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ABSTRACT

Genetic algorithms (GAs) are very good metaheuristic algorithms that are suitable for solving NP-hard combinato-
rial optimization problems. A simple GA begins with a set of solutions represented by a population of chromosomes
and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes. It uses
a crossover operator to create better offspring chromosomes and thus, converges the population. Also, it uses a
mutation operator to explore the unexplored areas by the crossover operator, and thus, diversifies the GA search
space. A combination of crossover and mutation operators makes the GA search strong enough to reach the
optimal solution. However, appropriate selection and combination of crossover operator and mutation operator
can lead to a very good GA for solving an optimization problem. In this present paper, we aim to study the
benchmark traveling salesman problem (TSP). We developed several genetic algorithms using seven crossover
operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.
The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive
crossover operator and insertion mutation operator for the problem. The GA using the comprehensive sequential
constructive crossover with insertion mutation could find average solutions whose average percentage of excesses
from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.
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1 Introduction

The travelling salesman problem (TSP) is an important combinatorial optimization problem
(COP) that is proven as NP-hard [1]. It is a very difficult COP that was first documented in 1759 by
Euler as the Knights’ tour problem. Later on, in 1932, in a German book, the term ‘travelling salesman’
was first used. Furthermore, in 1948, the RAND Corporation formally introduced the problem. The
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problem may be stated as below: There is a set of n nodes (cities) including the depot ‘node 1’. For
every pair of nodes (i, j), a distance (or travel time or travel cost) matrix, D = [dij], is given. The aim is
to find a minimum distance (or cost) Hamiltonian cycle. There are two types of TSP-asymmetric TSP
and symmetric TSP. The TSP is symmetric if dij = dji, for all node pairs i, j; otherwise, asymmetric.

The TSP has several practical applications in very-large-scale integrated circuits, vehicle routing,
automatic drilling of printed circuit boards and circuits, X-ray crystallography, computer wiring,
DNA sequencing, movement of people, machine scheduling problems, packet routing in the global
system for mobile communications, logistics service [2], etc. There are probably (n–1)! solutions for the
asymmetric TSP and probably (n−1)!

2
solutions for the symmetric TSP, out of those at least one gives the

minimum cost. The problem is very difficult as the probable number of solutions is large in both TSP
types. As the problem is very difficult and can be used to model several other difficult problems, many
researchers developed many exact and metaheuristic/heuristic algorithms for solving the problem.
Exact algorithms include branch-and-bound [3], branch-and-cut [4], integer programming [5], and
lexisearch [6]. In general, instances of size n > 100 cannot be solved optimally by an exact algorithm
in a reasonable time. As many real-world problem instances are of size bigger than 100, thus, to solve
these problem instances one must use heuristic algorithms. Heuristic algorithms do not ensure the
optimality of the obtained solution; however, they obtain a nearly exact optimal solution within a
short computational effort. Metaheuristic algorithms are very recent heuristic algorithms that can be
developed for various COPs. Examples of such algorithms for the TSP are ant colony optimization
[7], genetic algorithm [8], simulated annealing [9], tabu search [10], particle swarm optimization [11],
etc. Amongst these metaheuristics, the genetic algorithm is the best algorithm for the TSP as well as
other COPs.

Genetic algorithm (GA) is a very robust and effective metaheuristic method for solving large-
sized COPs. It is based on the evolutionary process of natural biology. Each legitimate solution to a
particular problem is represented by a chromosome whose fitness is assessed by its objective function.
In a simple GA, a set (or population) of chromosomes is produced randomly at an initial stage, and
then probably three operators are applied to create new and probably better populations in succeeding
iterations (or generations). Selection is the first operator that removes and copies probabilistically
some chromosomes of a generation and passes them to the next generation. The second operator,
crossover, arbitrarily selects a pair of parent chromosomes and then mates them to produce new
and probably better offspring chromosome(s). Mutation is the third operator that arbitrarily changes
some genes (or position values) of a chromosome. Amongst them, crossover is the highly valuable
operator that compresses the search space, while mutation expands the search space. As a result, the
probability of utilizing the mutation operator is fixed very low, while the probability of utilizing the
crossover operator is fixed very high. These operators are repeatedly applied until the optimal solution
is obtained, or the predefined maximum number of iterations (generations) is reached [12].

Since crossover is a highly valuable operator, various crossovers are developed and enhanced to
obtain a quality solution to the TSP. In this study, seven crossover and six mutation operators are
considered in GAs on TSP, and then a comparative study amongst them has been conducted on
some standard TSPLIB instances [13]. A comparative study shows that the comprehensive sequential
constructive crossover [14] is the best crossover operator and insertion mutation [15] is the best
mutation operator, and their combination is one of the best combinations. It should be mentioned
that the purpose of this study is only to examine the efficiency of the crossover operator combined
with the mutation operator, not to obtain the optimal solution to the problem.
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The rest of the paper is arranged as follows: a brief review of some crossover operators and
mutation operators for the TSP is shown in Section 2. Seven crossover operators have been briefly
discussed in Section 3, whereas Section 4 discusses six mutation operators for our simple GAs.
Section 5 reports computational experiments for simple genetic algorithms using various crossover
and mutation operators. Finally, concluding remarks and future works are presented in Section 6.

2 A Review of Crossover and Mutation Operators for the TSP

In GA search for the solution, new chromosomes are created from the old ones using crossover
and mutation operators. A pair of chromosomes is selected randomly from the mating pool using the
crossover operator. Then a crossover site along their shared length is chosen randomly, and the data
after the site of the chromosomes are exchanged, thus producing two new offspring chromosomes.
However, this simple crossover process may not produce valid chromosomes for the TSP. Numerous
crossover operators were suggested for the TSP. Distance-based crossover and blind crossover are
two major categories of crossover operators available in the literature. Offspring chromosomes are
produced using distances between nodes in a distance-based crossover operator, while offspring
chromosomes do not require any data on the problem in a blind crossover operator but rather
require knowing only about the problem’s limitations, if any. The heuristic crossover (HX) [16], greedy
crossover (GX) [17], sequential constructive crossover (SCX) [8], distance-preserving crossover (DPX)
[18], etc., are some well-known distance-based crossover operators, and ordered crossover (OX) [17],
partially mapped crossover (PMX) [19], position based operator (PBX) and order based crossover
(OBX) [20], cycle crossover (CX) [21], alternating edges crossover (AEX) [22], generalized N-point
crossover (GNX) [23], edge recombination crossover (ERX) [24], etc., are some well-known blind
crossover operators.

In the traditional mutation process, a gene (or position) in a chromosome is selected randomly
under some prefixed probability, and the gene value is changed, thus, the chromosome is modified.
The purpose of the mutation operator is to prevent the early convergence of the GA to non-optimal
solutions by bringing back the lost genetic material or inserting new information into the population.
As the inferior chromosomes are dropped in each generation, some genetic characteristics might be
missing forever. By performing random modifications in chromosomes, GA ensures that a new search
space is touched, and that selection and crossover might not fully ensure. This way, the mutation
ensures that no valuable characteristics are missing early, and thus, it preserves population diversity.
The traditional mutation process may not produce valid chromosomes for the TSP. Several mutation
operators were suggested for the TSP. Insertion mutation [14], exchange mutation [25], inversion
mutation [26], displacement mutation [27], heuristic mutation [28], greedy swap mutation [29], adaptive
mutation [30], etc., are some well-known mutation operators. In [31], an efficient mutation approach
using transpose, shift-and-insert, and swap neighborhood operators, is suggested to produce the best
solutions for the TSP. However, it is a local search method.

3 Crossover Operators for Our GAs

For the TSP, solutions are represented by chromosomes which are defined as a permutation of
nodes. The nodes are labeled as {1, 2, 3, . . . , n}, where n is the size of the problem (that is, the total num-
ber of nodes in the network). For a 7-node problem instance, the tour {1→6→7→3→2→4→5→1} is
represented by (1, 6, 7, 3, 2, 4, 5). The objective function is defined as the total distance of the tour and
the fitness function is defined as the multiplicative inverse of the objective function. Consequently, a set
of chromosomes, called the initial population, of prefixed size, Ps, is produced randomly. The stochastic
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remainder selection method is used to produce a mating pool. The following seven crossover operators
are used for our comparative study. Each crossover operator is applied under the crossover probability,
Pc rule.

3.1 Sequential Constructive Crossover Operator

In [8], the SCX is suggested for the TSP that produces a good quality solution for both symmetric
and asymmetric TSPLIB instances, which is compared with the other two crossover operators and
found to be the best. It builds an offspring chromosome using better edges based on the edge values
appearing in the parent chromosome. It also uses good-quality edges which are not present in either
parent. It searches sequentially both parents and accepts the first unvisited node that is found after
the present node. If an unvisited node is not seen in both parents, it searches sequentially from the
start of the chromosome and picks the first unvisited node. A comparative study is reported in [32],
which reports that SCX is the best among eight crossovers. The algorithm for the SCX [8] is presented
in Algorithm 1.

