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ABSTRACT

Face recognition (FR) technology has numerous applications in artificial intelligence including biometrics, security,
authentication, law enforcement, and surveillance. Deep learning (DL) models, notably convolutional neural
networks (CNNs), have shown promising results in the field of FR. However CNNs are easily fooled since they
do not encode position and orientation correlations between features. Hinton et al. envisioned Capsule Networks
as a more robust design capable of retaining pose information and spatial correlations to recognize objects more
like the brain does. Lower-level capsules hold 8-dimensional vectors of attributes like position, hue, texture, and
so on, which are routed to higher-level capsules via a new routing by agreement algorithm. This provides capsule
networks with viewpoint invariance, which has previously evaded CNNs. This research presents a FR model based
on capsule networks that was tested using the LFW dataset, COMSATS face dataset, and own acquired photos using
cameras measuring 128 × 128 pixels, 40 × 40 pixels, and 30 × 30 pixels. The trained model outperforms state-of-
the-art algorithms, achieving 95.82% test accuracy and performing well on unseen faces that have been blurred or
rotated. Additionally, the suggested model outperformed the recently released approaches on the COMSATS face
dataset, achieving a high accuracy of 92.47%. Based on the results of this research as well as previous results, capsule
networks perform better than deeper CNNs on unobserved altered data because of their special equivariance
properties.
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1 Introduction

Face recognition (FR) is one of the computer vision fields that is being researched the most
because of its wide range of possible applications [1]. Recent years have seen the proposal of numerous
novel deep learning-based face identification and verification algorithms [2], with generally very good
recognition accuracy for distinct human faces under carefully regulated settings [3]. However, there
are a lot of obstacles in the way of developing pose-robust face recognition.

A recent study [4] found that most FR algorithms perform worse when moving from frontal-
frontal to frontal-profile face verification. This implies that the most challenging obstacle for face
identification in the actual world is still stance variation [5]. The pose is described as a mix of
face configuration and viewpoint. This work aims to provide a useful model for the recognition of
unconstrained faces with large pose variations [6].

Convolutional Neural Networks (CNNs) have made significant progress in image recognition and
visual processing across a wide range of applications, setting the standard for handling challenging
computer vision tasks [7]. However, they fall short in three unique and significant ways that highlight
how far distant they are from the brain processes vision [8], as demonstrated by the challenge of
facial identification. First, there is no encoding of an object’s orientation and position, which was
a significant challenge for early CNNs [9]. While the use of augmented images helped to alleviate this
problem, CNNs still fail to recognize a modified item if its position and orientation are not included
in its training data [10]. To generalize to all points of view, an unlimited amount of data would be
required.

Second, the method used by CNNs to produce predictions is easily fooled [11]. A CNN examines
a picture and extracts meaningful elements that are subsequently used to classify it. If all components
are present but in different positions, the CNN will still categories it as an object despite the jumbled
feature distribution [12]. This is usually caused by the pooling layer doing feature subsampling that
ignores feature position and location. A face with ears instead of eyes, for example, will still be classed
as a face by a CNN, although a human obviously recognizing that it is not a face [13].

Finally, CNNs route information in a fashion that differs significantly from how the brain works.
While CNNs route all information from low to high levels through all neurons, the brain routes
specific information to specialized areas that are better at interpreting specific types of information
[14]. Although computer vision and face recognition have enormous promise to revolutionize a variety
of industries, CNNs continue to fall short of the flexibility and accuracy of the human brain [15].

A convolutional neural network (CNN) can recognize an image as a face even if it appears
differently to a human observer if the ears and eyes are switched [16]. Because CNN are not as good
at understanding the spatial relationships between images as the human brain is [17].

Hinton et al. have proposed capsule networks to overcome the difficulties with CNNs and to
develop networks that more closely resemble the visual brain. In this research, CapsNet (Capsule
Networks) are used to solve a face recognition challenge to investigate the workings of this unique
network and compare it to the brain.

The main contribution of this paper is:

• Capsule Networks have shown excellent results in character identification, and this research
extends prior work by using Capsule Networks to a face recognition problem on three distinct
datasets.
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• The suggested model has been tested for four different scenarios:

◦ Face image resolution analysis.

◦ Face pose analysis.

◦ Face occlusion and non-uniform illumination analysis

◦ Face rotation with non-uniform illumination and blurred face image analysis.

