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ABSTRACT

More devices in the Intelligent Internet of Things (AIoT) result in an increased number of tasks that require
low latency and real-time responsiveness, leading to an increased demand for computational resources. Cloud
computing’s low-latency performance issues in AIoT scenarios have led researchers to explore fog computing
as a complementary extension. However, the effective allocation of resources for task execution within fog
environments, characterized by limitations and heterogeneity in computational resources, remains a formidable
challenge. To tackle this challenge, in this study, we integrate fog computing and cloud computing. We begin
by establishing a fog-cloud environment framework, followed by the formulation of a mathematical model for
task scheduling. Lastly, we introduce an enhanced hybrid Equilibrium Optimizer (EHEO) tailored for AIoT task
scheduling. The overarching objective is to decrease both the makespan and energy consumption of the fog-cloud
system while accounting for task deadlines. The proposed EHEO method undergoes a thorough evaluation against
multiple benchmark algorithms, encompassing metrics like makespan, total energy consumption, success rate, and
average waiting time. Comprehensive experimental results unequivocally demonstrate the superior performance of
EHEO across all assessed metrics. Notably, in the most favorable conditions, EHEO significantly diminishes both
the makespan and energy consumption by approximately 50% and 35.5%, respectively, compared to the second-
best performing approach, which affirms its efficacy in advancing the efficiency of AIoT task scheduling within
fog-cloud networks.
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1 Introduction

As the Internet of Things (IoT) and artificial intelligence (AI) technologies advance, the con-
ventional IoT landscape has transitioned into the realm of the AIoT [1]. This evolution represents
a distinctive trajectory in the future of IoT [2]. AIoT technologies have found extensive applications
across diverse industries, including intelligent transportation [3], smart homes [4,5], smart cites [6,7],
etc. AIoT contains a large number of applications. The large number of tasks generated by these
applications are mostly delay-sensitive tasks, which put forward higher requirements for real-time
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computing [8,9]. Owing to the extensive data generated by diverse applications, the demand for com-
puting power has significantly increased [10]. The computing and storage resources of the AIOT device
itself cannot meet this challenge, necessitating the transmission of data to the cloud for processing
[11]. Yet, long-distance communication incurs heightened latency [12,13], which is deemed unfit for
numerous AIoT applications. Once the latency is high, it will have unimaginable consequences, such
as the Internet of Vehicles, smart medical care, etc., that require real-time response [14,15].

To address specific constraints of cloud computing and better cater to the diverse application
scenarios of the IoT, fog computing has surfaced as a timely solution. As an extension of the cloud
computing concept, Cisco formally introduced fog computing as a new computing model in 2012 [16].
Serving as an intermediary layer between cloud computing and terminal devices brings computing
resources in proximity to the devices and is more suitable for processing delay-sensitive tasks [17].
Fog nodes have certain computing resources and storage capabilities, which extend the advantages of
cloud computing to network edge devices. In contrast to AIoT equipment, fog computing possesses
superior computing resources and enhanced computational capabilities. Distinguishing itself from
cloud computing, fog computing is characterized by reduced latency [18]. To fully leverage the unique
advantages of both fog computing and cloud computing, a burgeoning computational paradigm
involves integrating these two approaches to process tasks [19]. Indeed, computational resources are
inherently limited and diverse in nature, mirroring the heterogeneous characteristics of AIoT tasks.
With varying latency tolerances and computational resource demands, allocating suitable nodes for
each task within fog-cloud environments poses a significant challenge in resource management. One of
the primary concerns in computational resource management is the reduction of system latency, which
directly impacts the quality of service for users [20–22]. Additionally, the utilization of resources entails
a substantial energy cost, making the enhancement of energy efficiency another critical challenge
in resource management [23–25]. Hence, there is an immediate necessity for an efficient scheduling
strategy that can judiciously allocate computational resources for AIoT tasks, striking a harmonious
balance between the competing objectives of minimizing system latency and energy consumption [26].

Task scheduling poses a formidable challenge due to its NP complexity, prompting numerous
studies to propose various approaches to tackle this issue. However, existing methodologies are
not without limitations. Traditional classical task scheduling methods often underperform in this
domain, while machine learning techniques, particularly deep learning, offer promising results but
require substantial hardware resources and entail long execution times. Meta-heuristic algorithms,
characterized by their simplicity and high efficiency [27], represent a widely adopted approach to task
scheduling. They can provide optimal scheduling solutions within a reasonable timeframe [28,29].
However, most existing research in this area focuses solely on optimizing task scheduling for either
the fog or cloud layer [30–32], failing to address the simultaneous requirements of low-latency
and high computational demands of AIoT tasks. Additionally, certain methodologies only account
for the scheduling effects of small-scale tasks [33–37], neglecting to comprehensively evaluate the
methods’ applicability across various scenarios. Moreover, some studies only consider single-objective
optimization, concentrating solely on reducing system latency or energy consumption [38–41]. This
approach may not ensure high-quality user services and low energy costs simultaneously.

Equilibrium Optimizer (EO) is a physics-inspired metaheuristic algorithm recently introduced
by Faramarzi et al. [42], and has demonstrated its excellent performance in multiple fields, such
as image segmentation, engineering technology, photovoltaic models, economic dispatch, etc. [43].
In comparison to many other metaheuristic algorithms, EO demonstrates superior exploration and
exploitation capabilities, leading to faster convergence. This inherent efficiency enables EO to generate
task scheduling results within a notably shorter timeframe. In contrast to genetic algorithm (GA),
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it possesses the benefits of having fewer parameters and ease of implementation. EO has better
exploration and exploitation capabilities, and particles with concentration are treated as search agents.
While classic particle swarm optimization (PSO) relies on a single optimal solution to update particles,
the algorithm is prone to getting trapped in local optima [44]. In contrast, EO constructs a balanced
pool of four optimal solutions and their average solution. The particle concentration is revised through
the random selection of a candidate solution from the equilibrium pool. Each candidate solution is
assigned an equal probability of being chosen, thus alleviating the risk of getting trapped in local
optima throughout the optimization process.

