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ABSTRACT

In pursuit of enhancing the Wireless Sensor Networks (WSNs) energy efficiency and operational lifespan, this
paper delves into the domain of energy-efficient routing protocols. In WSNs, the limited energy resources of Sensor
Nodes (SNs) are a big challenge for ensuring their efficient and reliable operation. WSN data gathering involves the
utilization of a mobile sink (MS) to mitigate the energy consumption problem through periodic network traversal.
The mobile sink (MS) strategy minimizes energy consumption and latency by visiting the fewest nodes or pre-
determined locations called rendezvous points (RPs) instead of all cluster heads (CHs). CHs subsequently transmit
packets to neighboring RPs. The unique determination of this study is the shortest path to reach RPs. As the
mobile sink (MS) concept has emerged as a promising solution to the energy consumption problem in WSNs,
caused by multi-hop data collection with static sinks. In this study, we proposed two novel hybrid algorithms,
namely” Reduced k-means based on Artificial Neural Network “(RkM-ANN) and “Delay Bound Reduced k-
means with ANN” (DBRkM-ANN) for designing a fast, efficient, and most proficient MS path depending upon
rendezvous points (RPs). The first algorithm optimizes the MS’s latency, while the second considers the designing
of delay-bound paths, also defined as the number of paths with delay over bound for the MS. Both methods
use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees
network-wide coverage. In addition, a method of using MS scheduling for efficient data collection is provided.
Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested
methodologies over a wide range of performance indicators.
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1 Introduction

Wireless Sensor Networks (WSNs) have gained prominence due to their versatile applications,
including environmental monitoring, healthcare, target detection, and disaster management [1,2].
Wireless Sensor Networks (WSNs) often face a critical challenge where sensor nodes (SNs) in adjacent
proximity to the base station (BS) become excessively burdened. These SNs are responsible for sending
data to the BS and providing crucial connections between the BS and the larger network. This
situation leads to rapid energy reduction in these adjacent SNs, ultimately resulting in the network’s
disconnection. This issue is commonly known as the “sinkhole” or “energy hole problem” [3,4].
Extensive research studies in [5] have shown that in large-scale WSNs, SNs located in the neighborhood
of the BS deplete their energy resources rapidly, while distant SNs retain over 90% of their energy
reserves.

To tackle this issue, researchers have introduced the concept of a mobile sink (MS) [6–8]. A mobile
sink-based Wireless Sensor Network (WSN) architecture involves utilizing a moving or mobile sink,
typically a vehicle, to collect data from sensor nodes dispersed in an area. Unlike traditional WSNs
where data is routed to a stationary base station, in mobile sink-based architectures, the sink moves
around the network to gather data directly from sensor nodes. Numerous research activities have been
investigated into designing paths for MS, considering both random and controlled mobility patterns
for MS [9,10]. Random mobility patterns are caused by issues like buffer excess and uncontrolled MS
performance. In controlled mobility, some scholars propose that MS visits each SN to gather data
[11–13], thereby saving a significant portion of SN’s energy [14]. However, this approach extends the
path traversed by MS, consequently increasing data delivery latency.

Alternatively, MS is allowed to access designated rendezvous points (RPs) [15], where multi-hop
communication facilitates the aggregation of data from Sensor Nodes (SNs) [16,17]. A schematic
diagram illustrating data collection via RPs by MS is presented in Fig. 1.

Figure 1: Mobile sink based WSN architecture

The RP-based path approach mitigates the issue of prolonged MS paths, thereby minimizing the
complexity of data delivery. Nevertheless, designing the MS path presents a complex challenge as it
significantly affects network coverage, data delivery efficiency, and network lifespan. Achieving rapid
data delivery requires minimizing the path length of the MS. However, it is essential to recognize that
a shorter path length implies increased multi-hop communication, resulting in higher hop counts and
longer multi-hop path lengths, ultimately leading to raised energy consumption by SNs. Extending the
Mobile Sink’s (MS) trajectory entails a trade-off wherein the MS path length is optimized by reducing
hop counts and shortening multi-hop path lengths.
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Sensor networks operate with reserved batteries in sensor nodes. Each node transmits data within
its communication range, which is affected due to battery depletion addressed in [18]. This is another
major drawback of WSN. In [19], a hybrid optimized localization methodology is introduced for
the precise localization of mobile nodes within Underwater Wireless Sensor Networks (UWSNs).
Despite advancements, further enhancements are required to achieve expedited and efficient routing
protocols, thereby augmenting the longevity and efficacy of Wireless Sensor Networks (WSNs) within
the network infrastructure.

In this study, after addressing the limitations of WSN, we present two hybrid energy-efficient
algorithms, “Reduced k-means based with Artificial Neural Network” (RkM-ANN) and “Delay
Bound Reduced k-means with ANN” (DBRkM-ANN), to improve the design of Rendezvous Points
(RPs) paths for Mobile Sink (MS). The proposed model initiates by generating a candidate set of
positions through k-means clustering [20] applied to a set of Sensor Nodes (SNs). Subsequently,
it contrasts this model with a hybrid approach employing both k-means clustering and Artificial
Neural Network (ANN). After that, we optimize this set to ascertain the minimal number of RPs
based on predefined criteria. Unlike RkM, DBRkM-ANN incorporates a delay-bound parameter
when selecting RPs. RkM-ANN develops a speedy and more efficient MS path by decreasing overall
hop counts and average hop distance, while DBRkM extends this optimization by also considering
delay-bound constraints. All this methodology is again compared with the proposed DBRkM-ANN
in order to make the system more effective. We conducted a comprehensive analysis of our proposed
algorithms, comparing the results of RkM-ANN and DBRkM-ANN with traditional k-means-based
[21] approaches, DBRkM [22] and WRP [23] algorithms. Our assessment encompasses number of hop
counts, energy consumption of SNs, End-to-End delay, number of packets received to the base station
and network lifetime.