• Based on its distinct equivariance properties, the proposed model outperforms other baseline
FR methods when compared to them.

2 Literature Review
2.1 Capsule Network

The hierarchical structure of the entities in images is beyond the capacity of the standard
convolutional neural network [18,19]. “Capsules” could be used to learn part-whole relationships
while retaining spatial information, according to Hinton et al. [20]. Because of their hierarchical
feature representation, which improves generalization to pose variations and lessens reliance on data
augmentation, Capsule Networks (CapsNets) are used [21]. Their value lies in their dynamic routing
system, part-whole handling capabilities, and possible interpretability in applications such as medical
image analysis and facial recognition. Researchers are interested in CapsNet since its authors in [22]
first presented it as a more successful picture recognition system.

In [23], the relationship between the observer (position) and the entity is learned by the matrix
capsule. Additionally, several strategies for implementing and enhancing the capsule design have been
put forth [24], and [25]. On more complex datasets, DeepCaps, a deep capsule network architecture
that was first shown in [26], has improved performance.

CapsNet has recently been integrated into several applications. Human action recognition [27],
medical imaging [28], agricultural image classification [29], face forgery detection [30], character
recognition [31], COVID-19 classification [32], face recognition [33] and other real-world problems
[34] have been solved using these networks. Regular convolutional neural networks are replaced with
capsule networks as discriminators in [35]. In order to achieve lung cancer screening, Mobiny et al. [36]
use a dynamic routing method that is consistent. CNN-CapsNet is recommended by researchers in [37]
for the successful classification of remote sensing photo scenes. Our work is an improved version of
capsules, which creates arbitrary frontal faces in the deep feature space by using capsules.

2.2 Face Recognition

Research on CNN has significantly sped up the development of facial recognition techniques.
A unified face verification, recognition, and clustering system was proposed by Schroff et al. [38].
Several approaches [39,40] has been examined to handle face pose changes. Researchers have developed
methods for face frontalization [41], pose-specific identification training with deep models [42], and
deformation of 3D facial markers [43].

A face frontalization sub-net (FFN) and a discriminative learning sub-net (DLN) are used to
create a pose invariant model (PIM) by Zhao et al. [44]. Because PIM provides high-fidelity frontalized
face photos, it is essentially a pixel-level alignment method. In contrast, the method in [45] directly
addresses feature-level alignments and extracts deep features for face recognition using deformable
convolutions with a spatial displacement field. Our method is lightweight and easy to deploy, unlike
previous research that requires well-designed data augmentation or multi-task training. Haq et al. [46]
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proposed a pose, illumination and occlusion invariant PAL-based face recognition model. Their
proposed model achieved high accuracy as compared to the published algorithms. However, their
algorithm was not tested on rotated and blurred images.

The authors of reference [47] introduced a revolutionary FR method dubbed MagFace, which
is aimed to learn integrated features. They were able to attain an accuracy rate of 95.97% with their
proposed approach, outperforming other existing algorithms.

The researchers in [48] created a Laplacian face approach (LFA) that generates Laplacian faces
by using optimal linear approximation of eigenfaces. According to their published data, the LFA-
based face recognition system has substantially reduced error rates. Furthermore, Simonyan et al. [49]
identified faces using densely collected Scale Invariant feature Transform (SIFT) features using Fisher
vectors. The proposed method achieved an overall accuracy of 87.7% for the standard Labelled Faces
in the Wild (LFW) dataset.

Taigman et al. [50] unveiled DeepFace, a deep learning-based face recognition system that achieved
high accuracy in tests. DeepFace used a deep convolutional neural network to learn features from raw
face pictures and achieved a verification accuracy of 97.35% on the Labelled Faces in the Wild dataset.

The authors of [51] offer a method for recognizing goat faces using CNN, a deep learning network.
The authors compiled a dataset of goat face photos and used it to train a CNN. They were able to
recognize individual goats with excellent accuracy even when the photographs were taken in different
lighting and environmental circumstances.

Although CNN has reached very high accuracy in face recognition, with Google’s FaceNet
obtaining 99.63% accuracy on the Labelled Faces in the Wild dataset, these networks are incapable of
giving accurate spatial relationships between high-level elements due to several factors. For example,
if the positions of the nose and mouth on a face are switched, convolutional neural networks will still
classify the image as a face. To categorize the image as a face in a capsule network, the two active
capsules representing the mouth and nose must have the correct spatial connection to activate the
following capsule, which in this case will be the face. If the predictions for the mouth and nose agree,
then the mouth and nose must be in the correct spatial relationship to form a face. Figs. 1 and 2 present
recent FR algorithms tested on LFW dataset and COMSATS face dataset.