Therefore, based on the aforementioned challenges and the current shortcomings in research,
this paper proposes an improved metaheuristic algorithm based on EO to address the AIoT task
scheduling problem in fog-cloud environments while considering the optimization of makespan and
energy consumption. Our principal contributions are threefold:

1) We formulate a model for a heterogeneous fog-cloud system, taking into account a comprehen-
sive array of factors such as diverse computational resources, network constraints, and varying
task characteristics. This model is designed to intricately weigh the interplay between energy
consumption and completion time, effectively characterizing the task scheduling paradigm as
a challenging bi-objective optimization problem.

2) We introduce an improved algorithm, EHEO, derived from the EO, demonstrating enhanced
equilibrium between exploration and exploitation. This modification effectively addresses task
scheduling complexities in the fog-cloud environment. To the best of our understanding, this
marks the inaugural application of EO in task scheduling within a fog-cloud system.

3) We conduct extensive simulation experiments, revealing that our proposed algorithm surpasses
alternative methods by markedly reducing maximum completion time, and energy consump-
tion, enhancing completion rates, and minimizing average waiting times. These results affirm
the efficacy of the EHEO algorithm in advancing the optimization of fog-cloud system task
scheduling.

The following sections of this paper are organized as follows. Section 2 furnishes a summary of the
research related to task scheduling in cloud and fog computing environments. Section 3 constructs the
fog-cloud system, mathematically models the AIoT task scheduling problem in fog-cloud systems,
and defines the objective functions for task scheduling. In Section 4, we elaborate on the specific
details of EHEO. Section 5 compares the performance of EHEO with other algorithms on various
task scheduling metrics. Section 6 provides a summary of the study and delves into promising avenues
for future research.

2 Related Work

Scholars have delved deeply into the task scheduling challenge within fog-cloud networks, devising
numerous methods to contend with it. We choose three main categories of methods for elucidation:
Traditional classical algorithms, metaheuristic algorithms, and machine learning techniques. The
related work within these categories is systematically summarized and compared in Table 1.
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Table 1: Comparison of related work

Works System Strategy latency Energy Deadline Average
waiting
time

[30] Fog Priority-aware semi-greedy � � �
[31] Fog Greedy-heuristic � � �
[32] Fog Distributed greedy algorithm �
[33] Fog-cloud Evolutionary algorithm �
[34] Fog MPA � �
[35] Fog AMO � � �
[36] Fog-cloud NSGA-II � �
[37] Fog-cloud GWO � �
[38] Fog-cloud Laxity and ant colony

system algorithm
� �

[39] Fog GWO � �
[40] Fog-cloud Evolutionary algorithm �
[41] Fog-cloud NSGA-II �
[45] Fog-cloud GA �
[46] Fog-cloud Deep learning �
[47] Fog Deep learning � �
[48] Fog Deep learning �
[49] Fog Deep learning �
This work Fog-cloud EHEO � � � �

Classical algorithms are a type of method that has been applied to task scheduling relatively early
on. Azizi et al. [30] tackled the optimization of latency and energy consumption in scheduling IoT
tasks within heterogeneous fog networks. They introduced two new methods based on semi-greedy
strategies. This study emphasized task deadlines and total energy consumption. Misra et al. [31]
introduced a task offloading scheme for software-defined networks, focusing on minimizing latency
and energy consumption while taking into account network performance. They utilized a greedy
heuristic to address this issue. Task deadlines were not considered in this approach. Maray et al. [32]
used the Markov decision process to reduce the latency of edge servers but did not consider the system
energy consumption.

Metaheuristic algorithms are currently the most widely used methods for tackling task scheduling-
related problems. Nguyen et al. [33] presented an evolutionary algorithm-based approach to optimize
execution time and costs in fog-cloud environments, but this study did not consider factors like
energy consumption and deadlines. Abdel-Basset et al. [34] proposed a refined marine predator
algorithm (MPA) to enhance service quality in fog computation task scheduling. However, their
primary emphasis was on optimizing energy consumption and completion time within the fog layer.
Ghanavati et al. [35] proposed the Ant Mating Optimization (AMO) to reduce completion time
and energy consumption in fog computing platforms. Mousavi et al. [36] proposed a directed non-
dominated sorting genetic algorithm to decrease server energy consumption and overall response time.
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Saif et al. [37] presented a Multi-Objective Grey Wolf Optimization algorithm (MGWO) aiming to
reduce latency and energy consumption in fog-cloud systems. However, their study did not consider
task deadlines and average waiting time. Xu et al. [38] applied a strategy based on laxity and ant
colony systems, aiming to decrease energy consumption while satisfying mixed deadlines. However,
they did not consider an important metric, maximum completion time. Dabiri et al. [39] employed both
Grey Wolf Optimization (GWO) and Grasshopper Optimization algorithm (GOA) to address task
scheduling in the fog-cloud collaborative environment, optimizing violation time and system energy
consumption, while also considering the maximum completion time. Hosseinioun et al. [40] applied
a hybrid Invasive Weed Optimization and Cultivation Algorithm (IWO-CA) evolutionary approach
to reduce the energy consumption of fog nodes. However, they did not take into account completion
time and deadlines. Ali et al. [41] proposed a Discrete Non-dominated Sorting Genetic Algorithm II
(DNSGA-II) for fog-cloud task scheduling, aiming to balance completion time and cost. Nonetheless,
this method did not account for energy consumption and deadlines. Aburukba et al. [45] employed
a genetic algorithm to maximize task completion rate within deadlines, but without considering
completion time and system energy consumption.

Alelaiwi [46] adopted a deep learning-based approach to reduce system response time.
Sellami et al. [47] introduced a deep reinforcement learning (DRL) method for task scheduling in the
edge network, aiming to enhance energy efficiency and reduce network latency. Sheng et al. [48] utilized
a policy-based DRL algorithm to enhance scheduling success rate and satisfaction. Fan et al. [49]
devised an actor-critic reinforcement learning strategy within an iterative learning environment to
meet Quality of Service (QoS) constraints while minimizing task latency.