Several research activities have explored the same issues. However, in contrast to prevailing
methodologies, the proposed solutions incorporate two different parameters not included in existing
schemes. Besides carefully selecting Rendezvous Points (RPs) characterized by the highest neighboring
Sensor Nodes (SNs) and positioned close to the optimal distance range, the algorithms prioritize
minimizing the overall number of hops. Moreover, they optimize the average hop distance between
RPs and SNs to reduce the total transmission distance. In particular, none of the past studies
have comprehensively addressed all these factors concurrently. Additionally, the study introduces an
effective data collection strategy designed to successfully mitigate the buffer run-off challenge.

Contributions:

The key contributions of the study are summarized as follows:

• This study proposed two novel hybrid energy-efficient algorithms, “Reduced k-means based
with Artificial Neural Network” (RkM-ANN) and “Delay Bound Reduced k-means with
ANN” (DBRkM-ANN), to improve the design of Rendezvous Points (RPs) paths for Mobile
Sink (MS) to have more efficient WSN with less latency and the design of delay-bound paths
the MS

• A unique strategy for finding the shortest path to reach RPs is explored in the study by applying
TSP methodology to overcome the revisit constraints of SNs.

• This paper explores energy consumption, end-to-end delay and network lifetime of WSN which
mainly emphasizes the importance of solving these problems for its efficiency.

• The proposed approaches are powerful and enhanced versions. It decreases the energy con-
sumption of SNs and prolongs WSN’s lifetime.
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2 Literature Review

Several approaches aim to control Mobile Sink (MS) mobility for effective data gathering in
Wireless Sensor Networks (WSNs) [24–28]. However, the management of MS mobility falls into
two primary categories: Random mobility [9] and controlled mobility [10]. While random mobility
implementations are straightforward, they introduce unnecessary delays in data gathering [29]. In
contrast, controlled mobility schemes establish the MS path based on predefined points or specific
locations, often referred to as Rendezvous Points (RPs) [30]. In past studies [31], researchers have
encouraged planning a stationary MS path using RPs, with sensor nodes (SNs) randomly positioned
in proximity to this path.

Sensor Nodes (SNs) are divided into two classes based on their proximity to the predefined path.
The first class encompasses SNs within the communication range of the path; while the second class
consists of the remaining SNs. SNs in the first class directly transmit data to the MS, while the
second-class nodes relay their data through the first-class nodes. Nevertheless, these methods lack
constraints on tour distance, rendering them unsuitable for delay-sensitive applications. In a study by
Ghafoor et al. [7], the Hilbert curve was employed for designing an MS path in homogeneous Wireless
Sensor Networks (WSNs). From this perspective, MS strictly approaches each SN, enabling one-hop
communication for data gathering. However, this strategy results in a longer path, proving impractical
for numerous critical applications.

Authors explain the method of multiple sinks following the predetermined routes in [32], but the
Mobile Sink’s (MS) tour length, which is critical for reducing data transmission latency, is neglected.
Specifically for path establishment during MS path designing, in [23], the authors present Weighted
Rendezvous Planning (WRP), a delay-constrained technique, to address the issue. Based on the
number of data packets provided and the sensor node’s proximity to the closest Rendezvous Point (RP),
WRP distributes weights to each node. However, the approach is not suited for large-scale Wireless
Sensor Networks (WSNs) due to its significant time complexity of O(n5), where ‘n’ is the total number
of sensor nodes. A Cluster-Based (CB) approach is proposed in [33] that uses binary search to find
the minimal amount of RPs needed. In [34], authors discussed three mobile ad-hoc proactive and
reactive routing protocols named DSDV, AODV and DSR, that work on the routing tables which are
maintained at each node and find a route to a destination on demand, whenever communication is
needed but still carries complexity.

In contrast to previous strategies, the suggested method optimizes the path for mobile sinks
(MS) by taking into consideration three extra parameters: Average hop distance, distance from
the Maximum-Distance Data (MDD) point, and one-hop neighboring SNs. These parameters are
considered to formulate an efficient MS path.

3 System Model

We are analyzing a homogeneous Wireless Sensor Network (WSN) configuration, where Sensor
Nodes (SNs) are distributed randomly across the selected area. The Sink, or data collection point, is
supposed to navigate the target region at a consistent rate. The physical constraints in this study are
as follows:

(1) After deployment, each node remains stationary and is uniquely identified by a distinct ID.
(2) Nodes exhibit homogenous communication and processing capabilities, but heterogeneous

battery energy levels.
(3) Data aggregation is employed, compressing multiple data points into a single packet.
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(4) Nodes work under a control mode based on distance power, ensuring uniform operation.
(5) The initial energy of nodes varies and is not rechargeable.
(6) Communication links between nodes are symmetric, resulting in even energy consumption and

data transmission rates between nodes.

We have made several additional assumptions for our study.

Communication Conditions: Nodes can establish communication with each other if they fall within
their respective communication ranges. All communication occurs wirelessly.

Stationary SNs: Once deployed, the SNs remain fixed in their positions throughout their opera-
tional lifespan.