Algorithm 1: Sequential constructive crossover algorithm
Input: n, Distance matrix D = [dij], Crossover probability Pc, Pair of chromosomes.
Output: Offspring chromosome.
Generate random number r ∈ [0,1].
if (r ≤ Pc) then do

Set p = 1.
The offspring chromosome contains only ‘node 1’.
for i = 2 to n do

In each chromosome consider the first ‘legitimate node’ that appeared after ‘node p’.
if ‘legitimate node’ is not available in a chromosome, then

Search from the start of the chromosome and consider the first ‘legitimate
node’ that appeared after ‘node p’.

end if
Suppose ‘node α’ and ‘node β’ are found in the 1st and 2nd chromosomes respec
tively.
if (dpα < dpβ) then do

Add ‘node α’ to the offspring chromosome.
Else

Add ‘node β’ to the offspring chromosome.
end if
Rename the present node as ‘node p’ and continue.

end for
end if
Return the offspring chromosome

We consider the 10-node problem given as a distance matrix in Table 1. Let P1: (1, 6, 3, 9, 4, 5, 7,
8, 2, 10) and P2: (1, 7, 9, 3, 2, 4, 8, 5, 10, 6) be a pair of chosen parent chromosomes with distances
447 and 558 respectively. We use these chromosomes for applying to all crossover operators. We set the
headquarters (first gene) as ‘node 1’, and so, the procedures are started from the ‘node 1’. Applying
the SCX on the parent chromosomes, one can obtain the offspring O: (1, 6, 7, 9, 4, 5, 8, 10, 3, 2) with
the distance 502 (see Table 2).
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Table 1: The distance matrix

Node 1 2 3 4 5 6 7 8 9 10

1 999 46 54 16 53 12 60 29 54 35
2 46 999 100 56 79 45 75 65 81 32
3 54 100 999 47 65 58 82 48 63 82
4 16 56 47 999 38 12 47 41 38 51
5 53 79 65 38 999 43 18 78 4 85
6 12 45 58 12 43 999 49 41 44 42
7 60 75 82 47 18 49 999 88 21 88
8 29 65 48 41 78 41 88 999 77 38
9 54 81 63 38 4 44 21 77 999 86
10 35 32 82 51 85 42 88 38 86 999

Table 2: Offspring chromosome by SCX

Present
‘node p’

Legitimate node after ‘node p’ in Accepted
node

Partial offspring with
distance D

P1 with distance P2 with distance

1 Node 6 with d16 = 12 Node 7 with d17 = 60 Node 6 (1, 6) with D = 12
6 Node 3 with d63 = 58 Node 7 with d67 = 49 Node 7 (1, 6, 7) with D = 61
7 Node 8 with d78 = 88 Node 9 with d79 = 21 Node 9 (1, 6, 7, 9) with D = 82
9 Node 4 with d94 = 38 Node 3 with d93 = 63 Node 4 (1, 6, 7, 9, 4) with D = 120
4 Node 5 with d45 = 38 Node 8 with d48 = 41 Node 5 (1, 6, 7, 9, 4, 5) with D =

158
5 Node 8 with d58 = 78 Node 10 with d5,10 =

85
Node 8 (1, 6, 7, 9, 4, 5, 8) with

D = 236
8 Node 2 with d82 = 65 Node 10 with d8,10 =

38
Node 10 (1, 6, 7, 9, 4, 5, 8, 10) with

D = 274
10 Node 3 with d10,3 = 82 Node 3 with d10, 3 =

82
Node 3 (1, 6, 7, 9, 4, 5, 8, 10, 3)

with D = 356
3 Node 2 with d32 = 100 Node 2 with d32= 100 Node 6 (1, 6, 7, 9, 4, 5, 8, 10, 3, 2)

with D = 456
Completed offspring with distance =
502

3.2 Adaptive Sequential Constructive Crossover Operator

An adaptive SCX (ASCX) is developed in [33], which produces an offspring chromosome
adaptively by searching in the forward/backward/mixed direction depending on distances to the next
nodes. A comparative study amongst eight separate crossover operators shows that the operator ASCX
is the best one. Algorithm 2 shows the pseudocode of the ASCX operator for the TSP.
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Algorithm 2: Adaptive sequential constructive crossover algorithm
Input: n, D, Pc, Pair of parent chromosomes
Output: Offspring chromosome.
Generate a random number r ∈ [0,1].
if (r ≤ Pc) then do

Set p = 1, i = 1, q = 1, j = n + 1.
for k = 2 to n do

Forward (right) direction: In each parent chromosome consider the first
‘un-visited’ node found after ‘node p’.
if no ‘un-visited’ node is found in a parent, then

Examine from the starting of the parent (wrap around) and choose the first
‘un-visited’ node found before ‘node p’.

end if
Assume that ‘node α’ and ‘node β’ are selected from 1st and 2nd parents respectively.
Backward (left) direction: In each chromosome consider the first ‘un-visited’ node
found left of ‘node p’.
if no ‘un-visited’ node is found in a parent, then

Examine from the end of the parent (wrap around) and choose the first
‘un-visited’ node found after ‘node p’.

end if
Assume that ‘node γ ’ and ‘node δ’ are selected from 1st and 2nd parents respectively.
Now, suppose among four nodes, ‘node u’ is the closest with distance s = min. {dpα, dpβ ,
dpγ , dpδ}.
Backward (left) direction: In each chromosome consider the first ‘un-visited’ node
found left of ‘node q’.
if no ‘un-visited’ node is found in a parent, then

Examine from the end of the parent (wrap around) and choose the first
‘un-visited’ node found after ‘node q’.

end if
Assume that ‘node w’ and ‘node x’ are selected from 1st and 2nd parents respectively.
Forward (right) direction: In each chromosome consider the first ‘un-visited’ node
found after ‘node q’.
if no ‘un-visited’ node is found in a parent, then

Examine from the starting of the parent (wrap around) and choose the first
‘un-visited’ node found before ‘node q’.

end if
Assume that ‘node y’ and ‘node z’ are selected from 1st and 2nd parents respectively.
Now, suppose among four nodes, ‘node v’ is the closest with distance t = min. {dwq,
dxq, dyq, dzq}.
If s ≤ t, then set i = i + 1 and add ‘node u’ in position ‘i’ in the partially constructed
offspring chromosome and set p = u. Otherwise, set j = j - 1 and add ‘node v’ in
position ‘j’ in the partially constructed offspring chromosome and set q = v.

end for
end if
Return the offspring chromosome
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Applying the ASCX on the parent chromosomes, one can obtain the offspring O: (1, 6, 7, 9, 4, 5,
8, 10, 3, 2) with the distance 406 (see Table 3).

Table 3: Offspring chromosome by ASCX

Node p Legitimate node after ‘node p’
(in both directions) in

Node q Legitimate node before ‘node q’
(in both directions) in

Accepted
node

Partial offspring
with distance D

P1 (distance) P2 (distance) P1 (distance) P2 (distance)

1 6 (d16 = 12)
10 (d1,10 = 35)

7 (d17 = 60)
6 (d16 = 12)

1 10 (d10,1 = 35)
6 (d61= 12)

6 (d61 = 12)
7 (d71 = 60)

Node 6 (1, 6, ∗, ∗, ∗, ∗, ∗, ∗,
∗, ∗) with D = 12

6 3 (d63 = 58)
10 (d6,10 = 42)

7 (d67 = 49)
10 (d6,10 = 42)

1 10 (d10,1 = 35)
3 (d31= 54)

10 (d10,1 = 35)
7 (d71 = 60)

Node 10 (1, 6, ∗, ∗, ∗, ∗, ∗, ∗,
∗, 10) with D = 47

6 3 (d63 = 58)
2 (d62 = 45)

7 (d67 = 49)
5 (d65 = 43)

10 2 (d2,10 = 32)
3 (d3,10= 82)

5 (d5,10 = 85)
7 (d7,10 = 88

Node 2 (1, 6, ∗, ∗, ∗, ∗, ∗, ∗,
2, 10) with D = 79

6 3 (d63 = 58)
8 (d68 = 41)

7 (d67 = 49)
5 (d65 = 43)

2 8 (d82= 65)
3 (d32= 100)

3 (d32 = 100)
4 (d42 = 56)

Node 8 (1, 6, 8, ∗, ∗, ∗, ∗, ∗,
2, 10) with D = 120

8 3 (d83 = 48)
7 (d87 = 88)

5 (d85 = 78)
4 (d84 = 41)

2 7 (d72= 75)
3 (d32= 100)

3 (d32 = 100)
4 (d42 = 56)

Node 4 (1, 6, 8, 4, ∗, ∗, ∗, ∗,
2, 10) with D = 161

4 5 (d45 = 38)
9 (d49 = 38)

5 (d45 = 38)
3 (d43 = 47)

2 7 (d72= 75)
3 (d32= 100)

3 (d32 = 100)
5 (d52 = 79)

Node 5 (1, 6, 8, 4, 5, ∗, ∗, ∗,
2, 10) with D = 199

5 7 (d57 = 18)
9 (d59= 4)

7 (d57 = 18)
3 (d53 = 65)

2 7 (d72= 75)
3 (d32= 100)

3 (d32 = 100)
7 (d72 = 75)

Node 9 (1, 6, 8, 4, 5, 9, ∗, ∗,
2, 10) with D = 203

9 7 (d97 = 21)
3 (d93 = 63)

3 (d93 = 63)
7 (d97 = 21)

2 7 (d72= 75)
3 (d32= 100)

3 (d32 = 100)
7 (d72 = 75)

Node 7 (1, 6, 8, 4, 5, 9, 7, ∗,
2, 10) with D = 224

7 3 (d73 = 82)
3 (d73 = 82)

3 (d73 = 82)
3 (d73 = 82)

2 3 (d32= 100)
3 (d32= 100)

3 (d32 = 100)
3 (d32= 100)

Node 3 (1, 6, 7, 9, 4, 5, 8, 10,
3, 2) with D = 406

Completed offspring (1, 6, 7, 9, 4, 5, 8, 10, 3, 2) with distance = 406

3.3 Greedy Sequential Constructive Crossover Operator

Furthermore, Ahmed [34] proposed another crossover named greedy SCX (GSCX) that produces
an offspring chromosome using the greedy method adaptively by searching in the forward direction.
Comparative studies among five different crossover operators show that the GSCX is the best one.
Algorithm 3 shows the pseudocode of the GSCX operator for the TSP.

Algorithm 3: Greedy sequential constructive crossover algorithm
Input: n, D, Pc, Pair of parent chromosomes.
Output: Offspring chromosome.
Generate random number r ∈ [0,1].
if (r ≤ Pc) then do

Set p = 1.
The offspring chromosome contains only ‘node 1’.
for i = 2 to n do

In each parent chromosome consider the first un-visited’ node found after ‘node p’.
if no ‘un-visited’ node is found in a parent, then

(Continued)
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Algorithm 3 (continued)
Consider the closest ‘un-visited’ node from the group of remaining

‘unvisited’ nodes and concatenate it to the partially constructed offspring
present node as ‘node p’ chromosome’. Rename the and continue to the next
iteration.

end if
Suppose ‘node α’ and ‘node β’ are selected in 1st and 2nd chromosomes respectively.
if (dαp < dβp) then do

Add ‘node α’ to the offspring chromosome.
else

Add ‘node β’ to the offspring chromosome.
end if
Rename the present node as ‘node p’ and continue.

end for
end if
Return the offspring chromosome

Applying the GSCX on the parent chromosomes, one can obtain the offspring O: (1, 6, 4, 5, 7, 9,
3, 8, 10, 2) with the distance 328 (see Table 4).