3 System and Problem Formulation

In this part, we initially establish the foundational structure of the fog-cloud system and introduce
its components. We outline the fundamental task-scheduling process within this system and subse-
quently employ a mathematical model to articulate the task scheduling problem specific to the fog-
cloud system. The mathematical symbols utilized in this study are presented in Table 2.

Table 2: Main notation definition

Notation Description

T Set of AIoT tasks, where |T | = n
R Set of computing nodes, where |R| = m
k Index of AIoT tasks
l Index of computing nodes
Tk AIoT task
Sin

k Input size of Tk

Sld
k Load size of Tk

Dk Deadline for Tk

Sout
k Output size of Tk

Rl Computing node
Pl Processing rate of Rl

Xk,l Decision variable set to 1 if Tk is allocated to Rl

CTk,l Computation time of Tk on Rl

(Continued)
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Table 2 (continued)

Notation Description

RTk Response time of Tk

TTk Transmission time of Tk

WTk,l Waiting time of Tk on Rl

ETl Execution time for Rl to complete all tasks
MK Makespan of the system
PT Propagation delay between device and computing node
SR Success rate of completing tasks by the deadline
El Energy consumption of Rl

Etot Total system energy consumption
αl Energy consumption of Rl while active
βl Energy consumption of Rl while idle
r Transmission rate

3.1 System Architecture

From Fig. 1, it can be observed that the fog-cloud system consists of the following components:
The AIoT device layer, the task scheduler, the fog computing layer, and the cloud computing center.
The AIoT layer comprises various intelligent terminal devices, which generate a significant number
of task requests. The task scheduler is typically deployed on the intelligent gateway, responsible for
assigning received tasks to computing nodes for processing. The fog computing layer consists of a
multitude of nodes, including routers, gateways, physical servers, and more, each possessing varied
computing, storage, and communication capabilities. These nodes are situated at the edge of the
network, typically near the intelligent terminal devices, with negligible network latency. The cloud
computing center is a collection of virtual machines that have great computing power and large storage
capacities. It is equipped with powerful processing capabilities. However, as it is often located far
away from the terminal devices, data transmission may suffer from some network latency, which could
hinder real-time computational demands. Therefore, the cloud computing center is better suited for
managing large-scale tasks or those with lower real-time requirements.

The task scheduler is equipped to gather detailed information about all computing nodes, tasks,
network bandwidth, and more. Once the task request originating from the smart terminal device is
transmitted to the task scheduler through the gateway, the scheduling algorithm (EHEO) generates
the final scheduling outcome based on the acquired resource and task details, in conjunction with the
imposed constraints. Consequently, the task is dispatched to the appropriate fog or cloud node for
processing. As previously discussed, each task exhibits varying latency tolerance and computational
resource requirements, underscoring the pivotal role of the EHEO scheduling algorithm in balancing
latency and energy consumption during the task scheduling process. Upon completion of the assigned
task by the fog or cloud node, the computation results are relayed back to the end device. In this study,
we make the assumption that all tasks are mutually independent, and each node can only process one
task at a time, with each task being allocated to a single node.
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Figure 1: Fog-cloud system architecture

3.2 Problem Formulation

In a fog-cloud system, task scheduling pertains to the allocation of tasks generated by AIoT
devices to computing nodes according to certain scheduling policy, which may be allocated to cloud
nodes or fog nodes for execution. In this study, our goal is to satisfy the task requests of end devices as
much as possible and minimize the makespan of the system and the energy consumption. To simplify
the problem, we make the following provisions: All AIoT tasks are mutually independent; each node
can only process one task at the same time, and each task can be allocated to just one node.

Consider a fog-cloud system with n tasks T = {T1, T2, . . . , Tn}, where each task Tk can be
represented as a quadruple: Tk = 〈

Sin
k , Sout

k , Sld
k , Dk

〉
, Sin

k and Sout
k represent the input and output data

sizes of the task, respectively, measured in kilobytes (KB), influencing the transfer time of the task. Sld
k

represents the task workload size in Million instructions per second (MIPS), and Dk represents the task
deadline in seconds. The fog-cloud system has m computing nodes R = {R1, R2, . . . , Rm}, including fog
computing nodes and cloud computing nodes, where each node has a processing rate of Pl in MIPS.
The association between tasks and nodes can be expressed using an A matrix of size n × m, and the
value of decision variable Xk,l reflects whether task Tk is assigned to resource Rl.

Xk,l =
{

1, if Tk allocated to Rl

0, else
, ∀k ∈ T , ∀l ∈ R. (1)

3.2.1 Makespan

The start execution time of all computing nodes is the moment 0. The computing nodes process
tasks in the order of their sequential arrival. The makespan, defined as the longest execution time
among all nodes:

MK = max
∀l∈R

(ETl), (2)
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where ETl represents the time required for Rl to complete the allocated tasks, and its computation is
carried out as follows:

ETl =
∑
∀k∈T

CTk,l × Xk,l, ∀l ∈ R, (3)

where CTk,l can be expressed as:

CTk,l =
∑
∀l∈R

Sld
k

Pl

× Xk,l, ∀k ∈ T . (4)

Fig. 2 shows the execution of assigning 10 tasks to 3 computing nodes. Both nodes 1 and 2 are
assigned 3 tasks, and node 3 is assigned 4 tasks. The length of the rectangular box represents the
execution time of each task, it is evident that node 1 requires the most time to execute all tasks, so the
makespan is 2.32 s.

Figure 2: Schematic diagram of makespan

3.2.2 Response Time

For Tk, RTk is the total time experienced from the time the AIoT device sends out to the time
the result of the calculation is returned. It consists of four components: (a) Transmission time TTk,
comprises both the uplink time for the task to reach the node from the end device and the downlink
time required for the task result to be returned. (b) Propagation delay PT between AIoT devices and
computing nodes. We set the PT between AIoT devices and cloud nodes to 200 ms, while the PT
between AIoT devices and fog nodes is negligible. (c) Calculation time CTk,l of Tk on Rl. (d) Waiting
time WTk,l before Tk begins execution on Rl.

