, along with
protecting data privacy and offering conditional anonymity for users’ identities. Guo et al. [20]
devised a reversible, blockchain-aided attribute-based encryption mechanism with an escrow-free
setup, addressing the key escrow issue by using federated blockchains instead of conventional key
management entities. Kumari et al. [21] proposed a cloud-based data auditing method to assure the
integrity of healthcare data. Furthermore, Li et al. [22] devloped a novel certificateless data ownership
verification system, which emphasizes both effectiveness and privacy preservation. While the existing
approaches have potential benefits, they suffer from two major limitations. Similarly, Li [23] introduced
a blockchain-based privacy-preserving system to enhance logistics in the context of the Internet of
Things. The proposed approach makes use of hash functions to detect data integrity, ciphertext-policy
attribute-based encryption to achieve secrecy, and smart contracts to manage data access. Firstly, they
are not very efficient as they require extensive computation and communication among the network
participants. Secondly, the privacy of user data files is not properly addressed, which raises security
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concerns. Our proposed scheme aims to overcome these issues and provide a more efficient and secure
solution that guarantees the integrity and secrecy of data stored on the public cloud.

3 Proposed Data Secrecy and Integrity Scheme

In this section, we introduce the proposed mechanism for preserving data secrecy and integrity
for cloud storage, emphasizing the main components of the system and the interaction among them.

3.1 High-Level System Model

This section describes the proposed system, at a high level, for preserving the secrecy and integrity
of data files stored on the public cloud. The proposed system comprises five entities: Data owner, cloud
storage, blockchain network, smart contract, and oracle interface. We explain the role of each entity
and its interactions with other entities as follows:

Data owner (DO). This entity can be represented as an individual user or organization that wants
to outsource their data files to the public cloud storage and also check the integrity of such outsourced
files. To maintain data confidentiality, the data owner enciphers the data files before outsourcing them.

Public cloud storage (PCS). This entity is responsible for serving the data owner by storing and
maintaining their data files. Since data stored on the cloud is controlled by a non-trusting third party,
the data owner encrypts their data files before outsourcing them. In addition to providing storage
services, it should also provide proof of data correctness whenever the data owner asks for it.

Blockchain network (BN). This entity represents the underlying peer-to-peer network. It enables
the deployment and execution of smart contracts on top of it.

Smart contract (SC). This entity is represented as a script running on the blockchain network.
It has a specific address to be called at. The data owner sends the metadata for a data file to be
stored on the contract state. When the data owner wants to verify the integrity of their data files
stored on the public cloud, they can issue an audit request through the smart contract to the public
cloud. Furthermore, the smart contract can perform some computations to check whether the auditing
response received from the cloud storage is correct.

Interface oracle (IO). This entity is represented as an off-chain entity that enables communication
between the blockchain smart contract and public cloud storage. Smart contracts cannot communicate
with the outside world except with the help of blockchain oracles. That is, we rely on an interface
oracle for forwarding the auditing request from the smart contract to the cloud as well as delivering
the auditing response from the cloud to the contract. In other words, it can be thought of as an
intermediary between the smart contract and cloud storage.

The proposed auditing scheme’s high-level workflow is illustrated in Fig. 1, covering both data
outsourcing and auditing processes as follows. Firstly, to outsource data, the data owner must encrypt
the data file and compute its metadata. The encrypted data file is then transmitted to the public cloud
for storage, while its corresponding metadata is recorded on the smart contract for future data auditing
purposes. Secondly, to audit an outsourced data file, the data owner can submit an audit request
through the smart contract to the public cloud. The smart contract utilizes an oracle interface to send
the auditing request and receive the auditing response from the public cloud. Once the smart contract
receives the auditing response, it verifies the accuracy of the provided response and notifies the data
owner about the integrity of their outsourced data files.
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Figure 1: The proposed data secrecy and integrity scheme

3.2 System Requirements and Assumptions

We consider the following criteria as design requirements for our proposed scheme. First, the
smart contract should be able to verify the integrity of outsourced data files without the need to
store them on the blockchain or retrieve them from the public cloud. That means the smart contract
does not need a copy of the data files to perform the auditing task. Secondly, the proposed scheme
should preserve the secrecy of outscored data files by preventing everyone (except the data owner)
from accessing such data files. Blockchain network nodes, for instance, should not be able to view
or read the content of data files. In addition, the smart contract code should not have any bugs or
vulnerabilities that can be utilized to access the content of data files or manipulate the auditing results.