Table 4: Offspring chromosome by GSCX

Present
‘node p’

Legitimate node after ‘node p’ in Accepted
node

Partial offspring with distance D

P1 with distance P2 with distance
1 Node 6 with d16 = 12 Node 7 with d17 = 60 Node 6 (1, 6) with D = 12
6 Node 3 with d63 = 58 Node 4 with d64 = 12 Node 4 (1, 6, 4) with D = 24
4 Node 5 with d45 = 38 Node 8 with d48 = 41 Node 5 (1, 6, 4, 5) with D = 62
5 Node 7 with d57 = 18 Node 10 with d5,10 = 85 Node 7 (1, 6, 4, 5, 7) with D = 80
7 Node 8 with d78 = 88 Node 9 with d79 = 21 Node 9 (1, 6, 4, 5, 7, 9) with D = 101
9 Node 8 with d98 = 77 Node 3 with d93 = 63 Node 3 (1, 6, 4, 5, 7, 9, 3) with D = 164
3 Node 8 with d38 = 48 Node 2 with d32 = 100 Node 8 (1, 6, 4, 5, 7, 9, 3, 8) with D = 212
8 Node 2 with d82 = 65 Node 10 with d8,10 = 38 Node 10 (1, 6, 4, 5, 7, 9, 3, 8, 10) with D = 250
10 Node 2 with d10,2 = 32 Node 2 with d10,2= 32 Node 2 (1, 6, 4, 5, 7, 9, 3, 8, 10, 2) with D = 282

Completed offspring (1, 6, 4, 5, 7, 9, 3, 8, 10, 2) with distance = 328

3.4 Reverse Greedy Sequential Constructive Crossover Operator

Ahmed [14] proposed another crossover named reverse greedy SCX (RGSCX) by applying the
GSCX in the reverse direction that produces an offspring in the reverse direction, that is, from
the last node (gene) of the offspring back to the first node (gene) of the same. Algorithm 4 shows
the pseudocode of the RGSCX operator for the TSP.
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Algorithm 4: Reverse greedy sequential constructive crossover algorithm
Input: n, D, Pc, Pair of parent chromosomes.
Output: Offspring chromosome.
Generate random number r ∈ [0,1].
if (r ≤ Pc) then do

Suppose the ‘node α’ and the ‘node β’ are the last nodes in the 1st and 2nd parent
respectively. Then for selecting the last node, we check whether dα1 < dβ1. If yes, then select
‘node α’, otherwise, ‘node β’ as the last node of the partially constructed offspring
chromosome. Then rename this present node as ‘node p’.
for i = n−1 down to 2 do

In each parent chromosome consider the first un-visited’ node found before ‘node
p’.
if no ‘un-visited’ node is found in a parent, then

Consider the closest ‘un-visited’ node from the group of remaining
‘un-visited’ nodes and concatenate it to the partially constructed offspring
chromosome’. Rename the present node as ‘node p’ and continue to the next
iteration.

end if
Suppose ‘node α’ and ‘node β’ are selected in 1st and 2nd chromosomes
respectively.
if (dαp < dβp) then do

Add ‘node α’ to the offspring chromosome.
else

Add ‘node β’ to the offspring chromosome.
end if
Rename the present node as ‘node p’ and continue.

end for
end if
Return the offspring chromosome

Applying the RGSCX on the parent chromosomes, one can obtain the offspring O: (1, 2, 10, 8, 3,
5, 7, 9, 4, 6, 1) with the distance 330 (see Table 5).

Table 5: Offspring chromosome by RGSCX

Present
‘node p’

Legitimate node before ‘node p’ in Accepted
node

Partial offspring with distance D

P1 with distance P2 with distance
1 Node 10 with d10,1 = 35 Node 6 with d61 = 12 Node 6 (1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 6, 1) with D = 12
6 Node 10 with d10,6 = 42 Node 4 with d46 = 12 Node 4 (1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 4, 6, 1) with D = 24
4 Node 9 with d94 = 38 Node 2 with d24 = 56 Node 9 (1, ∗, ∗, ∗, ∗, ∗, ∗, 9, 4, 6, 1) with D = 62
9 Node 3 with d39 = 63 Node 7 with d79 = 21 Node 7 (1, ∗, ∗, ∗, ∗, ∗, 7, 9, 4, 6, 1) with D = 83
7 Node 5 with d57 = 18 Node 5 with d57 = 18 Node 5 (1, ∗, ∗, ∗, ∗, 5, 7, 9, 4, 6, 1) with D = 101
5 Node 3 with d35 = 65 Node 8 with d85 = 78 Node 3 (1, ∗, ∗, ∗, 3, 5, 7, 9, 4, 6, 1) with D = 166
3 Node 8 with d83 = 48 Node 8 with d83 = 48 Node 8 (1, ∗, ∗, 8, 3, 5, 7, 9, 4, 6, 1) with D = 214
8 Node 10 with d10,8 = 38 Node 2 with d28 = 65 Node 10 (1, ∗, 10, 8, 3, 5, 7, 9, 4, 6, 1) with D = 252
10 Node 2 with d2,10 = 32 Node 2 with d2,10= 32 Node 2 (1, 2, 10, 8, 3, 5, 7, 9, 4, 6, 1) with D = 284

Completed offspring (1, 2, 10, 8, 3, 5, 7, 9, 4, 6, 1) with distance = 330
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3.5 Comprehensive Sequential Constructive Crossover Operators

Ahmed [14] proposed a comprehensive SCX (CSCX) by combining GSCX and RGSCX that
produces two offspring. Comparative studies among six different crossover operators show that the
CSCX is the best one. We have considered a total of three comprehensive SCX operators for our study.

3.5.1 CSCX1

For a pair of parent chromosomes, the first offspring is generated using SCX and the second using
RGSCX. Applying the CSCX1 to the parent chromosomes, one can obtain the following offspring:

O1: (1, 6, 7, 9, 4, 5, 8, 10, 3, 2) with the distance 502.

O2: (1, 2, 10, 8, 3, 5, 7, 9, 4, 6) with the distance 330.

3.5.2 CSCX2

For a pair of parent chromosomes, the first offspring is generated using GSCX and the second
using RGSCX. Applying the CSCX2 to the parent chromosomes, one can obtain the following
offspring:

O1: (1, 6, 4, 5, 7, 9, 3, 8, 10, 2) with the distance 328

O2: (1, 2, 10, 8, 3, 5, 7, 9, 4, 6) with the distance 330.

3.5.3 CSCX3

For a pair of parent chromosomes, the first offspring is generated using ASCX and the second
using RGSCX. Applying the CSCX3 to the parent chromosomes, one can obtain the following
offspring:

O1: (1, 6, 7, 9, 4, 5, 8, 10, 3, 2) with the distance 406.

O2: (1, 2, 10, 8, 3, 5, 7, 9, 4, 6) with the distance 330.

4 Mutation Operators for Our GAs

In GAs, diversity in the population is increased by introducing random variation in the population
which is done in the mutation process. In this process, a gene in a chromosome is selected randomly
and the corresponding gene is changed, thus, the information is modified. The following six mutation
operators are used for our comparative study. Each operator is applied under the mutation probability,
Pm, rule. We discuss all mutation operators through the chromosome P: (1, 6, 7, 9, 4, 5, 8, 10, 3, 2).

4.1 Exchange Mutation

In the exchange mutation (EXCH) process, two positions are selected randomly, and then the
genes on these positions are exchanged [25]. For example, if positions 3 and 7 are selected randomly,
genes 7 and 10 are exchanged with their positions, then the mutated chromosome will be O: (1, 6, 10,
9, 4, 5, 8, 7, 3, 2).

4.2 3-Exchange Mutation

In the 3-exchange mutation (3-EXCH) process, three different positions are randomly selected,
say, r1, r2, and r3, then the genes on these positions are exchanged as follows: P(r1) ↔ P(r2) and then
P(r2) ↔ P(r3) [35]. For example, if positions 2, 6, and 9 are randomly selected, then genes 6 and 5
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are exchanged that leads to the chromosome (1, 5, 7, 9, 4, 6, 8, 10, 3, 2), and then genes 6 and 3 are
exchanged that leads to the mutated chromosome as O: (1, 5, 7, 9, 4, 3, 8, 10, 6, 2).

4.3 Displacement Mutation

In the displacement mutation (DISP) process, a subchromosome is selected randomly and inserted
at any random position outside the subchromosome [27]. For example, if the subchromosome (6, 7,
9, 4, 5) is selected randomly and the position between 8 and 9 is selected randomly for insertion, then
the mutated chromosome will be O: (1, 8, 10, 6, 7, 9, 4, 5, 3, 2).

4.4 Insertion Mutation

In the insertion mutation (INST) process, a gene is chosen randomly and is inserted at any random
location in the chromosome [15]. For example, if gene 3 is selected randomly and the position between
4 and 5 is selected randomly, then the mutated chromosome will be O: (1, 6, 7, 9, 3, 4, 5, 8, 10, 2).

4.5 Inversion Mutation

In the inversion mutation (INVS) process, two positions are selected randomly, and the genes
between these positions are inverted [26]. For example, if two positions 4 and 8 are selected randomly,
then the subchromosome (9, 4, 5, 8, 10) is inverted leading to the mutated chromosome as O: (1, 6, 7,
10, 8, 5, 4, 9, 3, 2).

4.6 Adaptive Mutation

In the adaptive mutation (ADAP) process, data from all chromosomes of the current population
are gathered to detect a pattern among them. If the mutation is to be performed, chromosomes that
do not like the pattern will be muted. The algorithm is as follows [30]:

Step 1: Consider all chromosomes in the current population.