RTk = TTk + 2 × PT + CTk,l + WTk,l. (5)

The task’s transmission time is determined by the subsequent equation:

TTk = Sin
k + Sout

k

r
, (6)

where r is the network transmission rate, we set the transmission rate of Tk to the fog node to be 3 M/s
and the transmission rate to the cloud node to be 10 M/s.
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All tasks are executed in the order of arrival. The waiting time is the gap between when the task
starts executing and when it arrives at the node. The waiting time of Tk on Rl is determined as follows:

WTk,l =
∑
∀k∈T

∑
∀l∈R

CTk,l × Xk,l. (7)

If the aggregate count of tasks fulfilled by the deadline is μ, the success rate is:

SR = μ

n
× 100%. (8)

3.2.3 Energy Consumption

In this study, we exclusively focus on the energy consumption of fog and cloud nodes, while the
energy consumption of network transmission will be disregarded. Moreover, the energy usage of a
node in the idle state is 60% [34] of its active state consumption. The idle time of a node is equivalent
to maskspan minus the node’s active time. The expression for calculating the energy consumption of
Rl is as follows:

El = (ETl × αl + (MK − ETl) × βl) × Pl, (9)

αl = 10−8 × (Pl)
2 , (10)

βl = 0.6αl. (11)

Here, αl represents the energy consumption of Rl in the active state, and βl represents the energy
consumption of Rl in the idle state. The overall energy consumption of all nodes is determined as
follows:

Etot =
∑m

l=1
El. (12)

3.2.4 Fitness Function

In the realm of task scheduling, optimization algorithms employ a fitness function to assess the
excellence of solutions and make decisions guided by the corresponding fitness values. The aim is
to identify the best solution for the distribution of tasks. In this research, the primary objective is to
achieve a simultaneous reduction in both the makespan and energy consumption. Therefore, we utilize
a fitness function that integrates both makespan and energy consumption metrics to assess the quality
of the obtained results. We employ a linear weighted combination approach to formulate the objective
function:

Minimize : ω × MK + (1 − ω) × Etot,

Subject to∑n

k=1
Xk,l = 1, ∀k ∈ R,

RTk ≤ Dk, ∀k ∈ T , ∀l ∈ R, (13)

where ω is the weighting factor of the objective function, when ω > 0.5, it indicates that the emphasis
should be placed on optimizing the MK; when ω = 0.5, it signifies equal priority for both; and when
ω < 0.5, it indicates that the focus should be on minimizing the total energy consumption. In this
study, we set ω = 0.5, signifying that MK and total energy consumption are equally important in this
problem. Constraint conditions ensure that a task can only be assigned to one computing node, and
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each task receives a response before its deadline. Soft deadlines are employed in this study, meaning
that if the task response time exceeds the deadline, the task will continue to be executed.

4 Task Scheduling Algorithm

Compared to other metaheuristic algorithms, EO demonstrates high effectiveness in solving
optimization problems. However, in specific cases, EO may still encounter challenges such as falling
into local optima and low accuracy in specific cases. To address these limitations, we have made
improvements to the EO, resulting in the EHEO. EHEO builds upon the EO and integrates scheduling
strategies from Differential Evolution (DE) and local search algorithm. In this section, we present a
comprehensive overview of the EHEO.

4.1 Equilibrium Optimizer

The Equilibrium Optimizer is an innovative metaheuristic algorithm inspired by controlled
volume dynamic mass balancing. The algorithm’s foundation lies in the mass balance equation, which
encapsulates the physical phenomena of mass inflow, outflow, and generation within a control volume.
Each concentration of particles corresponds to a solution to the optimization problem, and these
concentrations are defined by the mass balance equation from physics. EO aims to find an equilibrium
state, where particle concentrations represent optimal solutions. The optimization process of EO can
be categorized into three distinct stages.

4.1.1 Initialization

Similar to other metaheuristic optimization algorithms, EO generates uniformly randomly dis-
tributed particles in the solution space. The population is initialized using the following equation:

Ci = Lb + randi (Ub − Lb) , i = 1, 2, . . . , N, (14)

where Ci is the initial concentration vector of each particle, Ub and Lb denote the upper and lower
bounds of the solution-seeking space, respectively, randi denotes a randomly generated vector within
the range [0, 1], and N represents the number of particles in the population. After initializing the
population, each particle is sorted by fitness in preparation for the construction of equilibrium
candidates.

4.1.2 Constructing Equilibrium Pool

EO tries to find the equilibrium state of the system and approaches the global optimal solution
of the problem when the equilibrium state is reached. EO starts the optimization without information
about the equilibrium state but provides a search pattern for the particles based on the candidate
solutions in the equilibrium state pool. The candidate solution is composed of five particles consisting
of the current four best-adapted particles and their average values:

Ceq,pool = [
Ceq1, Ceq2, Ceq3, Ceq4, Cave

]
. (15)

EO updates the concentration of particles by randomly selecting a candidate solution from Ceq,pool

with the same probability in each iteration. This strategy helps mitigate the risk of EO falling into a
local optimum to some extent.
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4.1.3 Updating the Concentration

The role of the polynomial term F is designed to harmonize the algorithm’s exploration and
exploitation capabilities, thereby enhancing its overall performance. This can be formulated as follows:

F = e−λ(t−t0). (16)

The vector λ is a randomly generated vector in [0, 1], and t is a function of the iteration number
Iter, with a decreasing trend as the iteration number increases:

t =
(

1 − Iter
Max_iter

)(a2− Iter
Max_iter)

, (17)

where Iter and Max_iter denote the current and maximum number of iterations, respectively, and
the constant term a2 is used to regulate the exploitation capability. To improve the exploration and
exploitation capability of the EO, the t0 term is added:

t0 = 1
λ

ln
(−a1sign(r − 0.5)