MS Break Time: MS Break Time is the time in which MS collects data from the designated RPs. In
this study, we only assume that the MS break time is sufficient to gather data from the SNs effectively.

Network Functionality: The network is considered operational until a specific percentage of the
total SNs have depleted their energy.

Energy Model: The same energy model as mentioned in [35] is adopted in this research. Further-
more, no data retransmissions methodology is assumed, and the transmission speed along MS’s path
remains constant.

These assumptions serve as the foundational framework for our analysis of WSN’s behavior and
performance under specific conditions.

3.1 Mathematical Modeling

In developing our algorithms, we use the following specialized terminology.

Center (CR): This point provides the primary center of reference within the selected area. The
mean values of the x- and y-coordinates of the deployed SNs are used to determine their coordinates.

xCR = 1
n

∑n

i=1
xi (1a)

where i = 1, 2, . . . , n

xCR shows the mean value of x-coordinates

yCR = 1
n

∑n

i=1
yi (1b)

where i = 1, 2, . . . , n

yCR shows the mean value of y-coordinates.

Hop Distance (HD): It indicates how far an RP is from its nearest neighbor (nhi) over one hop.

Average Hop Distance (AHD): An RP’s AHD is calculated by averaging the hop distances of its
nearest neighbors. The mathematical expression is given below:

AHDi =
∑|OHNi|

j=1 dist(ci,nhj)

|OHNi| (2)

where i and j = 1, 2, . . . , n

“OHN” represents one hope neighbor from position i to position j;

“nhj” represents nearest neighbor.
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Desired Distance Range (DDR): A decrease in network lifetime because of selecting a route for an
MS that is too distant or too close to the center of the target region. As a result, the MS’s route should
be selected such that it is between the two extremes of the intended space. This distance is called the
Desired Distance Range, which can be written mathematically as

DDR =
∑l

i=1 dist(CR,EPi)

2l
(3)

where, l indicates the number of extreme points.

4 Suggested Algorithms

The main concept of the suggested algorithms is outlined as. We initiate by acquiring a collection
of possible Rendezvous Points (RPs) positions across the designated region of interest. To achieve this,
we employ the k-means clustering algorithm [20] supported by the proposed ANN utilizing the spatial
coordinates of the deployed Sensor Nodes (SNs). Subsequently, we aim to optimize this initial set of
potential RPs. Our optimization objectives are as follows:

a. Practically make sure that every SN can be accessed with the least hop distance possible using
one-hop communication.

b. The selection of RPs is such that it should not be too distant from or extremely close to the
center of the targeted area.

This methodology is constructed on the utilization of a weight function, which is formulated
through the following procedure.

4.1 K-Means Clustering Algorithm

This section explains the fundamental k-means clustering algorithm. Its objective is to partition a
given dataset into a predetermined number, k, of non-overlapping clusters. The algorithm comprises
two phases: Firstly, defining k centroids, each corresponding to a cluster, and subsequently assigning
each data point to the nearest centroid based on Euclidean distance. Upon completing the initial
grouping, centroids are recalculated to accommodate potential shifts due to newly included points.
This iterative process continues until centroids stabilize, indicating convergence.

The k-means algorithm is widely researched and often yields satisfactory clustering outcomes.
However, its primary drawback lies in the sensitivity to initial centroid values, leading to varied cluster
formations. The algorithm’s computational complexity is notable, scaling proportionally with the
product of data items, clusters, and iterations.

4.2 Weight Function

In this article, a weight function, Wt(i) is created, by carefully considering several factors that
determine whether the possible location is appropriate for a rendezvous point (RP). The following is
a description of these parameters:

i) One-Hop Neighbors to a Potential RP Position: To achieve comprehensive coverage of all Sensor
Nodes (SNs) while minimizing the count of RPs, it is imperative that each RP covers a substantial
number of neighboring SNs. Therefore,

Wt (i) ∝ |OHNi| (4)
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ii) Distance to Desired Distance Range (DDR): Experimental observation reveals that augmenting
the parting between RP and DDR correlates with a rise in hop counts. Therefore, prioritizing the
reduction of this distance is imperative.

Wt(i) ∝ 1
mod(DDR − disr (CR, ci))

(5)

where i = 1, 2, . . . , n

iii) Average Hop Distance: The energy consumed during the transmission of a data packet is
directly linked to the transmission distance, following a power-law relationship where 2 < α < 4.
Therefore,

Wt(i) ∝ 1
AHDi

(6)

where i = 1, 2, . . . , n

Relating all the parameters explained from Eqs. (4) to (6), we get

Wt (i) = Z ∗ |OHNi|
mod (DDR − dist (CR, ci)) ∗ AHDi

(7)

where “Z” represents proportionality constant, considering Z = 1. We get

Wt (i) = |OHNi|
mod (DDR − dist (CR, ci)) ∗ AHDi

(8)

It is essential to note that within the weight function Wt(i), these parameters are interconnected,
with each potentially influencing the others. This interdependency arises due to the variation of
these parameters across different value ranges. Consequently, to facilitate a consistent assessment,
we normalize each parameter within the range of 0 to 1, employing the following methodology.

OHN
′
i = |OHNi|

max(|OHN|) (9)

AHD
′
i = |AHDi|

max(AHD)
(10)

DDR
′
i = mod (DDR − dist (CR, ci))

max(mod
(
DDR − dist

(
CR, cj

))
)

(11)

Wt (i) = OHN ′
i

DDR′
i ∗ AHD′

i

(12)

4.3 Proposed Artificial Neural Network (ANN) Algorithm

One type of Artificial Intelligence is Machine Learning (ML) and Artificial Neural Networks
(ANNs) is a subfield of ML. The human brain’s biological neural networks serve as the inspiration for
ANNs, which are computer models. The “neurons” of an ANN are just like the nodes in a network,
and they process and send data. Energy prediction, data analysis, and decision-making are just some
of the many uses for ANNs, many of which are used in WSNs [36].