Various assumptions have been considered in our proposed scheme, which are as follows. First,
we treat the public cloud as a non-trusted entity. That is, we rely on a smart contract integrated with
an oracle interface to audit the data files stored on the cloud periodically. Secondly, the smart contract
is assumed to honestly perform the data auditing task. However, since the contract code is placed on
a public blockchain network, one might exploit the contract code to view the content of data files.
We assume the contract is securely designed to prevent such malicious activities. Finally and more
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importantly, we assume that the oracle interface can securely deliver the communications between the
smart contract and the public cloud.

3.3 The Proposed Scheme

This section describes the details of our proposed data auditing scheme. The first phase of our
scheme concerns data preparation and storage, while the second phase concerns challenges the public
cloud to provide proof of data correctness.

3.3.1 Data Storage Phase

In the data storage phase, the data owner encrypts the data before outsourcing it to the public
cloud. We assume the data owner has access to a symmetric cryptographic algorithm such as the AES
algorithm and has a secret key ks for encryption purposes.

Enc(ks, P) → C (1)

This data encryption algorithm Enc takes as inputs the secret key for the data owner ks and the data
P to be encrypted. It then computes the encrypted format of the data C. The data owner then calculates
the metadata Cm for the encrypted data. This metadata will be used for data auditing purposes. Before
generating the metadata for the encrypted data, the data owner can utilize Elliptic Curve Cryptography
(ECC) to generate a pair of private and public keys.

ECC (a, b) → N, n, G (2)

This ECC algorithm takes two prime numbers a and b of size m as inputs (about 200 digits) and
then computes the private key = (N) and the public key = (n, G). N is calculated as lcm (a + 1, b + 1),
n is computed as a × b, and G is calculated as a generator point of N. To compute the corresponding
metadata Cm for the encrypted data, the data owner has to process the encrypted data C with the ECC
parameters G and N as follows:

Cm = C · G mod N (3)

Once the data owner prepares C and Cm, it broadcasts C to the public cloud for storage and the
Cm to the smart contract for future data auditing tasks.

3.3.2 Data Integrity Verification Phase

In the data integrity checking phase, the smart contract sends an audit request to the public cloud
that maintains the data. Since the smart contract resides on the blockchain network, there is a need
for an oracle interface to allow the contract to communicate with the outside world. That is, the smart
contract is connected to an oracle interface, which can be utilized to send the auditing request to the
cloud. The auditing request Ra can be computed as follows:

Ra = CID|k|G · s (4)

where CID is the ID or the name of the encrypted data file, k is a temporary key, and G·s represents
the multiplication of G with a random integer s. Once the public cloud receives Ra through the oracle
interface, it must calculate the auditing response RS as proof of data correctness. The cloud generates
a random integer x with the help of a keyed random function f k and then computes RS as follows:

RS = x · C · (G · s) mod n (5)
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After generating the response, the public cloud sends the auditing response to the smart contract
via the oracle interface. The smart contract then verifies the correctness of the generated auditing
response as follows. It first generates a random integer x with the help of a keyed random function f k

and then computes V as follows:

V = x · Cm mod n (6)

Then, the smart contract computes RV as follows:

RV = s · V mod n (7)

If the calculated RV matches Rs, then the integrity of the data is intact. The contract can then
notify the data owner about the auditing result.

4 Implementation

In this section, we will delve into the specifics of our proposed scheme for maintaining the
confidentiality and integrity of outsourced data. We will start by presenting the primary algorithms
utilized for secure data storage and ensuring data integrity. Following that, we will examine the
implementation of the smart contract.