[
1 − e−λt

]) + t, (18)

where a1 is a constant term affecting the exploration ability. A larger value of a1 leads to enhanced
exploration and reduced exploitation; while a higher a2 strengthens exploitation but diminishes
exploration. To further improve the exploitation capability, another factor, the generation rate G, is
introduced and is expressed as follows:

G = G0F , (19)

where G0 is the initial generation rate, which is formulated as follows:

G0 = GCP
(
Ceq − λC

)
, (20)

GCP =
{

0.5r1 r2 ≥ GP
0 r2 < GP

, (21)

where C is the current particle concentration, r1 and r2 denote two randomly chosen numbers from the
interval [0, 1], GCP is the generation rate control parameter which determines the number of particles
whose concentration is updated using the GCP, and GP is the generation probability. Ultimately, the
update equation of EO is shown as follows:

C = Ceq + (C − Ceq)F + G
λV

(1 − F). (22)

4.2 Improved Update Formula

The exponential factor F is an important coefficient that affects the update of particle concentra-
tion. It can be seen from the equation that F be 0, and when F is 0, G is also 0. At this point, the particle
concentration will no longer be updated. To avoid the situation where the EO algorithm prematurely
encounters update stagnation, we have made the following improvements to the update formula in this
article:

C =
{

Ceq + (
C − Ceq

)
F + G

λV
(1 − F) , r2 ≥ GP

Ceq + (C − Crand) r3 + (Cworst − C) r4, else
, (23)
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where Crand is a particle arbitrarily chosen from the population other than Ceq1, Ceq2, Ceq3, Ceq4 and Cave,
Cworst is the one with the worst adaptation, and r3, r4 are random numbers between [0, 1]. The new
update formula no longer relies only on the particles in the equilibrium pool for updating, but also
considers random particles and particles with the worst fitness, which helps prevent the algorithm from
being trapped in local optima to some extent and speeds up the global convergence.

4.3 Differential Evolution (DE)

The individuals in the EO update their positions based on the candidate solutions in the
equilibrium pool, and the candidate solutions in the equilibrium pool play an absolute guiding role in
the position update of the whole population, which easily leads the EO to get stuck in a suboptimal
state. To prevent the reduction in diversity when the population iterates to a specific region, we employ
the variation, crossover, and selection operations from the DE [50]. These operations help maintain
population diversity and prevent the EO from prematurely converging to a local optimum, thereby
enhancing its ability to find the optimal solution.

4.3.1 Mutation Operator

The DE algorithm has several mutation methods, and in this paper, we use the DE/rand/1 variant.
DE generates mutation vectors Vi for each vector Xi in the following manner:

V t
i = X t

r1 + F
(
X t

r2 − X t
r3

)
, (24)

where X t
r1, X t

r2 and X t
r3 are three individuals chosen randomly from the current population, F is a scaling

factor between [0, 1], and r1 �= r2 �= r3.

4.3.2 Crossover Operator

The crossover operation generates trial vectors Ut
i,j from the target X t

i,j and variant vectors V t
i,j,

aiming to enhance population diversity:

Ut+1
i,j =

{
V t

i,j, if rand (0, 1) ≤ CR or j = randn (i)
X t

i,j, else
j = 1, 2, . . . n, (25)

where CR denotes the crossover probability, rand (0, 1) denotes a random number between [0, 1],
and randn(i) is a random integer between [1, 2, · · · , N], which serves to guarantee that at least one
dimension of the information comes from the mutant individual.

4.3.3 Selection Operator

The greedy strategy was used to compare the parent with its offspring to select new individuals:

X t+1
i =

{
Ut+1

i , if f
(
Ut+1

i

)
< f

(
X t

i

)
X t

i , else
, (26)

where f is the fitness function, and the better individual is selected as the individual of generation t+1
by comparing the fitness values of Ut+1

i and X t
i .

4.4 Local Search Algorithm

In pursuit of an enhanced solution, we have refined the local search algorithm (LSA) introduced
in literature [51], and the pseudocode of LSA is shown in Algorithm 1. It can better balance resource
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load and reduce makespan. During each iteration, the LSA is applied to the optimal solution. It starts
by calculating the average execution time Etave across all nodes, divides the nodes into two groups
according to the size relationship with the Etave, the node list smaller than the Etave is Rd, and the
node list larger than the Etave is Ru. Then, 20% of the nodes are randomly selected from Rd and Ru

respectively to form Rsub
d and Rsub

u (if the number of nodes in Rsub
d and Rsub

u is different, the smaller one
is used as the final number of adjustable nodes). Then, a task is randomly selected from the task list
corresponding to each node in Rsub

u to form the adjust_list, which will be assigned to the nodes in Rsub
d .

Afterwards, the adjust_list is sorted in ascending order of task length, and the nodes in Rsub
d are sorted

in ascending order of processing capability. Finally, the sorted tasks are assigned to the sorted nodes
one by one to form a new task allocation scheme, which is the new solution. If the fitness value of the
LSA solution is lower than that of the current optimal solution, the LSA solution replaces the current
optimal solution. Otherwise, the solution remains unchanged. The principle of the LSA is shown in
Fig. 3.