Figure 1: Recent face recognition algorithms tested on LFW face dataset
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Figure 2: Recent face recognition algorithms tested on COMSATS face dataset

3 Proposed Methodology
3.1 Preprocessing Step

Face recognition preprocessing typically consists of a sequence of procedures designed to prepare
input images for an accurate and efficient face identification. Image resolution (in pixels) varies
between datasets. For this experiment, these images were reduced to 128 × 128 pixels, 40 × 40 pixels,
and 30 × 30 pixels.

The initial stage of our proposed approach is to find and align the face so that the eyes, nose,
and mouth are in the same place in each image. Several algorithms [52,53] have been employed in the
literature for this goal, each with its own set of strengths and weaknesses. Face Landmark Localization
(FLL) [54] was chosen for the proposed approach because it aligns the face by detecting 68 face
landmarks in an image. As a result, precise points of these traits are recognized to find the human face.
The face has distinct features such as the top of the chin, mouth, eyes, nose, and eyebrows. Therefore, to
find the human face, specific points of these traits are identified. Pose variation is handled by the FLL
with considerable efficiency. The process of face alignment involves building a tringle by joining the
eye locations of facial landmarks to the image’s normal, followed by calculating the angles between the
eye points and the normal. Subsequently, the computed angles are used to rotate the face images. After
face alignment, the face region is cropped from the input image using Eq. (1)’s minimum horizontal
and vertical FLL points. The FLL and image cropping pseudo code are shown in Algorithm 1.

Iface =
∑imax+k

imin−k

∑jmax+l

jmin−l
Image (1)

where the lowest and maximum horizontal FLL points are represented by the variables imin and imax.
The minimum and highest vertical FLL points are represented by the variables jmin and jmax, respectively.
However, k and l are predefined variables and employed to crop the desired facial area. Fig. 3 illustrates
the FLL and face cropping procedures.
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Figure 3: The FLL and face cropping

Algorithm 1: Pseudo code of FLL and image cropping
1. Take image.
2. Use the Haar-cascade classifier to detect faces.
3. Loop through detected face to detect landmarks
4. Find the face landmarks on the face.
5. Make a triangle with the tip of your eyes.
6. Determine how far the eyes are from the image normal.
7. Rotate the picture using the computed angles and normal line.
8. Crop the face according to the horizontal and vertical point’s threshold.
9. Move to step 1 for the next image.

3.2 Machine Learning Approach

For this paper, a three-layer capsule network is employed to identify faces as presented in Fig. 4.
The first convolutional layer translates the pixel intensities of the input images to local feature detector
activity, which are then used as inputs to the second convolutional layer. The major capsules are
located in the second layer known as convolutional capsule layer. Convolutional layer consists of
32 convolutional channels, each comprising 8-dimensional capsules. These dimensions can express
characteristics such as hue, position, size, orientation, deformation, texture, and so forth. Using
routing by agreement, each 8-dimensional vector output is sent as input to all 16-dimensional capsules
in the layer above. The last layer contains 16 dimensional capsules per class.

A capsule network is made up of two distinct elements. The problem of representing multidimen-
sional entities is tackled in the first segment. This method groups together features with comparable
attributes into units called “Capsules.” The purpose of the second component is to activate higher-
level features, and it does so via using routing by agreement. It entails the agreement of lower-level
features to activate higher-level characteristics.

A capsule network first splits the input image into subsets according to the regions that make
up each subset. It functions on the presumption that there is only one feature per region, with one
instance of that feature at most. The suggested model’s capsule is what it is known as. It records the
movement, color, and position of objects. In contrast to CNNs, which represent solitary and unrelated
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scalar values, capsule networks link neurons together based on their multi-dimensional properties. This
grouping makes routing by agreement possible, which makes it easier to activate features at a higher
level.

Figure 4: Capsule network architecture

3.3 Training

Dynamic Routing is employed as part of the training procedure to learn the coupling coefficients,
cij, between capsules in the second and final layer. All log prior probabilities, bij, are set to zero at the
start of each routing. A log prior probability is the likelihood of capsule i in layer l being connected
with capsule j in layer l + 1. For r iterations to calculate, the prior probabilities are updated.