ANNs are made up of nodes that are interconnected, called neurons that are arranged in layers.
Each neuron processes inputs and produces an output using weighted connections and activation
functions. Predictions are made based on the patterns and correlations they learn from trained data.
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There are two primary types of Artificial Neural Network (ANN) learning approaches called
supervised and unsupervised [37]. In this research, supervised ANN learning architecture is applied
on WSN as shown in Fig. 2. A total of fifty Wireless Sensor Networks (WSNs) in which each network
contains sixty-four Sensor Nodes (SNs) called clusters. Each cluster contains one Cluster Head (CH)
node containing the highest energy level that collects information from all the other nodes and
forwards it to the next CH node of another cluster network, and at the end the final data is transferred
to the Base Station (BS), which is using the architecture of ANN as a single-layer feed forward neural
network containing three layers. First is the input layers, second are one or more hidden layers and the
third one is the output layer on each cluster.

Figure 2: Supervised learning ANN architecture [37]

4.3.1 Mathematical Modeling of ANNs

The mathematical equations governing the functioning of a feed forward neural network can be
described as follows:

Input Layer

The input layer, also called Layer 1, consists of input features denoted as xi (where i = 1, 2,..., n).
The input layer has n neurons, each representing one feature. The output of the ith neuron in the input
layer (denoted as ai

(0)) is just the input feature itself. In this case, we have taken into account a hundered
input layers and sixty-four neurans per layer.

Hidden Layer

The hidden layer consists of m neurons, where m is the number of hidden units. Each neuron in
this layer takes inputs from the input layer and produces an output using weighted connections (wi

(1j))
and an activation function (g). The output of the jth neuron in the hidden layer (aj

(1)) is calculated as
follows:

aj
(1) = g

(∑n

i=1
(wi

(1j) ∗ ai
(0) + bj

(1)
)
)

(13)

where:

wi
(1j) ∗ ai

(0) + bj

(1)

is the output of the jth neuron in the hidden layer.

wi
(1j) is the weight connecting the ith input feature to the jth neuron in the hidden layer.

ai
(0) is the output of the ith neuron in the input layer.
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bj
(1) is the bias term for the jth neuron in the hidden layer.

Output Layer

Layer 3, indicated as the output layer, comprises k neurons, where k indicates the number of output
classes or regression outputs. Analogous to the hidden layer, each neuron within the output layer takes
inputs from Layer 1 and produces an output utilizing weighted connections (wj

(2k)) and an activation
function (g).

The ending result of the kth neuron in the output layer (ys) is calculated as follows:

ys = h
(∑m

j=1
(w(2s)

j ∗ a(1)

j + b(2)

s )
)

(14)

where:

ys stands for the output of the kth neuron in the output layer (which represents the final anticipated
outcome of the neural network’s output layer.).

wj
(2s) shows the weight that connect the jth neuron in the hidden layer to the kth neuron in the

output layer.

aj
(1) denotes the output of the j-th neuron in the hidden layer.

bs
(2) represents the bias term associated with the k-th neuron in the output layer.

g shows the activation function applied element-wise to the weighted sum of inputs and biases.

The overall processing of forward propagation through the neural network involves calculating
the output of each layer, in which the input layer working is initialized and proceeding through the
hidden layer(s) to the output layer. The expected output result (ys) is then compared to the actual
output during the training process to compute the loss, weights and biases are updated using an
optimization algorithm to lessen the loss and increase the network’s performance. This is known as
back propagation, and it is used to adjust the network’s parameters iteratively during training to learn
meaningful representations and make accurate predictions.

Neuron Activation

The activation of a neuron in an ANN can be calculated using an activation function and in this
study we are using the sigmoid function:

Activation = 1
1 + exp−z

(15)

Here, z represents the weighted sum of inputs to the neuron.

Wireless Sensor Networks (WSNs) often utilize AI algorithms for routing to optimize data
transmission, reduce energy consumption, and improve network efficiency. In this paper, ANN is
used as an AI-based routing algorithm for WSNs. ANNs are part of the broader category of machine
learning algorithms and are used in Wireless Sensor Networks (WSNs) for routing by employing them
as intelligent decision-making components to determine the most suitable routing paths based on
network conditions. Here’s how we applied ANN algorithms in WSN routing.
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1. Data Collection and Feature Extraction:

We gather data about WSN, including information about the network topology, node status, node
locations, energy levels, signal strengths, and historical routing data. After that, we preprocess and
transform the data into a format suitable for input to the ANN.

2. Applied Supervised Learning method:

In this research we used supervised learning setup, labeling the data instances with the desired
routing outcomes. These labels represent the optimal routing paths or strategies.

3. Data Preprocessing:

Preprocess the data and then feeding into the ANN. This involved scaling features, handling
missing data, and splitting the data into training and testing sets.

4. ANN Architecture Design:

The structure of the ANN is then determined. A total of one hundred and twenty input layers are
used in this article, and then the number of neurons in each layer is initially considered as sixty-four,
and sigmoid as the choice of activation function.

The input layer typically receives data on network conditions, and the output layer provides
routing decisions. The intermediate hidden layers process this information.