Step 2: Construct a one-dimensional array of size n (size of the problem), suppose A, by storing a
gene that appears the minimum number of times in the current position (except the 1st position) of all
chromosomes.

Step 3: If the mutation is allowed, select two genes randomly such that they are not the same in the
corresponding positions of array A, and swap them.

For example, suppose A = [1, 5, 2, 3, 6, 2, 5, 7, 10, 8] is the array and 4th and 8th positions are
selected randomly. The 4th position’s gene 9 and the 8th position’s gene 10 do not match the array
elements in the corresponding positions, so they are exchanged. So, the mutated chromosome will be
O: (1, 6, 7, 10, 4, 5, 8, 9, 3, 2).

Our GA is a simple, non-hybrid that uses traditional GA operators and processes. In our
GA, initiating with a random chromosome population, the better chromosomes are chosen by the
stochastic remainder selection method, and then the population passes through the selected one
crossover operator and one mutation operator. Our simple GA may be designed as follows:

SimpleGA()

{ Initialize a random population of size Ps.

Evaluate the population.

Generation = 0.
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While the stopping condition is not satisfied

{ Generation = Generation + 1.

Select fitter chromosomes by selection operator.

Select a crossover operator and do a crossover with crossover probability Pc.

Select a mutation operator and do a mutation with mutation probability Pm.

Evaluate the population.

}
}

5 Computational Experiments

We have encoded different simple GAs using various crossover and mutation processes in Visual
C++ and executed some TSPLIB instances [13] on a Laptop with Intel(R) Core(TM) i7-1065G7
CPU @ 1.30 GHz and 8.00 GB RAM under MS Windows 11. For each instance, the experiments
have been done 50 times. We measured the solution quality by the percentage of excess (EX(%))
of the obtained best solution (OBS) from the best-known solution (BKS) informed on the TSPLIB
website, using the formula: EX (%) = 100 × (OBS/BKS-1). We report the best solution (BS), average
solution (AS), percentage of excess of the best solution (BEX(%)), and percentage of excess of average
solution (AEX(%)) over the BKS among 50 executions, standard deviation (SD) of the solutions in 50
executions, average computational time (AT) (in seconds) to find the best solution for the first time for
each instance using each algorithm. To avoid preference for any distinct algorithm, the same randomly
generated population is used for executing the proposed algorithms. Notice that GAs are controlled by
parameters-population size (Ps), crossover probability (Pc), mutation probability (Pm), and termination
condition.

We set Ps = 50, Pc = 1.0 (i.e., 100%) as the crossover probability to see the real behavior of the
crossover operators and almost the same computational time as a termination criterion. First, we see
the functioning of the crossover operators on fourteen asymmetric TSPLIB instances. Table 6 shows
the comparative study amongst GAs using seven crossover operators without using any mutation
operator. In this table, the first column reports an instance name and its BKS within brackets. The
second column reports the data names and the remaining columns report the corresponding results
by different crossover operators mentioned in the first row. Furthermore, the boldfaces in the results
indicate that the result by a particular algorithm is the best one amongst all algorithms for a particular
instance.

Table 6: Comparison of GAs using various crossover operators without any mutation operator for
some antisymmetric TSPLIB instances

Instance Results SCX ASCX GSCX RGSCX CSCX1 CSCX2 CSCX3

ftv33 BS 1472 1378 1359 1412 1345 1362 1378
(1286) AS 1608.20 1412.68 1479.70 1535.18 1435.88 1411.02 1400.66

BEX (%) 14.46 7.15 5.68 9.80 4.59 5.91 7.15
AEX (%) 25.05 9.85 15.06 19.38 11.65 9.72 8.92

(Continued)
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Table 6 (continued)

Instance Results SCX ASCX GSCX RGSCX CSCX1 CSCX2 CSCX3

SD 77.26 44.42 58.52 61.33 46.69 28.33 19.72
AT 0.00 0.00 0.01 0.01 0.01 0.01 0.01

ftv35 BS 1626 1594 1536 1606 1515 1515 1575
(1473) AS 1779.32 1697.26 1657.20 1758.90 1623.22 1602.50 1704.70

BEX (%) 10.39 8.21 4.28 9.03 2.85 2.85 6.92
AEX (%) 20.80 15.22 12.51 19.41 10.20 8.79 15.73
SD 100.67 48.59 56.32 79.76 52.65 53.27 51.22
AT 0.01 0.01 0.01 0.00 0.01 0.01 0.01

ftv38 BS 1695 1697 1639 1693 1584 1560 1701
(1530) AS 1872.80 1777.50 1735.66 1845.96 1709.74 1665.64 1785.62

BEX (%) 10.78 10.92 7.12 10.65 3.53 1.96 11.18
AEX (%) 22.41 16.18 13.44 20.65 11.75 8.87 16.71
SD 107.61 32.79 65.95 73.21 65.86 42.27 24.84
AT 0.01 0.01 0.01 0.01 0.01 0.01 0.02

p43 BS 5660 5645 5642 5627 5627 5629 5637
(5620) AS 5699.96 5652.68 5699.26 5687.80 5650.42 5656.30 5647.30

BEX (%) 0.71 0.44 0.39 0.12 0.12 0.16 0.30
AEX (%) 1.42 0.58 1.41 1.21 0.54 0.65 0.49
SD 27.49 5.89 55.32 50.28 13.28 12.00 3.31
AT 0.01 0.01 0.01 0.01 0.01 0.01 0.02

ftv44 BS 1911 1702 1773 1761 1613 1613 1647
(1613) AS 2084.50 1868.82 1919.80 1953.20 1778.84 1745.14 1858.68

BEX (%) 18.47 5.52 9.92 9.18 0.00 0.00 2.11
AEX (%) 29.23 15.86 19.02 21.09 10.28 8.19 15.23
SD 103.22 55.83 67.90 100.50 62.63 69.42 58.44
AT 0.01 0.01 0.01 0.01 0.01 0.01 0.01

ftv47 BS 2091 2032 2002 2079 1856 1867 2042
(1776) AS 2389.26 2150.94 2193.00 2223.44 2049.60 2019.20 2154.16

BEX (%) 17.74 14.41 12.73 17.06 4.50 5.12 14.98
AEX (%) 34.53 21.11 23.48 25.19 15.41 13.69 21.29
SD 133.18 68.97 92.19 84.16 72.38 67.49 46.82
AT 0.00 0.01 0.00 0.01 0.01 0.01 0.01

ry48p BS 16554 15308 15868 15294 14877 15164 15176
(14422) AS 17829.18 15702.24 16631.86 16154.42 15688.90 15728.48 15696.58

BEX (%) 14.78 6.14 10.03 6.05 3.15 5.14 5.23
AEX (%) 23.62 8.88 15.32 12.01 8.78 9.06 8.84
SD 835.66 318.98 461.11 508.60 276.07 285.06 296.04
AT 0.00 0.01 0.01 0.01 0.02 0.02 0.01

ft53 BS 8578 8188 8379 8186 7718 7776 8497
(6905) AS 10206.82 8826.44 9522.54 9461.52 8277.22 8355.32 9040.86

BEX (%) 24.23 18.58 21.35 18.55 11.77 12.61 23.06

(Continued)
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Table 6 (continued)

Instance Results SCX ASCX GSCX RGSCX CSCX1 CSCX2 CSCX3

AEX (%) 47.82 27.83 37.91 37.02 19.87 21.00 30.93
SD 768.09 239.55 698.79 440.60 307.68 280.81 279.28
AT 0.01 0.01 0.01 0.01 0.01 0.01 0.01

ftv55 BS 1903 1770 1746 1768 1694 1691 1732
(1608) AS 2150.04 1848.64 1957.40 1903.26 1792.88 1782.66 1819.18

BEX (%) 18.35 10.07 8.58 9.95 5.35 5.16 7.71
AEX (%) 33.71 14.97 21.73 18.36 11.50 10.86 13.13
SD 127.59 50.34 92.73 99.11 57.24 59.07 34.07
AT 0.01 0.01 0.01 0.01 0.01 0.01 0.02

ftv64 BS 2281 2043 2097 1933 1890 1899 2169
(1839) AS 2592.24 2288.10 2288.26 2350.82 2102.16 2026.88 2287.78

BEX (%) 24.03 11.09 14.03 5.11 2.77 3.26 17.94
AEX (%) 40.96 24.42 24.43 27.83 14.31 10.22 24.40
SD 176.58 80.11 98.34 144.51 94.14 78.94 70.14
AT 0.02 0.03 0.02 0.02 0.03 0.02 0.06

ft70 BS 42062 41966 41598 42100 40486 40054 41636
(38673) AS 44689.54 43184.36 43323.32 44348.98 41834.48 41651.24 42953.32

BEX (%) 8.76 8.51 7.56 8.86 4.69 3.57 7.66
AEX (%) 15.56 11.67 12.02 14.68 8.17 7.70 11.07
SD 1192.44 601.91 932.88 870.70 583.34 518.87 594.43
AT 0.02 0.03 0.01 0.01 0.02 0.02 0.03

ftv70 BS 2414 2163 2209 2261 2005 2033 2233
(1950) AS 2776.58 2382.94 2398.32 2493.64 2228.44 2165.70 2393.82

BEX (%) 23.79 10.92 13.28 15.95 2.82 4.26 14.51
AEX (%) 42.39 22.20 22.99 27.88 14.28 11.06 22.76
SD 193.48 82.73 114.10 113.90 151.74 74.61 74.40
AT 0.03 0.05 0.03 0.03 0.05 0.04 0.09

kro124p BS 44329 40771 41661 40694 39205 39257 40472
(36230) AS 49789.36 42156.86 43816.00 44234.68 41934.00 41275.08 42270.92

BEX (%) 22.35 12.53 14.99 12.32 8.21 8.35 11.71
AEX (%) 37.43 16.36 20.94 22.09 15.74 13.93 16.67
SD 2382.39 598.17 1147.27 1460.59 1229.21 927.58 692.57
AT 0.03 0.07 0.06 0.08 0.10 0.09 0.10

ftv170 BS 4457 3343 3637 3604 3268 3170 3308
(2755) AS 5149.26 3562.72 4115.64 4125.86 3631.02 3466.18 3511.44