Algorithm 1: Local search algorithm
Input: The best solution obtained in each iteration best_solution.
Output: new_best_solution.
1. new_bset_solution = best_solution;
2. Calculate the execution time of each node using Eq. (3);
3. Calculate Etave;
4. Construct Rd and Ru based on the size relationship with Etave;
5. Randomly select nodes from Rd and Ru by 20% each to form Rsub

d and Rsub
u ;

6. Randomly select a task from the task list corresponding to each node in Rsub
u to

construct adjust_list;
7. Sort adjust_list according to their task length from smallest to largest;
8. Sort the nodes in Rsub

d in ascending order according to their processing capacity;
9. Assign the sorted tasks to the nodes in order;
10. if (f (new_bset_solution) < f (bset_solution));
11. best_solution = new_bset_solution.
12. end if

Figure 3: Schematic diagram of local search algorithm
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4.5 The Proposed Task Scheduler

To enhance the task scheduling performance of EO in fog-cloud networks, we integrate various
strategies as mentioned above. EO serves as the main body of the scheduling algorithm to generate
initial solutions, and the modified update formula to some extent avoids algorithm stagnation.
Subsequently, the differential evolution algorithm is applied to preserve population diversity. Finally,
local search algorithm is employed on the generated optimal solution to further refine its quality. In
EHEO, each particle represents a scheduling scheme, and the fitness function is used to assess the
quality of each individual. The solution is constantly updated before the algorithm terminates, and
the ultimate solution is the optimal task scheduling scheme given by the algorithm. The EHEO task
scheduling process is shown in Fig. 4.

Figure 4: Task scheduling with EHEO

4.5.1 Initial Phase

As task scheduling is discrete while EO algorithm is designed for continuous optimization
problems, real values need to be converted into virtual machine numbers during initialization. The
following formula is used to initialize the population:

Cij = floor
(
Lbij + rand

(
Ubij − Lbij

))
, j = 1, 2, . . . , n, (27)

where rand is a random number between [0, 1], Lb is set to 1 as the lower bound, and Ub is the upper
bound with a value of m denoting computing nodes. The dimension of the particles is determined by
the total tasks, denoted as n, and the value of each dimension is the number of the computing node.
The floor function is utilized to discretize the actual values.

For instance, consider a scenario with 5 tasks and 3 computing nodes, and let us say we have a
solution Ci = [2.1, 1.6, 2.4, 3.5, 1.2], after applying the floor function, it becomes a discrete solution
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Ci = [2, 1, 2, 3, 1], which means the first and third tasks are allocated to node 2, the second and fifth
tasks are assigned to node 1, and the fourth task is designated to node 3.

4.5.2 Update Stage

At this stage, the fitness value of each particle is obtained through Eq. (13). An equilibrium pool
is formed by selecting the best 4 particles based on fitness values and including particles obtained from
the average of these top 4 particles. Eq. (23) is used to update each particle. The updated formula is not
exclusively dependent on particles within the equilibrium pool; instead, it incorporates a probability
of updating the current particle based on information from other particles, thus solving the problem
of EO algorithm getting stuck. After updating all individuals, DE is utilized to enhance the variety
within the population and prevent getting trapped in local optima. Finally, the LSA is used to further
enhance the optimal solution. Upon reaching the termination condition for iterations, the algorithm
will return the optimal individual, representing the best solution for task scheduling. The pseudocode
of the EHEO is presented hereafter.

Algorithm 2: EHEO task scheduler
Input: Population size N, maximum iterations Max_iter, number of tasks n, number of nodes m
Output: T → R.
1. Initialize the populations of particles Ci(i = 1, 2, . . . , N);
2. Assign a high fitness value to each candidate in the equilibrium pool;
3. Set parameters a1 = 2, a2 = 1, GP = 0.5;
4. while (Iter < Max_iter)
5. for each i particle do
6. Calculate the fitness value of particle i, f (Ci);
7. if (f (Ci) < f (Ceq1))
8. update Ceq1 with Ci and f (Ceq1) with f (Ci);
9. else if (f (Ci) > f (Ceq1) & f (Ci) < f (Ceq2))
10. update Ceq2 with Ci and f (Ceq2) with f (Ci);
11. else if (f (Ci) > f (Ceq1) & f (Ci) > f (Ceq2) & f (Ci) < f (Ceq3))
12. update Ceq3 with Ci and f (Ceq3) with f (Ci);
13. else if (f (Ci) > f

(
Ceq1

)
& f (Ci) > f

(
Ceq2

)
& f (Ci) > f

(
Ceq3

)
& f (Ci) < f (Ceq4))

14. update Ceq4 with Ci and f (Ceq4) with f (Ci);
15. end if
16. end for
17. Calculate Cave = (

Ceq1 + Ceq2 + Ceq3 + Ceq4

)
/4;

18. Construct Equilibrium pool Cceq,pool = [
Ceq1, Ceq2, Ceq3, Ceq4, Cave

]
;

19. Accomplish the memory saving (Iter > 1);
20. update t using Eq. (4);
21. for each i particle do
22. Update positions using Eq. (23);
23. end for
24. Apply DE;
25. Apply LSA;
26. Iter = Iter + 1.
27. End while
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4.5.3 Algorithm Complexity Analysis

Analyzing the performance of an algorithm often involves assessing its complexity. The time
complexity of EHEO is influenced by the algorithm’s structure as a whole, including EO, DE, LSA,
Max_iter, the population size N and the dimensionality of the task scheduling problem d. The time
complexity of EO is O(N × d × Max_iter), DE is O((N × d + N × d) × Max_iter), and LSA is
O(d × Max_iter), the time complexity of EHEO is:

O (EHEO) = O (EO) + O (DE) + O (LSA) . (28)

According to the feature that the time complexity needs to be expressed by only one term of
maximum magnitude, the EHEO algorithm time complexity can be simplified to O(N×d×Max_iter),
therefore, the complexity of our proposed EHEO is the same as that of the original EO.

5 Numerical Results

We use simulation experiments to evaluate the performance of EHEO on the problem of
scheduling tasks containing dual goals. Two sets of experiments are conducted to assess and analyze the
performance of EHEO with the original EO, PSO [52], and Whale Optimization Algorithm (WOA)
[53] on different metrics. These metrics include: 1) Makespan, a crucial measure of system latency
and operational efficiency, often prioritized in optimization studies. 2) Energy consumption, a critical
consideration impacting device battery life and costs. 3) Success rate, indicating the efficiency of
resource management and system stability. 4) Average waiting time, reflecting the quality of user
service. Additionally, we explore the convergence performance of each algorithm, providing insights
into their efficiency. The language used for the simulation experiments is Python, and they are
performed on a computer equipped with 2 GHz Intel Core i5, 8 GB RAM, and a macOS system.