5. Training the ANN:

Train the ANN using the labeled data. During training, the network adjusts its internal parameters
(weights and biases) using equations Eqs. 13 and 14 to minimize the error between predicted routing
paths and the labeled paths. The network learns to make routing decisions based on the input data
and the labeled outcomes.

6. Routing Decision:

When a data packet needs to be transmitted from a source node to a destination node, the trained
ANN is used to make a routing decision. Input to the ANN includes current network conditions, such
as node locations, energy levels.

The output of the ANN is a routing decision, specifying the next hop or set of nodes through
which the data packet should be forwarded.

7. Data Transmission:

The data packet is transmitted through the nodes determined by the ANN’s routing decision.

8. Feedback and Learning:

After data transmission, the ANN receives feedback on the success or failure of the routing
decision. This feedback is used to update the ANN’s parameters during online learning, which further
refines its routing decision-making capability.

Algorithm 1: Artificial Neural Networks (ANNs) for Energy Optimization
Step 1: Training the ANN Model

(Continued)
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Algorithm 1 (continued)
Collecting a dataset of sensor node attributes includes location, remaining energy, distance to the Base
Station and their corresponding energy consumption.
Preprocess the dataset by normalizing the input attributes.
Design the architecture of the ANN model, specifying the number of layers as 120 and neurons per layer
as 64.
Assign sigmoid activation function to the neurons within each layer using Eq. (15)
Split the dataset into two distinct sets: A training set and a testing set.
Train the ANN model using the training set, adjusting the weights and biases through back propagation
and gradient descent optimization.
Evaluate the trained ANN model using the testing set and measure its performance metrics (e.g., accuracy,
mean squared error, etc.).
Step 2: Energy Prediction and Optimization
Deploy the trained ANN model to each sensor network.
Each sensor node periodically measures its attributes (such as remaining energy, distance to the base
station, etc.).
Input the measured attributes into the ANN model to predict energy consumption.
If the predicted energy consumption is above a threshold, then perform energy optimization techniques,
such as reducing transmission power, adjusting sleep/wake schedules.
Implement the energy optimization techniques and update the node’s energy consumption accordingly.
Step 3: Repeat
Repeat Steps 2 and 3 periodically or whenever necessary.

The proposed ANN architecture system is trained based on the energy consumption and delay
of the nodes. We have pre-trained the ANN model based on a data set that includes the total number
of nodes in the network, which is three hundred, the initial energy of each sensor node and intra node
distance and each node’s threshold energy. Fig. 3 shows the trained structure of ANN with Mean
Square Error (MSE). If a node’s communication energy delay falls below the specified threshold, it is
considered as a failed node. The system then selects a nearby node as a replacement communication
node, integrating it into the communication path. Among the 64 contributing neurons, representing
node properties such as energy and delay, inputs are given into the ANN’s input layer. With a hidden
layer comprising ten neurons, optimal performance is achieved. The output layer consists of 56
neurons, indicating eight failed nodes out of the original 64, demanding removal from the network.
This approach saves node energy, thereby extending network lifespan.

4.4 Proposed RkM-ANN Algorithm

We initiate the process by initializing the set of potential positions for Rendezvous Points (RPs),
denoted as C, through k-means clustering algorithm using ANN. Subsequently, our primary objective
is to minimize the count of potential RP positions while ensuring the coverage of every Sensor Node
(SN) within a single hop communication range, thus optimizing hop distance and conserving energy.

To achieve this, we employ the Reduced k-means hybrid with the ANN (RkM-ANN) algorithm,
which operates as follows:

a. During the iteration process of RkM-ANN, we systematically eliminate any potential RP
position that covers at most one SN. This strategic elimination is geared toward energy conservation.



2956 CMC, 2024, vol.79, no.2

b. Next, we calculate the weight of the remaining potential RP positions, subsequently selecting
the one with the highest weight value.

c. The chosen RP and all SNs covered by it, is then removed from consideration.

d. This iterative process remains continued until the set C becomes empty.

e. After the creation of the final set of RP placements, we used Christofides’s heuristic to support
the proposed method using the Traveling Salesman Problem (TSP) [38] algorithm to find the best route
for the Mobile Sink (MS).

Figure 3: Trained ANN structure

Algorithm 2: Proposed RkM-ANN Algorithm
Algorithm: RP Selection and Path Calculation for Mobile Sink (MS)
Input:
S (Set of Sensor Nodes)
CTR (Cluster Head to Threshold Rendezvous Point distance)
OHN (One-Hop Neighbor Count Threshold)
MDD (Maximum Desired Distance)
AHD (Average Hop Distance)
k (Number of Rendezvous Points to Select)
Threshold level for each node (40%)
Output: Set of Rendezvous Points (RP) and Path for the Mobile Sink (MS)
Initialization:
Initialize RP as an empty set: RP = �

(Continued)
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Algorithm 2 (continued)
Step 1: Cluster Sensor Nodes and Initialize Rendezvous Points
Initialize set C for potential RP positions by k-means clustering using ANN with input parameters (S,
k).
Step 2: Rendezvous Point Selection Loop
Start a loop:
For each candidate RP position ci in set C:
Check if the indegree (number of connected nodes) of ci is less than 1.
If true, remove ci from set C.
Step 3: Check for Termination
If the size of set C becomes 0, exit the loop.
Step 4: Weight Computation and Selection
For each remaining candidate RP position ci in set C:
Compute the weight WT(i) using Eq. (12).
Step 5: RP Selection and Data Removal
Select the candidate ci with the maximum weight from set C.
Add ci to the RP set: RP = RPUci

Remove the selected ci from set C.
Remove every Sensor Node (SN) covered by ci from set S.
Step 6: Traveling Salesman Path Calculation
6. After the loop concludes, call the Traveling Salesperson Problem (TSP) algorithm on set RP to obtain
the optimal path for the Mobile Sink (MS).
End of Algorithm

Using TSP, this algorithm determines the best possible route for the Mobile Sink by continually
selecting Rendezvous Points from a candidate set according to specified criteria.