4.1 Algorithms

The proposed scheme is executed in two distinct phases. The initial phase involves data preparation
and storage and is primarily carried out by the data owner. On the other hand, the second phase is
responsible for verifying data integrity.

Algorithm 1 shows the generic steps for implementing the first phase. Firstly, the data owner
encrypts the data files and generates their verification metadata. We implement this phase using
Python. For data file encryption, we leverage the Crypto.Cipher package by importing the AES class.
We generate a key of 192 bit long ks and then run the cipher. encrypt method to encrypt the data file.
The encrypted data file C is then forwarded to the public cloud for storage. To generate the verification
metadata, the data owner first selects two prime numbers and generates public and private ECC keys.
To generate the ECC keys, we leverage the ECC class by importing the Crypto.PublicKey package.
The verification metadata Cm is computed using the Python mod package. The data owner then sends
Cm to the smart contract for any future data integrity checks.

Algorithm 1: Data preparation and storage on public cloud
1: Inputs: ks, a, b, P
2: Outputs: C, Cm

3: procedure ENCRYPTING DATA FILES
4: ks ← Generate a symmetric key
5: C ← Enc(ks,P)
6: Send C to PC for storage
7: end procedure
8: procedure GENERATING ECC KEYS AND METADATA
9: a,b ← Select two prime numbers

10: N,n,G ← ECC(a,b)
11: Cm =C·G mod N

(Continued)
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Algorithm 1 (continued)
12: Send Cm to SC for auditing purposes
13: end procedure

Algorithm 2 shows the generic steps for the implementation of the second phase. We implement
this phase as a smart contract running on the Ethereum network and Python code running on the
public cloud. We consider the Ethereum network over other private blockchains like Hyperledger
since it is an open network where anyone can join and participate in the network. In addition, it
offers high levels of transparency and security in comparison to private networks. To check the
integrity of data files stored on the cloud, the data owner sends a transaction to the smart contract
whenever the integrity of a data file needs to be checked. The transaction should contain the ID of the
encrypted file, a temporary key, and the multiplication of a random integer and the ECC public key.
The smart contract transaction is then executed by generating an auditing request Ra as a challenge
and forwarding it to the public cloud through an oracle interface. We discuss the details of the smart
contract implementation in the following section. Upon receiving the Ra, the public cloud storage
computes the data auditing response. We implement the cloud as a server running a Python code to
compute the auditing response. The cloud server generates a random integer using a keyed random
function algorithm and then calculates the auditing response Rs by applying the modular arithmetic
operation stated in Line 8. The cloud then sends Rs to the smart contract as proof of data correctness.
When the smart contract receives Rs from the cloud, it executes a verification method to check whether
the received response Rs is valid or not. The data owner will then be informed about the result of the
data integrity check.

Algorithm 2: Data integrity verification
1: procedure AUDITING REQUEST
2: Ra ← CID|k|G·s
3: DO sends Ra to PC via OI
4: procedure AUDITING RESPONSE
5: PCS receive Ra from OI
6: x ← Generate random integer using f k

7: RS ← x·C·(G·s) mod n
8: PCS sends Rs back to SC via OI
9: end procedure

10: procedure VERIFYING RESPONSE
11: CS receives Rs from OI
12: x ← Generate random integer using the same f k

13: V ← x·Cm mod n
14: RV ← s·V mod n
15: if RV == RS then
16: Data integrity is intact
17: Else
18: Data integrity is compromised
19: end if
20: Notify DO about integrity results
21: end procedure
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4.2 Smart Contract Implementation

Our proposed auditing system heavily depends on smart contracts, which serve as the system’s
foundation. To implement the data auditing activities in the system, we utilize the Solidity language
to create an Ethereum smart contract. This smart contract is responsible for managing the auditing
requests and verifying the correctness of the auditing responses. The smart contract is designed to
ensure complete transparency and immutability throughout the auditing process. We use the Remix
tool [24] to develop and test the smart contract, which provides various features such as code editing,
error debugging, and smart contract deployment. We leverage the Ethereum Sepolia test network [25]
for deploying and executing the smart contract. This approach offers several advantages, including
testing the smart contract using unreal tokens, which can help identify vulnerabilities before posting
the smart contract on the main network. In this section, we discuss the development of the smart
contract integrated into the auditing system.