BEX (%) 61.78 21.34 32.01 30.82 18.62 15.06 20.07
AEX (%) 86.91 29.32 49.39 49.76 31.80 25.81 27.46
SD 379.77 99.72 246.02 305.92 196.85 149.82 90.02
AT 0.09 0.13 0.09 0.08 0.17 0.14 0.14
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Looking at the boldfaces in Table 6, the comprehensive crossover operators are observed better
than the other crossover operators. Operator CSCX1 could find the best solution for ten instances–
ftv33, ftv35, p43, ftv44, ftv47, ry48p, ft53, ftv64, ftv70 and kro124p, whereas CSCX2 could find for six
instances–ftv35, ftv38, ftv44, ftv55, ft70 and ftv170. Furthermore, CSCX1 could find the best average
solution for two instances–ry48p and ft53; whereas CSCX2 could find for ten instances–ftv35, ftv38,
ftv44, ftv47, ftv55, ftv64, ft70, ftv70, kro124p and ftv170; and CSCX3 for two instances–ftv33 and
p43. It is seen that two operators–CSCX1 and CSCX2 are competing. However, CSCX2 is observed
better than CSCX1, and CSCX1 is found to be better than CSCX3. So, CSCX2 is the best crossover
operator among all crossover operators without using any mutation operator. Among other crossover
operators, ASCX, GSCX, and RGSCX could find the best solutions for three, six, and five instances,
respectively. Further, ASCX, GSCX, and GSCX could find the best average solution for twelve, two,
and zero instances, respectively. Two operators–ASCX and GSCX are competing. However, looking
at the average solutions and standard deviations, we can conclude that ASCX is better than GSCX.
Looking at the average computational times by the GAs using these crossover operators, almost all
algorithms are taking almost the same time.

Accordingly, CSCX2 produces the best results, while CSCX1 is the second best, ASCX and
CSCX3 are competing for the third best, and SCX is the worst one. However, it is confirmed that
ASCX, GSCX, and RSCX are the improvements of SCX. The results are also depicted in Fig. 1,
which also demonstrates the usefulness of CSCX2 and CSCX1. Further, Fig. 1 shows that for most
of the instances, SCX finds the worst solution quality, and other algorithms find improved solutions
over the solutions by SCX. The operators ASCX and CSCX3 are competing for the third position.
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Figure 1: Average Excess (%) by different crossovers for asymmetric instances

Furthermore, to justify the above observations, the two-tailed Student t-test was conducted with
a 5% significant level between CSCX2 and other crossover operators for the instances, and the results
are summarized in Table 7. As expected, CSCX2 is the best-ranked crossover and CSCX1 is the
second-best. Between CSCX3 and ASCX, there is no significant difference, as expected, they are in
the third rank.

We now implement different mutation operators with the probability of mutation as 0.10 (10%)
without any crossover operator on the same TSPLIB instances. Table 8 shows the comparative study
among GAs using six mutation operators without any crossover operator.
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Table 7: Results of t-test on antisymmetric TSPLIB instances

Crossover Inferior crossovers

CSCX2 CSCX1, CSCX3, ASCX, GSCX, RGSCX, SCX
CSCX1 CSCX3, ASCX, GSCX, RGSCX, SCX
CSCX3 GSCX, RGSCX, SCX
ASCX GSCX, RGSCX, SCX
GSCX RGSCX, SCX
RGSCX SCX

Table 8: Comparison of GAs using various mutation operators without any crossover operator for
some antisymmetric TSPLIB instances

Instance Results EXCH 3-EXCH DISP INST INVS ADAP

ftv33 BS 1640 1988 1643 1455 1631 2102
(1286) AS 1904.46 2161.08 1832.20 1650.82 1764.80 2341.36

BEX (%) 27.53 54.59 27.76 13.14 26.83 63.45
AEX (%) 48.09 68.05 42.47 28.37 37.23 82.07
SD 90.01 83.01 90.15 73.51 60.18 74.01
AT 0.03 0.03 0.04 0.04 0.03 0.03

ftv35 BS 2024 2278 1977 1816 1887 2537
(1473) AS 2332.06 2589.66 2227.98 2007.08 2161.72 2673.48

BEX (%) 37.41 54.65 34.22 23.29 28.11 72.23
AEX (%) 58.32 75.81 51.25 36.26 46.76 81.50
SD 113.05 98.95 83.63 89.07 67.48 65.05
AT 0.02 0.02 0.03 0.02 0.02 0.02

ftv38 BS 2307 2621 2201 1982 2097 2729
(1530) AS 2539.66 2840.20 2426.14 2178.80 2346.98 2910.18

BEX (%) 50.78 71.31 43.86 29.54 37.06 78.37
AEX (%) 65.99 85.63 58.57 42.41 53.40 90.21
SD 91.50 93.02 85.22 74.7 81.35 67.61
AT 0.02 0.02 0.03 0.02 0.02 0.02

p43 BS 5932 5938 5912 5896 5847 5906
(5620) AS 5985.66 5999.68 6017.88 5955.14 5943.92 5993.66

BEX (%) 5.55 5.66 5.20 4.91 4.04 5.09
AEX (%) 6.51 6.76 7.08 5.96 5.76 6.65
SD 23.66 28.36 48.82 30.33 34.05 27.3
AT 0.02 0.02 0.02 0.02 0.02 0.02

ftv44 BS 2883 3415 2986 2730 2770 3326
(1613) AS 3294.16 3624.12 3164.00 2892.98 2985.84 3503.22

BEX (%) 78.74 111.72 85.12 69.25 71.73 106.20
AEX (%) 104.23 124.68 96.16 79.35 85.11 117.19

(Continued)
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Table 8 (continued)

Instance Results EXCH 3-EXCH DISP INST INVS ADAP

SD 124.39 108.05 82.13 85.36 75.41 73.20
AT 0.02 0.03 0.03 0.03 0.03 0.03

ftv47 BS 3487 3829 3343 2920 3226 3604
(1776) AS 3724.02 4080.52 3553.12 3228.52 3419.64 3932.98

BEX (%) 96.34 115.60 88.23 64.41 81.64 102.93
AEX (%) 109.69 129.76 100.06 81.79 92.55 121.45
SD 101.02 112.76 100.21 101.26 83.85 86.40
AT 0.03 0.02 0.04 0.03 0.03 0.03

ry48p BS 24146 26793 25101 21408 21004 25226
(14422) AS 26409.04 28929.30 26227.22 23551.38 23375.90 27719.80

BEX (%) 67.42 85.78 74.05 48.44 45.64 74.91
AEX (%) 83.12 100.59 81.86 63.30 62.09 92.20
SD 958.36 931.11 662.94 843.20 673.27 738.48
AT 0.03 0.03 0.03 0.04 0.03 0.03

ft53 BS 13629 14692 13005 11760 12309 13964
(6905) AS 14553.34 15673.16 13975.50 12853.78 13312.40 14794.78

BEX (%) 97.38 112.77 88.34 70.31 78.26 102.23
AEX (%) 110.77 126.98 102.40 86.15 92.79 114.26
SD 361.25 370.59 381.64 478.29 375.76 328.91
AT 0.03 0.03 0.04 0.04 0.03 0.04

ftv55 BS 4016 4432 3803 3138 3480 3931
(1608) AS 4232.66 4624.50 4022.02 3705.64 3788.26 4242.64

BEX (%) 149.75 175.62 136.50 95.15 116.42 144.47
AEX (%) 163.23 187.59 150.13 130.45 135.59 163.85
SD 105.99 87.70 90.45 144.68 90.65 109.52
AT 0.03 0.03 0.05 0.04 0.03 0.04

ftv64 BS 5077 5481 4774 4589 4506 4954
(1839) AS 5410.1 5816.48 5198.08 4867.76 4898.00 5208.36

BEX (%) 176.07 198.04 159.60 149.54 145.02 169.39
AEX (%) 194.19 216.28 182.66 164.70 166.34 183.22
SD 106.83 110.53 104.32 119.72 129.43 94.78
AT 0.03 0.03 0.04 0.04 0.04 0.05

ft70 BS 55299 57613 54493 53105 53563 53530
(38673) AS 56449.24 58471.60 55922.24 54444.74 54927.62 55105.24

BEX (%) 42.99 48.97 40.91 37.32 38.50 38.42
AEX (%) 45.97 51.19 44.60 40.78 42.03 42.49
SD 637.71 463.18 432.45 493.46 493.04 575.33
AT 0.04 0.04 0.05 0.05 0.04 0.06

ftv70 BS 5893 6277 5474 5283 5396 5564
(1950) AS 6183.82 6593.22 5917.32 5567.48 5629.42 5851.40

BEX (%) 202.21 221.90 180.72 170.92 176.72 185.33

(Continued)
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Table 8 (continued)

Instance Results EXCH 3-EXCH DISP INST INVS ADAP

AEX (%) 217.12 238.11 203.45 185.51 188.69 200.07
SD 130.99 114.43 124.48 117.14 110.93 115.85
AT 0.03 0.03 0.05 0.04 0.04 0.04

kro124p BS 119031 125155 117060 108655 105305 104426
(36230) AS 124887.30 132340.80 121685.40 114223.30 112477.60 111656.30

BEX (%) 228.54 245.45 223.10 199.90 190.66 188.23
AEX (%) 244.71 265.28 235.87 215.27 210.45 208.19
SD 2336.44 2639.20 1930.04 2035.75 2017.32 2005.09
AT 0.05 0.04 0.07 0.06 0.06 0.07

ftv170 BS 19406 20309 18924 18278 17877 15902
(2755) AS 19839.92 20617.48 19343.58 18791.04 18455.06 16511.78

BEX (%) 604.39 637.17 586.90 563.45 548.89 477.21
AEX (%) 620.14 648.37 602.13 582.07 569.88 499.34
SD 192.21 167.63 157.24 194.85 228.75 240.48
AT 0.12 0.13 0.22 0.2 0.15 0.16

Looking at the boldfaces in Table 8, the mutation operators EXCH, 3-EXCH, and DISP could
not find the best solution for any instance. The mutation operator could find the best solution for nine
instances–ftv33, ftv35, ftv38, ftv44, ftv47, ft53, ftv55, ft70, and ftv70; whereas INVS could find it for
three instances–p43, ry48p, and ftv64; and ADAP could find for two instances kro124p and ftv170.
Furthermore, EXCH, 3-EXCH, and DISP could not find the best average solution for any instance,
whereas INST could find for ten instances–ftv33, ftv35, ftv38, ftv44, ftv47, ft53, ftv55, ftv64, ft70, and
ftv70; INVS could find for two instances–p43 and ry48p; and ADAP could find for two instances–
kro124p and ftv170. It is clear that the INST is the best one, and the two operators–INVS and ADAP
are competing for the second best. The operators EXCH, 3-EXCH, and DISP could neither find the
best solution nor find the best average solution for any instance, hence, they are not good enough for
the TSP in comparison to the other three operators. Looking at the average computational times by
the GAs using these mutation operators, almost all algorithms are taking almost the same time.