Theorem 1: The RkM-ANN algorithm exhibits a time complexity of O(nkl + kt + kn + k3),
where n is the number of nodes, k is the desired number of Rendezvous Points (RPs), p represents
the dimensions in k-means clustering, t denotes the count of remaining potential RP positions, and q
signifies the selected number of RPs.

Proof:

1. Initialization of an empty set RP in Step 1 invites constant time.

2. Utilizing the k-means clustering algorithm with ANN to attain potential RP positions in Step
2 requires O(nkpl) time.

3. Steps 3 to 6, involving the selection of q RPs, consume O(mt + mn) time, where “t” represents
the remaining count of k’s (potential RP positions).

4. Using Christofis’s heuristic method in O(m3) time the k positions utilize to compute the
MS path.

5. Consequently, the overall time complexity of the RkM-ANN algorithm is expressed as O(nkl +
mt + mn +k3). For worst-case scenario, when the number of RPs = (k), the time complexity becomes
O(nkl + kt + kn + k3).
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Explanation:

RkM-ANN establishes one-hop communication for equal Sensor Nodes (SNs) distribution.
Simulation results indicate that 96% of SNs lie within a one-hop distance of the selected Rendezvous
Points (RPs), even in unequal deployments. The remaining 4% of SNs achieve RP connectivity within
2 or 3 hops through intermediary SNs. While RkM-ANN confirms energy-efficient Mobile Sink path
formation, it lacks a guarantee for data delivery within a specified delay, a critical constraint for real-
time applications. This constraint is addressed by the subsequent DBRkM-ANN algorithm, detailed
below.

4.5 Proposed DBRkM-ANN Algorithm

The key objective of the proposed hybrid model is to search for a minimalized set of Rendezvous
Points (RPs) that allow the Mobile Sink (MS) to gather information efficiently within a sufficient
latency, reducing hop counts and distances for energy management. Similar to RkM-ANN, DBRkM-
ANN begins with a k-means clustering with an ANN predefined set of potential RP positions. The
algorithm initializes an empty set of RP and iteratively chooses a potential RP position with the largest
weight to add to the set. Afterward, the Traveling Salesman Problem (TSP) algorithm [38] determines
the shortest path. The algorithm iterates until the path length crosses the predefined delay limit. The
pseudocode for this approach is presented below:

Algorithm 3: Proposed DBRkM-ANN
Input Parameters:
S: Set of sensor nodes (SNs)
CR: Communication range
OHN: One-hop neighbors
MDD: Maximum Delay Duration
AHD: Average Hop Distance
k: Number of Rendezvous Points (RPs)
Output:
Set of RPs (RP)
Path for Mobile Sink (MS)
Pseudocode:
Set RP as an empty set.
Apply hybrid model of k-means clustering (S, k) using ANN to generate an initial set of potential RP
positions and store it in C.
While the tourcost (path length) < D
Loop through each potential RP position (ci) in C:
If the indegree (ci) < 1
Eliminate ci from C.
End If
End Loop
Loop through each remaining potential RP position (ci) in C:
Compute the weight of ci using Eq. (12) (W t(i)).
End Loop
Extract the potential RP position (ci) with the maximum weight from C and add it to RP (RP = RP
∪ ci).

(Continued)
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Algorithm 3 (continued)
Remove the selected ci from C.
Remove all SNs from S that are covered by the selected ci.
If the size of RP is greater than 1:
Calculate the tourcost using the Traveling Salesman Problem (TSP) algorithm with nodes in RP.
End If
End While

Theorem 2: The DBRkM-ANN algorithm shows a time complexity of O(nkl + mt + mn +m4).

Proof:

1. Initialization of an empty set RP in Step 1 incurs constant time.

2. Obtaining k potential RP positions using k-means clustering using ANN in Step 2 requires
O(nkl) time.

3. Steps 3 to 18 iterate q times to select q RPs, involving the removal of SNs covered by the selected
RP and subsequent application of the TSP algorithm [38] to determine the path through the set RP.

4. Equation O(nkl + mt + mn + m4) expresses the overall time complexity of DBRkM-ANN.
In the worst-case condition, when the selected RPs = k then, the new time complexity is O(nkl +
kt + kn + k4).

Explanation:

This procedure initiates an empty set of RPs and generates an initial set of possible RP places
using k-means clustering using ANN.

Based on specified requirements, continuously picks possible RP places, calculates their weights,
and adds them to the RP set. SNs covered by selected RPs are removed from the SN set S.

The algorithm keeps executing until the tourcost (path length) is higher than its maximum delay
duration (MDD).

Furthermore, using the nodes in RP, the TSP method is used to determine the Mobile Sink
(MS) path.

Note: The following pseudocode is based on the availability of specific functions (e.g., TSP,
Eq. (12), and indegree).