The smart contract is responsible for issuing an auditing request, sending the request to the public
cloud, obtaining the auditing response from the cloud, and verifying the received response. We present
the detailed implementation of the two most important functions of our smart contract, which are
issueAuditReq and verifyAuditRes. These functions are meant to highlight the key functionality and
operation of the auditing system.

issueAuditReq Function. This function is triggered whenever a data owner sends a transaction to
execute it. It accepts three input parameters (file ID, a key, and an integer value), concatenates them,
and then produces the auditing request to be forwarded to the public cloud. We note that the three
parameters are of different types. The file ID and the integer value are of type unit, whereas the key
is of a byte type. In Solidity, there is no straightforward way to concatenate values of different types.
That is, we leverage a Solidity function called abi.encodePacked to convert the integer values into
bytes. Then, we use the bytes.concat method to concatenate the three byte sequences into a single-byte
sequence representing the auditing request.

verifyAuditRes Function. This function is executed upon receiving the auditing response from the
cloud to verify the response’s correctness. To verify the auditing response, there is a need to generate a
random integer x. We utilize the Keccak256 hash function to implement a keyed random function to
generate x. Since the Solidity language does not directly support randomness, we use block properties
such as the block’s timestamp.

We leverage the Chainlink oracles [26] to enable communication between our smart contract and
the public cloud. We import a Chainlink oracle interface called AggregatorV3Interface to pass the
auditing request and retrieve the auditing response from the cloud through the Ethereum Virtual
Machine.

5 Performance and Smart Contract Results

In this section, we present the performance and smart contract results of our proposed scheme.
For performance results, we measure the computation complexity required by the data owner, smart
contract, and public cloud. We conduct our performance experiments using a laptop with a Core i7
GHz CPU and 8 GB of RAM. Concerning smart contract results, we analyze and present the security
results using the Slither vulnerability detection tool as well as present the associated transaction costs.
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5.1 Performance Results

In this section, we calculate the computation costs, in seconds, required by the data owner, smart
contract, and public cloud for different sizes of data files. Generally, the computational complexity of
our proposed scheme is acceptable. The utilization of an oracle interface to connect both the smart
contract and the public cloud adds an extra layer of computational complexity. Still, there is no other
way to enable a smart contract to interact with an external entity except with blockchain oracles.

For the data owner, we measure the time it takes to encrypt the data file and generate its auditing
metadata. We use the AES algorithm with a 192-bit key for data encryption. For metadata, a single
modular multiplication operation is required. Fig. 2a shows the computation time in seconds for
encrypting a data file and generating its metadata, considering different sizes (in Megabytes) of data
files.

Figure 2: Computation time (in seconds) required by (a) data owner, (b) smart contract, and (c) public
cloud for different data file sizes

For the smart contract, we measure the time it takes to issue an auditing request and verify the
auditing response. To issue an auditing request, there is a need to generate a temporary key k and a
random integer s in addition to performing a multiplication operation. After generating the request,
the smart contract sends it to the cloud through an oracle interface. Once the auditing response
is received from the cloud, the contract verifies the response by generating a random integer and
performing two modular multiplication operations. Fig. 2b shows the computation time in seconds for
issuing an auditing request and verifying the correctness of the received auditing response, considering
the data file sizes (in Megabytes). We note that the computation time reported considers the network
delay required to pass the auditing request and response from and to the oracle interface. The actual
computation would be much less than that if we ignored the network delay.

For the public cloud, we measure the time it takes to compute the auditing response. The cloud
needs to first generate a random integer in addition to performing a multiplication operation and a
modular multiplication operation. Fig. 2c shows the computation time in seconds for computing the
auditing response, considering the data file sizes (in Megabytes).
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5.2 Smart Contract Results

This section presents the results of the smart contract that we have developed. We first show
and discuss the vulnerability assessment results obtained from the Slither security auditing tool.
Furthermore, we present the cost associated with deploying and executing the smart contract.