The results are also depicted in Fig. 2, which also demonstrates the usefulness of INST, INVS,
DISP, and ADAP mutation operators. It is very clear from the figure that INST mutation is the best
and INVS is the second best for the problem instances of size less than 100, and ADAP is the best,
and INVS and INST are competing for the second best, for the problem instances of size more than
or equal to 100.

So, we have conducted the two-tailed Student t-test with a 5% significant level between INST and
other mutation operators for the instances. However, the results are not reported here. As expected,
INST is the best-ranked mutation and INVS is the second best. However, DISP is placed in third place
and ADAP is placed in fourth place.
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Figure 2: Average Excess (%) by different mutations for asymmetric instances

We now implement different mutation operators with the crossover operators using the common
mutation probability. However, it is not easy to fix mutation probability for all mutation operators for
all instances. After doing extensive experiments, we fix Pm = 0.10 and a maximum of 2000 generations
for the termination condition. Table 9 shows the comparative study among simple GAs using all
seven crossover operators without any mutation operator and with six mutation operators on fourteen
asymmetric TSPLIB instances. In the first column, we report the instance name, and its best-known
solution value within the brackets informed on the TSPLIB website. The second column reports the
name of the mutation operator, the second last column reports the grand average of the average excess
(%) (GAVG) using a particular mutation operator and all crossover operators, and the last column
reports the average percentage of improvement (IMPV) by GAs using a particular mutation operator
over GAs without any mutation operator. The remaining columns report the average excess (%) by
a crossover operator without using any mutation and using all six mutation operators as mentioned
therein.

Table 9: Comparison of the crossover and mutation operators for some TSPLIB instances

Instance Mutation SCX ASCX GSCX RGSCX CSCX1 CSCX2 CSCX3 GAVG IMPV

ftv33 No Mute 25.05 9.85 15.06 19.38 11.65 9.72 8.92 14.23 —-
(1286) EXCH 15.20 8.50 13.88 12.54 6.44 6.15 8.36 10.15 28.65

3-EXCH 16.36 8.53 11.65 12.27 6.63 6.07 8.35 9.98 29.87
DISP 14.29 8.42 8.40 13.95 6.94 6.43 8.40 9.55 32.91
INST 15.83 8.40 7.96 7.61 5.61a 5.92b 7.58 8.41 40.87
INVS 16.18 8.48 13.21 12.43 6.91 6.64 8.37 10.31 27.51
ADAP 15.75 8.44 13.55 11.00 6.42 6.45 8.35 9.99 29.77
PAVG 16.95 8.66 11.96 12.74 7.23 6.77 8.33 —- —-

ftv35 No Mute 20.80 15.22 12.51 19.41 10.20 8.79 15.73 14.67 —-
(1473) EXCH 11.64 11.00 10.81 10.92 2.66 3.07 9.45 8.51 42.01

3-EXCH 11.86 11.50 10.49 11.76 3.43 3.13 10.49 8.95 38.98
DISP 10.37 8.77 8.71 9.89 4.17 3.11 8.03 7.58 48.36
INST 9.89 8.85 9.05 9.50 2.43a 2.75 7.91 7.20 50.94
INVS 12.00 11.55 10.84 10.32 2.66 2.67b 9.47 8.50 42.05
ADAP 10.29 9.17 8.70 10.24 2.65 3.35 8.98 7.63 48.01
PAVG 12.41 10.87 10.16 11.72 4.03 3.84 10.01 —- —-

(Continued)
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Table 9 (continued)

Instance Mutation SCX ASCX GSCX RGSCX CSCX1 CSCX2 CSCX3 GAVG IMPV

ftv38 No Mute 22.41 16.18 13.44 20.65 11.75 8.87 16.71 15.72 —-
(1530) EXCH 10.35 9.75 8.64 9.22 5.57 3.63 8.70 7.98 49.23

3-EXCH 11.45 11.05 11.01 11.32 6.32 3.85 8.93 9.13 41.90
DISP 10.43 9.41 8.95 9.48 5.96 3.38 8.51 8.02 49.00
INST 10.14 8.89 8.09 9.95 4.57 2.81b 8.75 7.60 51.65
INVS 10.83 10.29 8.90 9.92 4.17 4.20 9.23 8.22 47.71
ADAP 10.00 7.86 9.00 9.45 3.70a 4.08 8.27 7.48 52.41
PAVG 12.23 10.49 9.72 11.43 6.01 4.40 9.87 —- —-

p43 No Mute 1.42 0.58 1.41 1.21 0.54 0.65 0.49 0.90 —-
(5620) EXCH 0.67 0.28 0.57 0.40 0.20a 0.34 0.25 0.39 56.98

3-EXCH 0.60 0.21 0.37 0.22 0.20a 0.37 0.23 0.31 65.08
DISP 0.63 0.31 0.50 0.44 0.23 0.31 0.25 0.38 57.62
INST 0.66 0.28 0.57 0.42 0.22 0.33 0.26 0.39 56.51
INVS 0.40 0.36 0.51 0.39 0.24 0.30b 0.26 0.35 60.95
ADAP 0.74 0.27 0.67 0.52 0.35 0.53 0.26 0.48 46.98
PAVG 0.73 0.33 0.66 0.51 0.28 0.40 0.29 —- —-

ftv44 No Mute 29.23 15.86 19.02 21.09 10.28 8.19 15.23 16.99 —-
(1613) EXCH 14.45 11.74 13.83 9.50 3.48 1.22 11.76 9.43 44.52

3-EXCH 15.31 11.97 14.88 9.92 2.00 0.74b 6.68 8.79 48.29
DISP 16.35 12.26 14.40 12.17 3.08 1.45 11.54 10.18 40.10
INST 16.21 13.57 14.59 8.80 3.87 1.19 11.67 9.98 41.24
INVS 15.13 13.84 14.40 8.79 0.78a 0.91 9.05 8.99 47.11
ADAP 13.32 11.65 13.09 9.34 3.81 1.91 13.01 9.45 44.39
PAVG 17.14 12.98 14.89 11.37 3.90 2.23 11.28 —- —-

ftv47 No Mute 34.53 21.11 23.48 25.19 15.41 13.69 21.29 22.10 —-
(1776) EXCH 18.19 16.98 16.74 17.75 4.93 5.14b 12.39 13.16 40.46

3-EXCH 19.00 18.27 16.02 18.83 5.54 5.37 10.26 13.33 39.70
DISP 17.76 17.29 15.60 16.95 4.49 5.44 16.49 13.43 39.22
INST 18.51 18.46 15.51 18.85 4.30a 6.26 13.01 13.56 38.66
INVS 19.25 18.49 16.17 19.16 6.84 7.61 16.90 14.92 32.50
ADAP 18.43 18.16 17.90 17.90 6.07 7.30 15.57 14.48 34.50
PAVG 20.81 18.40 17.35 19.23 6.80 7.26 15.13 —- —-

ry48p No Mute 23.62 8.88 15.32 12.01 8.78 9.06 8.84 12.36 —-
(14422) EXCH 11.65 8.15 11.51 7.86 4.71 4.64 7.90 8.06 34.79

3-EXCH 12.31 8.61 11.73 7.70 4.41 4.25 6.62 7.95 35.70
DISP 11.36 8.82 11.18 7.96 4.20a 4.52 8.52 8.08 34.62
INST 10.91 8.74 9.61 8.05 6.04 5.10 7.50 7.99 35.33
INVS 10.60 8.39 10.55 7.23 4.25 4.07b 8.40 7.64 38.20
ADAP 11.54 8.32 11.00 8.27 5.79 5.72 8.41 8.44 31.74
PAVG 13.14 8.56 11.56 8.44 5.45 5.34 8.03 —- —-

(Continued)
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Table 9 (continued)

Instance Mutation SCX ASCX GSCX RGSCX CSCX1 CSCX2 CSCX3 GAVG IMPV

ft53 No Mute 47.82 27.83 37.91 37.02 19.87 21.00 30.93 31.77 —-
(6905) EXCH 23.30 21.71 17.24 22.59 11.04 12.87 16.95 17.96 43.48

3-EXCH 24.23 17.94 18.15 17.47 11.31 13.47 18.83 17.34 45.41
DISP 23.56 23.38 23.10 23.13 9.75 11.09b 23.29 19.62 38.25
INST 23.44 23.20 23.36 21.49 9.65a 11.68 23.14 19.42 38.87
INVS 23.63 22.60 23.03 22.69 13.32 14.54 22.72 20.36 35.91
ADAP 23.48 22.63 22.56 22.38 15.95 16.39 20.55 20.56 35.28
PAVG 27.07 22.76 23.62 23.82 12.98 14.44 22.34 —- —-

ftv55 No Mute 33.71 14.97 21.73 18.36 11.50 10.86 13.13 17.75 —-
(1608) EXCH 14.87 11.33 12.20 11.60 3.76 3.43b 10.81 9.71 45.28