5.1 Dataset Description and Parameters Setting

To thoroughly assess the efficacy of the EHEO, we have established two datasets for experimental
purposes. The first set includes different numbers of tasks, namely 100, 200, 300, 400, 500, 600, 700,
800, 900, and 1000, with 60 fog nodes and 2 cloud computing nodes. The second set maintains a
constant task count of 500, with the number of fog nodes varying from 30, 40, 50, 60, 70, 80, 90, to
100, and 2 cloud computing nodes. All tasks are heterogeneous, with attribute values generated based
on established practices [30,40,54]. Specifically, task loads range from 500 to 2000 MIPS, input file
sizes vary between 1 and 100 KB, output file sizes also fall within the 1 to 100 KB range, and task
deadlines span from 2000 to 4500 ms.

To simplify the study, we standardize the network transmission rate from the end device to the
fog node at 3M/s and the transmission rate to the cloud node at 10 M/s [54]. The processing rate is
randomly generated between [4000–8000] MIPS for cloud nodes and [500–4000] MIPS for fog nodes
[30]. To ensure the reliability of the experimental results, each selected algorithm is independently run
for 20 rounds. In each round, the maximum number of iterations is set to 100, and the population size
is set to 20. These parameter configurations are determined through extensive experimentation and
reference to existing research [8,21,53], and all experimental results are averaged.

The specific parameters of the simulation experiment are presented in Table 3. The parameter
values of each algorithm are selected from the suggested values of the original paper, and the detailed
parameter settings can be found in Table 4.
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Table 3: Simulation experiment parameters

Parameter Value

Number of fog nodes [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
Number of cloud nodes 2
Number of AIoT tasks [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
The processing rate of fog nodes [500–4000] MIPS
The processing rate of cloud nodes [4000–8000] MIPS
Task length [500–2000] MIPS
Input file size of the AIoT task [1–1000] KB
Output file size of the AIoT task [1–100 ] KB
Task deadline [2000–4500] ms
Number of runs 20
Maximum iterations 100
Population size 20

Table 4: Algorithm parameters

Algorithm Parameter value

EHEO

a1 2
a2 1
GP 0.5
F 0.8
CR 0.9

EO
a1 2
a2 1
GP 0.5

PSO
C1 2
C2 2
w 0.9 to 0.4

WOA
b 1
a 2 to 0
l [−1, 1]

5.2 Results Analysis

5.2.1 Comparison with Varying Numbers of Tasks

In this scenario, we discuss the performance of EHEO, EO, PSO, and WOA under varying task
quantities.
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Fig. 5 shows the best fitness convergence curves for EHEO, EO, PSO, and WOA. Here we compare
the variation in fitness values for task counts of 100, 500, and 1000. It is obvious that EHEO has
the smallest fitness value at different task numbers and the fastest convergence speed, while WOA
converges more rapidly in the early phase but tends to get stuck in a local optimum in the subsequent
phase, and EO and PSO converge more slowly all the time, with some acceleration only in the
late iteration. This is mainly because the new update formula can accelerate the convergence speed
of EHEO. DE contributes to increasing population diversity during the iteration process, thereby
reducing the likelihood of EHEO falling into a local optimum. Additionally, LSA effectively balances
the resource load situation, further enhancing the quality of the optimal solution and accelerating the
convergence of the algorithm. This underscores the effectiveness of our enhancements to the EO.

Figure 5: The convergence curves with different numbers of tasks

Fig. 6a illustrates a comparison of the makespan among EHEO, EO, PSO, and WOA. A smaller
makespan indicates better performance, which means that the system can complete all tasks in a
shorter time. The figure unmistakably illustrates that with an increase in the number of tasks, the
makespan also rises, indicating an increased load on each node. In the experiment, EHEO always
maintains the smallest makespan and outperforms EO, PSO, and WOA. The performance of EO and
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PSO is similar, and WOA performs the worst. Additionally, the makespan of all algorithms generally
increases linearly, indicating that EHEO and other algorithms have good stability. EHEO can achieve
a shorter makespan and good stability mainly because it combines the advantages of the differential
evolution algorithm with the original EO. This combination accelerates the convergence rate, and
the integrated local search algorithm enhances the quality of solutions, yielding a smaller makespan
compared to other algorithms. Furthermore, we can see that the original EO algorithm performs
similarly to the PSO and WOA algorithms in terms of makespan, without any significant advantages.
However, our proposed EHEO algorithm can significantly reduce makespan, which indicates that our
improvement to the original EO algorithm is effective.

Figure 6: Simulation results with different numbers of tasks

Fig. 6b illustrates the energy consumption of various algorithms with an increasing number of
tasks. The overall energy consumption of the system increases in parallel with the growing number
of tasks. This escalation is attributed to the heightened total processing time for tasks, resulting in
elevated energy consumption. According to the experimental results, EHEO consistently maintains
the smallest energy consumption. With a low number of tasks, the disparities in total completion time
are negligible, resulting in comparable total energy consumption between EHEO and other algorithms.
However, as the task quantity grows, the disparity in total completion time becomes more pronounced,
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and the EHEO exhibits markedly lower energy consumption compared to the other algorithms. This
underscores the enhanced energy efficiency of the EHEO algorithm in multi-task scenarios.

The proportion of tasks completed before the deadline is also an important metric to consider, as
shown in Fig. 6c, which displays the performance of the EHEO, EO, PSO, and WOA in meeting task
deadlines. According to the experimental results, EHEO consistently achieves the highest proportion
of tasks completed within the deadline, indicating that it can more effectively utilize resources by
prioritizing shorter deadline tasks to appropriate computing nodes. However, as the task quantity
grows, the gap between EHEO and other algorithms in completing tasks within the deadline gradually
decreases. This is primarily attributed to the fixed number of computational nodes, which imposes a
limitation on the number of tasks achievable within the deadline. The number of tasks increases much
faster than the number that can be completed within the deadline, so this phenomenon is consistent
with normal trends.