4.6 Proposed Data Gathering Scheme

4.6.1 Data Gathering and Communication Process

The Mobile Sink (MS) chooses a destination RP for each Sensor Node (SN) based on its
corresponding distances after selecting the Rendezvous Points (RPs). The decision of the nearest RP
for each SN is important in order to ensure uniform energy distribution across the network. Following
this assignment, MS initiates the broadcast Information Packet for the Rendezvous Points (IPR) to
the whole network, encapsulating crucial information.

Upon reception of the IRP, SNs take its contents to establish their respective destination RP. With
this information in hand, all SNs are now ready to transmit data to their designated RPs. The data
gathering period is organized into different rounds, each involving the MS’s traversal of the selected
area to collect information. The MS sequentially visits the selected RPs for data retrieval from the SNs.
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When SN falls within the communication range of its designated RP, it directly forwards its data
to the MS. Conversely, if the distance requires, the SN utilizes its nearest SN as a relay to facilitate
data transmission to the RP. As the MS approaches a specific RP, it issues a polling message, denoting
the RP’s identifier. SNs intend to transmit data through when the data arrives at the RP, which then
processes the received data and sends it to MS.

This process will continue until MS has successfully collected information from all the SNs
assigned to each RP; after that, it moves on to the next RP. Each SN is only responsible for saving
its own data using its own buffer, and this is one of the main advantages of suggested techniques. In
comparison, information is kept in Data Storing Nodes (DSNs) that are one hop away from the RP
in the traditional data collection architecture [39]. With the second approach, nodes that are two or
more hops distant from DSNs have to relay their data to them, which enhances the possibility of data
overflow, which can lead to data loss and retransmission.

4.7 Traveling Salesman Problem (TSP) Mechanism

The TSP involves the returning mechanism of a salesman looking for the smallest route to find
food from specified cities, and then returning to their initial city. For mathematical representation, one
can use the entire weighted graph G = (N, A)G = (N, A), where N shows the number of nodes that
stand for cities and A is the set of arcs that totally connect with N. The length of each arc, denoted by
the symbol dxy, is measured in units of this kind (x; y). TSP involves determining the minimum possible
Euclidean distance between any two nodes in the graph G. With symmetric TSPs, the distance between
any two cities called nodes, denoted by dxy, is equal to dyx regardless of which way the arcs are traversed.

5 Experimental Results

The proposed algorithms are carefully evaluated through simulations conducted on Matlab
software (R2021a version) on Windows 8.1. The system employed for these simulations was equipped
with 8 GB of RAM and featured a processor running at 2.5 GHz, housing an Intel Core i-7 CPU.
The assessment of these algorithms encompassed a range of network scenarios achieved by varying
the number of Sensor Nodes (SNs) across a target area measuring 200 × 200 square meter (m2). Each
SN was initially endowed with 3 Joules (J) of energy, and no energy limitations were imposed on the
Mobile Sink (MS). The MS was assumed to move at a velocity of 4 m/s. The parameters investigated
in this study are mentioned in Table 1. In our analysis, we compared the RkM-ANN algorithm with
a technique that generates q RP positions directly using straightforward k-means clustering using
ANN, the traditional RkM [22] and K-means based algorithms. Furthermore, DBRkM-ANN was
compared with two existing algorithms, namely the traditional DBRkM [22] technique and Weighted
Rendezvous Planning (WRP) [23].

Table 1: Simulation parameters

Simulation parameters values

Area 200 × 200 m2

Ei (Initial energy) 3 J
Number of nodes (N) 300
Eelec(Energy consumption) 100 nJ/bit

(Continued)
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Table 1 (continued)

Simulation parameters values

Eamp (Multi-path model of transmitter amplifier) 0.001301 pJ/bit/m4

Efs (Free space model of transmitter amplifier) 12 pJ/bit/m2

Communication range of each SN 30–200 m
D (Distance) 600 m
L (Packet size) 5000 bits

The results of these simulations were subjected to a comprehensive evaluation utilizing multiple
performance metrics.

5.1 Result and Analysis of RkM-ANN

The Figs. 4 and 5 show the runtime scenarios of both the k-means-based ANN and RkM-ANN
approaches. These scenarios were generated using a network configuration consisting of 20 Sensor
Nodes (SNs) with a communication range denoted as “r” equal to 50 meters (m). In the graphical
representations, the data broadcast pathways by the SNs convey their detected data to the Rendezvous
Points (RPs) are mentioned with the green lines, while the purple dash line illustrates the trajectory
of the Mobile Sink (MS) to the RPs and the purple lines represent the connection path between the
WSNs. It is important to note that this runtime scenario is visualized within a target area measuring
120 by 100 square meters (m2).

Figure 4: Experimental scenario of k-means based-ANN approach
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Figure 5: Experimental scenario of RkM-ANN approach

5.1.1 Analysis of Hop Counts

Fig. 6 represents the performance analysis of total hop counts under varying node densities
for the clustering techniques of K-means based, proposed K-means based-ANN, Reduced k-means
(RkM), and proposed Reduced k-means with ANN (RkM-ANN). The figure vividly illustrates
that approximately 96% of SNs are protected by designated RPs. This outcome is attributed to the
algorithm’s avoidance of RP placements covering only a single SN, resulting in about 4% of SNs
communicating with MS through intermediary SNs. Notably, the total hop counts are significantly
reduced in comparison to the simple k-means based approach with the proposed k-means-based-ANN
algorithm model. In another proposed technique, RkM-ANN, potential RP positions with a higher
number of one-hop neighbors are prioritized in comparison to the simple RkM approach.