3-EXCH 15.16 10.89 12.24 10.52 3.94 3.63 8.35 9.25 47.91
DISP 13.64 11.60 12.94 11.74 3.72 3.65 10.08 9.62 45.79
INST 14.84 11.46 13.30 10.14 3.79 3.81 10.51 9.69 45.39
INVS 13.92 12.06 12.61 10.95 4.17 4.58 9.86 9.74 45.15
ADAP 14.18 11.59 11.96 9.05 3.61a 4.16 9.49 9.15 48.44
PAVG 17.19 11.98 13.85 11.76 4.93 4.88 10.32 —- —-

ftv64 No Mute 40.96 24.42 24.43 27.83 14.31 10.22 24.40 23.80 —-
(1839) EXCH 20.12 19.51 18.83 19.19 2.96 2.84 15.03 14.07 40.89

3-EXCH 20.23 19.09 15.86 16.62 3.33 2.87 12.16 12.88 45.88
DISP 21.29 19.79 17.98 17.00 2.99 2.55b 14.25 13.69 42.47
INST 20.30 19.90 14.48 14.49 2.80 2.65 14.61 12.75 46.44
INVS 20.91 16.90 19.54 18.51 4.26 3.90 13.91 13.99 41.22
ADAP 20.01 19.48 15.12 17.13 2.75a 3.22 14.59 13.19 44.59
PAVG 23.40 19.87 18.03 18.68 4.77 4.04 15.57 —- —-

ft70 No Mute 15.56 11.67 12.02 14.68 8.17 7.70 11.07 11.55 —-
(38673) EXCH 8.16 7.57 8.11 7.76 5.32 6.11 7.56 7.23 37.43

3-EXCH 8.24 7.66 8.56 8.08 5.06 6.10 7.53 7.32 36.64
DISP 7.96 7.01 6.19 6.59 4.63a 5.22b 6.43 6.29 45.53
INST 8.10 7.38 7.42 7.09 5.90 6.28 7.29 7.07 38.81
INVS 8.43 7.20 7.48 7.37 6.04 6.40 7.65 7.23 37.44
ADAP 7.28 7.15 6.34 6.11 5.08 6.14 6.66 6.39 44.65
PAVG 9.10 7.95 8.02 8.24 5.74 6.28 7.74 —- —-

ftv70 No Mute 42.39 22.20 22.99 27.88 14.28 11.06 22.76 23.37 —-
(1950) EXCH 20.22 18.32 16.23 19.52 2.54 3.02 14.61 13.49 42.26

3-EXCH 18.80 15.11 15.19 17.37 2.62 3.04 12.11 12.03 48.51
DISP 20.48 19.76 15.69 16.28 2.55 2.50b 15.53 13.26 43.28
INST 20.14 18.65 13.07 13.69 2.21 3.45 15.02 12.32 47.29
INVS 17.44 17.07 14.03 16.87 3.99 5.06 13.36 12.55 46.31
ADAP 18.65 18.19 15.01 14.84 2.19a 4.62 12.94 12.35 47.15
PAVG 22.59 18.47 16.03 18.06 4.34 4.68 15.19 —- —-

(Continued)
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Table 9 (continued)

Instance Mutation SCX ASCX GSCX RGSCX CSCX1 CSCX2 CSCX3 GAVG IMPV

kro124p No Mute 37.43 16.36 20.94 22.09 15.74 13.93 16.67 20.45 —-
(36230) EXCH 19.91 16.23 18.36 18.50 12.57 11.20 15.93 16.10 21.27

3-EXCH 19.34 15.84 15.75 15.45 10.48 11.81 13.34 14.57 28.73
DISP 21.50 16.56 16.67 17.53 8.36a 9.31b 16.33 15.18 25.77
INST 20.32 16.17 16.32 17.54 13.39 9.67 15.94 15.62 23.61
INVS 17.47 16.21 16.74 16.63 11.35 12.31 16.64 15.33 25.01
ADAP 18.65 16.23 16.71 17.04 11.18 10.66 16.06 15.22 25.58
PAVG 22.09 16.23 17.36 17.83 11.87 11.27 15.85 —- —-

ftv170 No Mute 86.91 29.32 49.39 49.76 31.80 25.81 27.46 42.92 —-
(2755) EXCH 34.37 27.23 28.00 26.11 17.70 16.73 22.01 24.59 42.70

3-EXCH 32.83 27.12 25.33 25.00 19.44 18.98 22.18 24.41 43.12
DISP 38.24 29.98 26.79 25.80 14.39 14.01 23.68 24.70 42.46
INST 40.31 27.19 26.70 24.98 16.77 14.94 23.51 24.92 41.95
INVS 48.71 28.98 34.05 31.12 30.79 25.03 25.18 31.98 25.49
ADAP 40.45 28.06 25.90 24.17 12.61a 11.81b 26.78 24.25 43.49
PAVG 45.97 28.27 30.88 29.56 20.50 18.19 24.40 —- —-

By looking at the partial average of average excess (%) (PAVG) (in boldface), regardless of any
mutation operator, in Table 9, operators SCX, ASCX, GSCX, RGSCX, and CSCX3 could not find
best average for any instance, CSCX1 is found to be the best for five instances, namely, p43, ftv47,
ft53, ft70 and ftv70; CSCX2 is found to be best for nine instances–ftv33, ftv35, ftv38, ftv44, ry48p,
ftv55, ftv64, kro124p and ftv170. Hence, CSCX2 is observed as the best one, CSCX1 is the second
best, CSCX3 is the third best, and ASCX is the fourth best. CSCX1 and CSCX2 are competing and
are very close to each other. Looking at the last column, IMPV, it is confirmed that using the mutation
operator in GA has a great impact on the solution quality of the problem instances. The PAVG that
is shown in Table 9 is also depicted in Fig. 3. Looking at the figure, it is very clear that SCX with
mutation operators is the worst one and all other crossover operators with mutation operators have
some improvement over the SCX with mutation operators. Though CSCX1 and CSCX2 both with
mutations are competing with each other, however, CSCX2 with mutations is the best one, CSCX1
with the mutations is the second best, and CSCX3 with mutations is the third best.
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Figure 3: Comparative study of seven different crossover operators
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By looking at the grand average of the average excess (%) (GAVG) (in boldface), regardless of any
crossover operator, in Table 9, EXCH is found to be the best for only one instance–ftv47; 3-EXCH is
the best for five instances–p43, ftv44, ft53, ftv64, and kro124p; DISP is best for only one instance–ft70;
INST is best for three instances–ftv33, ftv35 and ftv64; INVS is found best for one instance–ry48p;
and ADAP is best for three instances–ftv38, ftv55 and ftv170. Hence, it is observed that 3-EXCH is
the best one, then INST and ADAP are the second best, and then EXCH, DISP, and INVS are the
third best. Further, looking at the last column, which shows the average improvement using crossover
operators with different mutation operators over GAs using only crossover operators without using
any mutation, it confirmed our observation. It is noted that all GAs using mutation have significant
improvements over GAs without any mutation operator. The GAVG that is shown in Table 9 is also
depicted in Fig. 4, which further confirms our observation, and shows clear improvement of GAs
with crossover and mutation operators over GAs with crossover operators and without any mutation
operator.
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Figure 4: Comparative study of different mutation operators

Since CSCX2 with mutation operators is the best one and CSCX1 with mutation operators is the
second best, we now look at the combinations of CSCX1 with any mutation and CSCX2 with any
mutation, in Table 9. We mark by superscripta for the best average excess (%) using CSCX1 with any
mutation operator for instance, and we mark by superscriptb for the best average excess (%) using
CSCX2 with any mutation operator for instance.

By looking at the average excess (%) (marked by superscripta), in Table 9, the combination of
CSCX1 and EXCH is found to be best for only one instance–p43; the combination of CSCX1 and
3-EXCH is best for only one instance–p43; the combination of CSCX1 and DISP is best for three
instances–ry48p, ft70 and kro124p; combination of CSCX1 and INST is found to be best for four
instances–ftv33, ftv35, ftv47 and ft53; combination of CSCX1 and INVS is best for only one instance-
ftv44; combination of CSCX1 and ADAP is best for five instances–ftv38, ftv55, ftv64, ftv70 and ftv170.
Hence, the combination of CSCX1 and ADAP is the best one, and the combination of CSCX1 and
INST is the second best, and the combination of CSCX1 and DISP is the third best.

By looking at the average excess (%) (marked by superscriptb), in Table 9, the combination of
CSCX2 and EXCH is found to be best for two instances–ftv47 and ftv55; the combination of CSCX2
and 3-EXCH is best for only one instance–ftv44; the combination of CSCX2 and DISP is best for
five instances–ft53, ftv64, ft70, ftv70, and kro124p; the combination of CSCX2 and INST is found
to be best for two instances–ftv33 and ftv38; the combination of CSCX2 and INVS is best for three
instances–ftv35, p43, and ry48p; the combination of CSCX2 and ADAP is best for only one instance-
ftv170. Hence, the combination of CSCX2 and DISP is the best one, the combination of CSCX2 and
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INVS is the second best, and the combination of CSCX2 and INST, and CSCX2 and EXCH are the
third best.

Finally, regardless of the combination of any crossover and any mutation operator, by looking at
the average excess (%) (marked by boldface superscripta or superscriptb), in Table 9, the combination
of CSCX1 and EXCH, and, the combination of CSCX1 and 3-EXCH is found to be best for only one
instance–p43; the combination of CSCX1 and DISP is found to be best for two instances–ft70 and
kro124p; the combination of CSCX1 and INST is found to be best for four instances–ftv33, ftv35,
ftv47 and ft53. The remaining combinations of CSCX1 and ADAP, CSCX2 and EXCH, CSCX2 and
3-EXCH, CSCX2 and DISP, CSCX2 and INST, CSCX2 and INVS, CSCX2 and ADAP, are observed
as the best for only one instance each. Hence, among all combinations, the combination of CSCX1
and INST is observed as the best one, and the combination of CSCX1 and DISP is the second best.
Looking at Table 9, one can see that GA using CSCX1 and INST could find average solutions whose
average percentage of excesses from the best-known solutions are 5.61, 2.43, 4.57, 0.22, 3.87, 4.30, 6.04,
9.65, 3.79, 2.80, 5.90, 2.21, 9.67 and 14.94 for ftv33, ftv35, ftv38, p43, ftv44, ftv47, ry48p, ft53, ftv55,
ftv64, ft70, ftv70, kro124p and ftv170, respectively.