Fig. 6d compares the average waiting time of these methods. According to the experimental results,
EHEO consistently exhibits the shortest average waiting time, showcasing superior performance in this
regard for tasks of varying sizes. Specifically, EHEO exhibits significantly lower average waiting times
compared to other algorithms when the number of tasks is large. This suggests that EHEO performs
better in managing large-scale task scheduling. This is mainly because when the search dimension is
small, the search results of all algorithms are relatively close. When the search dimension increases,
EHEO can quickly find the optimal solution in the shortest possible time.

5.2.2 Comparison with Varying Numbers of Fog Nodes

In this section, we will delve into the performance analysis of the EHEO under the variation of
the number of fog nodes.

We compare the convergence of fitness among different algorithms for fog node numbers of 10,
50, and 100. Fig. 7 indicates that WOA exhibits the most favorable convergence performance at 10 fog
nodes. EHEO shows convergence performance similar to EO, while PSO performs the least effectively.
As the quantity of fog nodes grows, EHEO exhibits the fastest convergence and achieves the smallest
fitness value. EO maintains a slower convergence speed, and while the convergence accelerates later,
the final result is inferior to EHEO. PSO and WOA, on the other hand, lag in terms of performance.
When the quantity of fog nodes is limited, EHEO does not exhibit as robust convergence as WOA,
possibly due to WOA being more effective in smaller search spaces. Nonetheless, as the search space
expands, WOA converges swiftly in the initial phase but plateaus in the later stages, indicative of its
intrinsic balance between exploration and exploitation. Examining the convergence curves reveals that
the conventional EO converges slowly and is susceptible to local optima, highlighting the algorithm’s
limitations. In contrast, the EHEO effectively addresses these issues and improves overall performance.
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Figure 7: The convergence curves with different numbers of fog nodes

In Fig. 8a, the makespan variation of EHEO, EO, PSO, and WOA is depicted as the number
of fog nodes increases. It can be observed that the makespan of all algorithms shows a decreasing
trend. When there are 10 nodes, WOA exhibits the most favorable performance, and the makespan of
EHEO is close to the values of EO and PSO. However, when the number of nodes increases, EHEO
experiences a significant reduction in makespan, and it always has the smallest makespan among
these algorithms. Even with over 70 fog nodes, EHEO consistently achieves a substantial reduction
in makespan, demonstrating its robust performance. In contrast, EO, PSO, and WOA show only
marginal decreases in makespan, emphasizing the efficiency of EHEO in optimizing task scheduling.
This can be attributed to the improvement strategy employed by EHEO, which improves the balance
of exploration and exploitation. This strategy allows EHEO to efficiently search the global space,
speeding up convergence and shortening the optimization search process.

Fig. 8b illustrates the overall energy consumption of the system employing various algorithms.
Despite occasional minor fluctuations in the energy consumption of EHEO with an increasing number
of fog nodes, the overall trend is a decrease. Additionally, as the quantity of fog nodes rises, the energy
consumption of EHEO shows a considerable reduction compared to EO, PSO, and WOA. And the
energy consumption of EO, PSO and WOA basically does not decrease after the fog node increases to
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30, and even slightly increases the trend. The experimental results demonstrate that EHEO possesses
superior load balancing capabilities, considering resource load conditions and effectively balancing the
dual constraints of makespan and energy consumption. In comparison to EO, PSO, and WOA, EHEO
consistently maintains the lowest makespan and energy consumption in most scenarios. On the flip
side, EO, PSO, and WOA encounter challenges in effectively balancing system energy consumption
while reducing makespan, and their resource allocation is not sufficiently balanced.

Figure 8: Simulation results with different numbers of fog nodes

Fig. 8c shows the success rate of tasks before their deadlines as the number of fog nodes varies. It
is evident that when the number of fog nodes is limited (10–30 nodes), EHEO performs similarly to
EO, PSO, and WOA. As the fog node count increases further, the success rate of EHEO significantly
improves and surpasses that of EO, PSO, and WOA. When there are 100 fog nodes, the success rate of
EHEO exceeds 85%, which is about 15 percentage points higher than EO.

Fig. 8d displays the average waiting time of the four algorithms in the context of task scheduling.
Similar to the trend of makespan, as the fog node count increases, EHEO consistently outperforms
the other algorithms, although the average waiting time for all algorithms is gradually decreasing.
This indicates that EHEO can always provide better scheduling solutions, thereby utilizing computing
resources more effectively and completing tasks in the shortest possible time.
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6 Concluding Remarks

In this paper, we introduce an enhanced hybrid Equilibrium Optimizer algorithm, denoted as
EHEO, tailored to tackle task scheduling challenges within the fog-cloud environment of the AIoT.
The primary aim of EHEO is to concurrently minimize the makespan and energy consumption while
adhering to task deadlines. Through the incorporation of differential evolution and local search
algorithms, coupled with modifications to the EO update formula, EHEO is engineered to enhance
its overall performance. To substantiate the efficacy of our proposed approach, we conduct extensive
experiments. The results reveal that our algorithm outperforms other methods across all metrics. It
not only meets the real-time requirements of AIoT tasks but also reduces the operational costs of the
fog-cloud system. This will provide effective solutions and approaches for various AIoT applications
in the fog-cloud network, such as smart transportation and smart healthcare.

While our current research has provided a promising solution for AIoT task scheduling within
fog-cloud systems, there are still significant areas for further exploration. Specifically, we have yet
to account for the mobility of end devices and fog nodes, a factor we plan to address in subsequent
phases of our research program. In addition, we envisage integrating existing algorithms with machine
learning techniques to achieve more nuanced task partitioning and arrangement within the AIoT.
Furthermore, we plan to consider task dependencies and dynamic characteristics to adapt our
approach to a broader spectrum of AIoT applications, thereby further augmenting the efficiency of
task scheduling.
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