5.2.1 Vulnerability Results

This section analyzes the security of our smart contract to identify potential vulnerabilities and
software bugs. We follow the Solidity security patterns during the development process of our smart
contract. We also conduct extensive unit testing to ensure the correct functionality of the proposed
scheme. In addition, we leverage a security tool named Slither [27] to look for potential software
vulnerabilities. Slither performs a vulnerability scan for smart contracts and is compatible with most
Solidity compilers. It can generate a vulnerability check report for a specific smart contract within a
few seconds, making it convenient for developers to use. Table 1 shows the vulnerability assessment
report for our proposed smart contract, produced by the Slither tool. Based on the generated report,
we conclude that our smart contract code contains no software bugs or vulnerabilities.

Table 1: A summary of Slither vulnerability assessment results

Smart contract information Vulnerability and informational issues

Name IntegrityVerification Number of low issues 0
Number of functions 8 Number of medium issues 0
Source lines of code 80 Number of high issues 0

Number of informational issues 2

5.2.2 Transaction Cost Results

This section reports the cost of executing smart contract transactions (as shown in Fig. 3). Since
our proposed scheme is based on a smart contract running on the Ethereum blockchain [28], there is
a cost associated with the auditing task. We first discuss the cost of smart contract deployment and
then the cost of both the issueAuditReq and verifyAuditRes functions within the contract.

Figure 3: The cost (in USD dollars) for smart contract deployment, issueAuditReq and verifyAuditRes
transactions
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Smart contract deployment costs are paid once a transaction containing the smart contract
bytecode is sent to the blockchain network. We measured the Gas Used cost for the deployment
transaction and found it to be 1,034,716 units of Gas. The Gas units can be converted into the
Ethereum currency by multiplying them by a Gas Price value, which the transaction submitter can
set. The Gas Price value affects how fast transactions are confirmed by the network nodes. Let the
Gas Price value is set at 1.2 · 10−8 Ether, then the cost of the deployment transaction would be as
follows: 1.2 · 10−8 · 1,034,716 = 0.0124 Ether = $28.96.

The cost of issueAuditReq and verifyAuditRes transactions is calculated as follows. We initiated
a transaction to issue and submit an audit request by invoking the issueAuditReq function and found
its Gas Used cost to be 127,653 Gas units. That is, the cost of the issueAuditReq transaction is as
follows: 1.2·10−8 ·127,653 = 0.0012 Ether = $3.5. For the verifyAuditRes transactions, we initiated a
transaction to confirm the correctness of the provided auditing response and found its Gas Used cost
to be 202,024 Gas units. That is, the cost of the verifyAuditRes transaction is as follows: 1.2 · 10−8 ·
202,024 = 0.0026 Ether = $5.6.

All transaction costs mentioned in this section are estimated using the Sepolia test network and
the current implementation version of the proposed smart contract. The cost may differ depending on
the current market price of Ether, the Gas Price amount chosen, and the level of optimization in the
smart contract source code.

6 Discussion

In this section, we discuss the security of our proposed system with respect to data secrecy and
integrity. This is to illustrate that the scheme can be utilized to audit outsourced data without leaking
such data to unauthorized entities.

6.1 Data Secrecy

It is crucial to ensure the secrecy of user data, which is stored with a non-trusting entity called
Public Cloud Storage (PCS). The primary concern is to prevent unauthorized access to the user’s data
by malicious PCSs or attackers while it is stored on the cloud. Additionally, it is important to protect
the content of the user’s data during the auditing process at the smart contract. In this section, we
discuss how our designed scheme prevents data exposure to unauthorized parties.

Our scheme presents a formidable barrier to malicious parties attempting to access the user’s data.
The file is encrypted by the user using symmetric encryption primitives before being uploaded to the
cloud, as explained in Section 3.3. Therefore, these malicious parties need knowledge of the secret
key, which is securely held by the data owner, to decipher the file and access its contents. As a result,
malicious parties are effectively prevented from accessing the user’s data.