Figure 6: Number of sensor nodes vs. Number of hope counts
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5.1.2 Analysis of Packets Received to BS

Fig. 7 presents the total received packets to the base station (BS), demonstrating that RkM-ANN
outperforms the k-means based and k-means based-ANN and traditional RkM approach.

Figure 7: Network size vs. Received packets

5.1.3 Analysis of Energy Consumption

Fig. 8 showcases the algorithms’ performance in terms of energy consumption over various
data collection rounds. Remarkably, RkM-ANN exhibits lower energy consumption than the RkM
approach compared to the k-means-based and k-means-based-ANN approach.

Figure 8: Number of sensor nodes vs. Energy consumption
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5.1.4 Analysis of End-to-End Delay

Fig. 9 illustrates the comparison between RkM-ANN, RkM, k-means based and k-means based-
ANN concerning the total number of End-to-End delays. It is evident that RkM-ANN outperforms
the other three algorithms. This superiority can be attributed to the usefulness of the suggested weight
function, which strongly emphasizes the reduction of End-to-End delay by choosing potential RPs
with the highest indegree.

Figure 9: Number of sensor nodes vs. End-to-end delay

5.1.5 Network Lifetime

The proposed technique intensely increased the network lifetime under varying node densities
through the weight function. The program optimized the routing patterns based on the expected energy
consumption, leading to effective data transfer. This was achieved with the use of the RkM-ANN
algorithm. This enhancement provided consistent data collection and decreased network wide data
loss. Fig. 10 represents the graphical analysis of network size vs. network lifetime.

5.2 Results and Analysis of DBRkM-ANN

In this section, different results are analyzed for different parameters that are taken into account
in this article. They are given below.

5.2.1 Total Hop Counts

A comparison of total hop counts between DBRkM, WRP, and the proposed DBRkM-ANN is
shown in Fig. 11. DBRkM performs better, which is explained by the effectiveness of the proposed
weight function. Eq. (4) illustrates the function’s priority of reducing total hop counts through the
selection of possible Rendezvous Points (RPs) with the highest indegree.
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Figure 10: Network size vs. Network lifetime

Figure 11: Number of sensor nodes vs. Hope counts

5.2.2 Analysis of End-to-End Delays

The number of End-to-End Delays is plotted in Fig. 12, showcasing DBRkM-ANN’s superiority
over other algorithms. The proposed methodology has a lower number of End-to-End Delays in
comparison with the other existing techniques.

5.2.3 Analysis of Total Received Packets

Fig. 13 demonstrates the analysis of the proposed model DBRkM-ANN regarding the number of
received packets. The results indicate that the suggested technique performs better than the other two
algorithms in terms of the highest number of received packets.
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Figure 12: Number of sensor nodes vs. End-to-end delay

Figure 13: Network size vs. Received packets

5.2.4 Energy Consumption

The random deployment of 300 SNs in one single network as shown in Fig. 14. The energy of the
network drops immediately as the data transmission initializes within the network. In this research,
we have suggested the initial energy of the network is 3-Joules. According to the results after analysis,
the network’s energy usage rose in tandem with progress. However, less energy consumption was noted
by reducing multi-hop route lengths and the number of hops is counted when the hybrid approach.
The DBRkM-ANN strategy was applied on WSN. As a result of the optimization of the network, less
amount of energy was consumed than in the case of the other existing methodologies.
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Figure 14: Number of sensor nodes vs. Energy consumption

5.2.5 Network Lifetime

The proposed technique “DBRkM-ANN” intensely increased the network lifetime under varying
node densities through the weight function when compared with WRP and traditional BDRkM
algorithms. The program optimized the routing patterns based on the expected energy consumption,
leading to effective data transfer. This enhancement provided consistent data collection and decreased
network wide data loss. Fig. 15 represents the graphical analysis of network size vs. network lifetime.

Figure 15: Network size vs. Network lifetime
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6 Conclusion

This paper presents two novel hybrid algorithms, namely RkM-ANN and DBRkM-ANN,
designed for the optimization of mobile sink (MS) and improved path formation within Wireless
Sensor Networks (WSNs). Both algorithms are planned to facilitate efficient MS path selection by
taking into account a multitude of critical factors. These factors encompass the maximization of
one-hop neighbors, reduction of average hop distance, and minimization of the distance between
Rendezvous Points (RPs) and the most favorable distance from a reference point. While RkM-
ANN establishes a path via one-hop communication, DBRkM-ANN employs a similar technique
to construct a path while adhering to delay-bound constraints. Both algorithms are rigorously
evaluated against existing counterparts, namely Weighted Rendezvous Planning WRP and traditional
DBRkM algorithms. Another strategy for finding the shortest path to reach RPs is investigated in
the study by applying TSP methodology to mitigate the revisit constraints of SNs across networks.
The assessment encompasses various performance metrics, including the total number of hop counts,
energy consumption, and the number of received packets, end-to-end delay and network lifetime. The
results conclusively demonstrate the superior performance of RkM-ANN and DBRkM-ANN across
these metrics when compared to existing methodologies. In addition to path formation, this study
presents a robust data gathering strategy intended for the mobile sink that will be used in every data
collection cycle. This scheme is designed to minimize packet drops and enhance overall data collection
efficiency. However, it is essential to acknowledge certain limitations in our work. We have assumed a
uniform data generation load across all SNs, which might not hold true in practical scenarios where
SNs exhibit varying data generation rates. Additionally, our work assumes negligible break time for
MS. Addressing these limitations represents a potential avenue for future research, where efforts can
be directed toward accommodating non-uniform data generation and exploring the implications of
more realistic sojourn time scenarios.
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