6 Conclusions and Future Work

Simple genetic algorithms using seven crossover operators and six mutation operators are sug-
gested for the well-known travelling salesman problem (TSP). First, the crossover and mutation
operators were illustrated through some example chromosomes. Then, experimental studies have been
carried out on the benchmark TSPLIB instances. To observe the real behavior of different crossover
operators, we implemented simple genetic algorithms using seven different crossover operators with
a cent percentage of crossover probability and without any mutation operator on the benchmark
instances. It can be seen from our study that comprehensive sequential constructive crossovers are very
effective, especially, since CSCX2 is the best one and CSCX1 is the second best. Next, to observe the
behavior of different mutation operators, we implemented simple genetic algorithms using six different
mutation operators with ten percentage of mutation probability and without any crossover operator on
the benchmark instances. It can be seen from our study that insertion mutation is the best one, inversion
mutation is the second best, and displacement mutation is the third best. To observe the behavior
of the combination of different mutation and crossover operators, we implemented simple genetic
algorithms using seven crossover and six different mutation operators on the benchmark instances. By
looking at the percentage of average solution excess, one can see from our study that the combination
of CSCX-1 and insertion mutation is observed as the best one, and the combination of CSCX-1 and
displacement mutation is the second best. The GA using CSCX1 with insertion mutation could find
average solutions whose average percentage of excesses from the best-known solutions are between
0.22 and 14.94 for our experimented problem instances.

Our aim in this study was only to compare several crossover operators and several mutation
operators regarding the solution quality. Our aim was not to improve the solution quality, so,
we did not incorporate any local search method to enhance the solution quality. Although the
combination of comprehensive sequential constructive crossover and insertion mutation was observed
as the best, it still could not obtain the exact solution to many experimented problem instances. Of
course, a thoroughly fine-tuned parameter set, that is, crossover probability, population size, mutation
probability, etc., may find better quality solutions. Some literature combines metaheuristic and exact
algorithms, and uses sub-tour division [36], to find better solutions. We also plan to combine an exact
method and a metaheuristic algorithm to find better-quality solutions to the problem instances.
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[9] İ. İlhan and G. Gökmen, “A list-based simulated annealing algorithm with crossover operator for
the traveling salesman problem,” Neural Comput. Appl., vol. 34, no. 10, pp. 7627–7652, 2022. doi:
10.1007/s00521-021-06883-x.

[10] M. Gendreau, G. Laporte, and F. Semet, “A tabu search heuristic for the undirected selec-
tive travelling salesman problem,” Eur. J. Oper. Res., vol. 106, no. 2–3, pp. 539–545, 1998. doi:
10.1016/S0377-2217(97)00289-0.

[11] Y. Cui, J. Zhong, F. Yang, S. Li, and P. Li, “Multi-subdomain grouping-based particle swarm optimization
for the traveling salesman problem,” IEEE Access, vol. 8, pp. 227497–227510, 2020. doi: 10.1109/AC-
CESS.2020.3045765.

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp
https://doi.org/10.5267/j.msl.2023.11.002
https://doi.org/10.1007/s10589-023-00474-3
https://doi.org/10.1007/s10878-023-01097-4
https://doi.org/10.1007/s10107-022-01849-w
https://doi.org/10.1016/j.asoc.2021.107439
https://doi.org/10.1007/s00521-021-06883-x
https://doi.org/10.1016/S0377-2217(97)00289-0
https://doi.org/10.1109/ACCESS.2020.3045765


2424 CMC, 2024, vol.79, no.2

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. New York: Addison-
Wesley, 1989.

[13] G. Reinelt, “TSPLIB—A traveling salesman problem library,” ORSA J. Comput., vol. 3, no. 4, pp. 376–384,
1991. Accessed: Nov. 20, 2023. [Online]. Available: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

[14] Z. H. Ahmed, “Genetic algorithm with comprehensive sequential constructive crossover for the trav-
elling salesman problem,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 5, pp. 245–254, 2020. doi:
10.14569/IJACSA.2020.0110533.

[15] D. B. Fogel, “An evolutionary approach to the travelling salesman problem,” Biol. Cybern., vol. 60, no. 2,
pp. 139–144, 1988. doi: 10.1007/BF00202901.

[16] J. J. Grefenstette, “Incorporating problem specific knowledge into genetic algorithms,” in L. Davis (Ed.),
Genetic Algorithms and Simulated Annealing, London, UK: Pitman/Pearson, 1987, pp. 42–60.

[17] L. Davis, “Job-shop scheduling with genetic algorithms,” in Proc. Int. Conf. Genetic Algor. Appl., 1985, pp.
136–140.

[18] B. Freisleben and P. Merz, “A genetic local search algorithm for solving symmetric and asymmetric traveling
salesman problems,” in Proc. 1996 IEEE Int. Conf. Evol. Comput., Nagoya, Japan, 1996, pp. 616–621.

[19] D. E. Goldberg and R. Lingle, “Alleles, loci and the travelling salesman problem,” in J. J. Grefenstette (Ed.),
Proc. First Int. Conf. Genetic Algor. Appl., Hilladale, NJ, Lawrence Erlbaum Associates, 1985.

[20] G. Syswerda, “Schedule optimization using genetic algorithms,” in L. Davis (Ed.), Handbook of Genetic
Algorithms, New York: Van Nostrand Reinhold, 1991, pp. 332–349.

[21] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation crossover operators on the travelling
salesman problem,” in J. J. Grefenstette (Ed.), Proc. First Int. Conf. Genetic Algor. Appl., Hilladale, NJ,
Lawrence Erlbaum Associates, 1987.

[22] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Gucht, “Genetic algorithms for the traveling salesman
problem,” in J. J. Grefenstette (Ed.), Proc. First Int. Conf. Genetic Algor. Appl., Mahwah, NJ, Lawrence
Erlbaum Associates, 1985, pp. 160–168.

[23] N. J. Radcliffe and P. D. Surry, “Formae and variance of fitness,” in D. Whitley, M. Vose (Eds.), Foundations
of Genetic Algorithms 3, San Mateo, CA: Morgan Kaufmann, 1995, pp. 51–72.

[24] D. Whitley, T. Starkweather, and D. Shaner, “The traveling salesman and sequence scheduling: Quality
solutions using genetic edge recombination,” in L. Davis (Ed.), Handbook of Genetic Algorithms. New York:
Van Nostrand Reinhold, 1991, pp. 350–372.

[25] W. Banzhaf, “The molecular traveling salesman,” Biol. Cybern., vol. 64, no. 1, pp. 7–14, 1990. doi:
10.1007/BF00203625.

[26] D. Fogel, “A parallel processing approach to a multiple travelling salesman problem using evolutionary
programming,” in Proc. Fourth Annual Symp. Parallel Process., Fullerton, California, 1990, pp. 318–326.

[27] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution programs. Berlin: Springer-Verlag, 1992.
[28] M. Gen and R. Cheng, Genetic Algorithm and Engineering Design. New York: John Wiley and Sons, 1997,

pp. 118–127.
[29] S. J. Louis and R. Tang, “Interactive genetic algorithms for the traveling salesman problem,”in Proc. Genetic

Evol. Comput. Conf. (GECCO), 1999, pp. 385–392.
[30] Z. H. Ahmed, “An improved genetic algorithm using adaptive mutation operator for the quadratic

assignment problem,” in Proc. 37th Int. Conf. Telecommun. Signal Process (TSP 2014), Berlin, Germany,
2014, pp. 616–620.

[31] A. B. Doumi, B. A. Mahafzah, and H. Hiary, “Solving traveling salesman problem using genetic algorithm
based on efficient mutation operator,” J. Theor. Appl. Inf. Technol., vol. 99, no. 15, pp. 3768–3781, 2021.

[32] I. H. Khan, “Assessing different crossover operators for travelling salesman problem,” IJISA Int. J. Intell.
Syst. Appl., vol. 7, no. 11, pp. 19–25, 2015. doi: 10.5815/ijisa.2015.11.03.

[33] Z. H. Ahmed, “Adaptive sequential constructive crossover operator in a genetic algorithm for solving the
traveling salesman problem,” IJACSA Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 2, pp. 593–605, 2020. doi:
10.14569/issn.2156-5570.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://doi.org/10.14569/IJACSA.2020.0110533
https://doi.org/10.1007/BF00202901
https://doi.org/10.1007/BF00203625
https://doi.org/10.5815/ijisa.2015.11.03
https://doi.org/10.14569/issn.2156-5570


CMC, 2024, vol.79, no.2 2425

[34] Z. H. Ahmed, “Solving the traveling salesman problem using greedy sequential constructive crossover in a
genetic algorithm,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 20, no. 2, pp. 99–112, 2020.

[35] Z. H. Ahmed, “Experimental analysis of crossover and mutation operators for the quadratic assignment
problem,” Ann. Oper. Res., vol. 247, no. 2, pp. 833–851, 2016. doi: 10.1007/s10479-015-1848-y.

[36] R. Jain et al., “Application of proposed hybrid active genetic algorithm for optimization of traveling
salesman problem,” Soft Comput., vol. 27, no. 8, pp. 4975–4985, 2023. doi: 10.1007/s00500-022-07581-z.

https://doi.org/10.1007/s10479-015-1848-y
https://doi.org/10.1007/s00500-022-07581-z

	Appropriate Combination of Crossover Operator and Mutation Operator in Genetic Algorithms for the Travelling Salesman Problem
	1 Introduction
	2 A Review of Crossover and Mutation Operators for the TSP
	3 Crossover Operators for Our GAs
	4 Mutation Operators for Our GAs
	5 Computational Experiments
	6 Conclusions and Future Work
	References