Hypothesis. The proposed mechanism prohibits unauthorized malicious parties from accessing
the users’ data files stored on the public cloud.

Proof. If a malicious party tries to gain access to the user’s data files stored on the cloud, they will
need to have the user’s secret key. This is because all data files in our proposed system are enciphered
with the user’s secret key before being uploaded to the cloud. Whenever the secret key is protected
from malicious parties, it is not feasible to gain any information about the user’s data.

If a malicious party tries to access the data content from the metadata stored on the smart contract
storage, it will not succeed because the verification metadata is computed using the owner’s secret key.
Malicious actors, therefore, must obtain the owner’s secret key in order to access the user’s data from
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the metadata. Moreover, during the auditing process, the smart contract cannot gain knowledge of the
data content from the received audit response since the response is not generated from the original data.

Our proposed scheme is highly effective in guarding against data leakage to malicious parties or
potential attackers. This robust protection is primarily due to the encryption of the data file before its
upload to the cloud.

6.2 Data Integrity

The proposed scheme permits data owners to verify the integrity of their outsourced data through
reliance on smart contracts and blockchain oracles. This section illustrates to what extent the proposed
scheme can accurately ascertain data integrity, assuming the honest behavior of PCSs. Subsequently,
we will demonstrate the system’s resilience against dishonest PCSs.

Hypothesis. Given that the PCS honestly computes the required auditing response for the auditing
request received from the smart contract, the smart contract can deem the auditing response valid. We
can show that RV is equivalent to RS by utilizing the commutative property of an elliptic curve as
follows:

RV ; = s · V mod n

RV = s · x · Cm mod n

RV = s · x · C · G mod n

RV = RS (8)

Hypothesis. The PCS is not able to deceive the proposed system by incorrectly computing the
auditing response.

Proof. The PCS may engage in dishonest activity, attempting to deceive the smart contract during
the data integrity verification process. Here, we show that it is not feasible to deceive the proposed
system by computing an invalid auditing response by discussing two potential malicious behaviors. The
first possible malicious behavior is that the PCS may compute RS without retaining the actual data.
However, this is not feasible within our proposed scheme because generating the proof necessitates
accessing the encrypted data file to produce a valid response during auditing. The second malicious
behavior is that the PCS might consider reusing previous auditing responses as responses to the
auditing requests received from the smart contract. Nevertheless, this behavior is impractical because
the PCS would need to generate a fresh random integer for every response generated, as discussed
in Section 3.3. That is, the PCS cannot use previous responses as they will be rejected by the smart
contract as invalid.

In conclusion, it is evident from this discussion that our proposed scheme only accepts auditing
responses when the PCSs honestly compute them. Furthermore, our scheme is resilient against any
deceptive attempts by the PCSs during data auditing.

7 Conclusion

This article proposes an efficient mechanism to address the challenges of data confidentiality
and integrity in cloud storage systems. We leverage blockchain and smart contract technologies to
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periodically audit outsourced data. Furthermore, we employ symmetric encryption algorithms to
ensure data confidentiality.

The contributions of this article are manifold. Firstly, we introduce a robust and efficient scheme
that leverages smart contracts, blockchain oracles, and cryptographic algorithms to preserve the
confidentiality and integrity of cloud storage. Specifically, smart contracts and blockchain oracles
are utilized to verify data integrity, while cryptographic algorithms are used to maintain the secrecy of
outsourced data. Secondly, we implement the proposed system, including its smart contract and oracle
interface. We implement the system’s smart contract using the Solidity language as a data auditor
and a Chainlink oracle interface to enable communication between the smart contract and the cloud
storage. Thirdly, we conduct extensive performance analysis to showcase the efficiency of our system.
Additionally, we conduct a vulnerability assessment to ensure that the developed smart contract
maintains the confidentiality and integrity of cloud storage, even in the presence of malicious entities.
The scheme offers a strong foundation to enhance data security in cloud computing environments, and
its implementation is expected to contribute to the development of more secure cloud storage systems.
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