Using the routing softmax given in Eq. (2), the coupling coefficients (cij) between each capsule in
layers l and l + 1 are first calculated. This guarantees that all of the capsules in layer l + 1 and a capsule
in layer l’s coupling coefficients sum up to one.

cij = exp
(
bij

)
∑

k exp
(
bij

) (2)

The total input (sj) to a capsule j in layer l + 1 is then calculated using Eq. (3), which is a weighted
sum of all prediction vectors (ûj|i). Eq. (4) defines a prediction vector as the output of capsule i in layer
l multiplied by a weight matrix between capsules i and j.

Sj =
∑

i
cijûj|i (3)

ûj|i = Wijui (4)

The probability that the entity a capsule represents is present in the current input is indicated by
the output vector (vij) of the capsule. Eq. (5), a nonlinearity that guarantees small vectors are shrunk
to almost zero and long vectors are squished to slightly less than one, is used to obtain this result. The
agreement between each capsule j’s current output and the prediction vector that capsule i produced
is used to update the log prior probability.

Vj = ||Sj||2

1 + ||Sj||2

Sj

||Sj|| (5)

The batch size and learning rate have been set to 128 and 0.001, accordingly, based on the
parameters used in the capsule network described in Dynamic Routing between Capsules [4]. The
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hyperparameters of min faces per sample were set to 25 in order to strike a compromise between the
size of the data set and the number of faces per label.

4 Experimental Analysis

Experiments are carried out on a Dell Precision Tower 7810 equipped with a GTX 1080 GPU
and 32 GB of RAM (Random Access Memory). The aforementioned is a better workstation for
handling real-time sophisticated algorithms. Simulations are performed using MATLAB and Python.
As evaluation measures in the experiment, accuracy and loss are used.

4.1 Datasets Used

The proposed model has been tested for four different scenarios: (i) face image resolution analysis.
(ii) face pose analysis. (iii) face occlusion and non-uniform illumination analysis. (iv) face rotation with
non-uniform illumination and blurred face image analysis.

4.1.1 Face Image Resolution Analysis

Several images were taken using the camera in a variety of locations, including rooms, parking
lots, forests, and public markets, as shown in Fig. 5. We obtained a total of 1243 varied images using
a mobile camera, including 76 subjects. After image acquisition face detection has been done using
AdaBoost face detection algorithm to acquire only face images and remove the background. Faces
were recognized by the AdaBoost face detection algorithm in 1217 face images of 76 participants
chosen to test the proposed approach. Experiments are carried out by adjusting the size of facial
images, for example, 128 × 128 pixels, 40 × 40 pixels, and 30 × 30 pixels.

Figure 5: Images taken with mobile camera
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4.1.2 Face Pose Analysis

The suggested model was tested on the COMSATS face dataset to see how effective it was in face
pose analysis. The COMSATS face dataset contains 850 photos of people in various face stances (0°,
±5°, ±10°, ±15°, ±20°, ±25°, ±30°, ±35°, ±55°) of 50 different subjects. These photos were captured
at COMSATS University over the course of five months under real-world conditions. Figs. 6 and 7
show a few samples with poses from the COMSATS face dataset.

Figure 6: COMSATS face dataset individuals

4.1.3 Face Occlusion and Non-Uniform Illumination Analysis

To test the effectiveness of the proposed model against occlusion with pose variation and
illumination variation, the LFW dataset was used. The LFW dataset is a well-known computer
vision benchmark dataset. The LFW dataset images were collected from several sources, including
the internet, and hence differ in quality, lighting, and position. As a result, the LFW dataset provides
a challenging test for facial recognition algorithms. Face detection, recognition, verification, and
identification investigations have all made extensive use of the LFW dataset. The LFW dataset has
been used to develop and test several algorithms, and it is commonly used as a standard benchmark to
compare the performance of various methods. Fig. 8 shows several examples of LFW datasets. Only a
subset of the LFW dataset was employed, with the initial condition that each subject includes at least
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ten faces images. This resulted in a total of 191 distinct subjects within a collection of 5431 photos.
This dataset was separated into two parts: 4328 photos for training and 1103 images for testing.

Figure 7: Individual of COMSATS face dataset with seventeen various face postures

Figure 8: LFW dataset images
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4.1.4 Face Rotation with Non-Uniform Illumination and Blurred Face Image Analysis

About 1221 face images were rotated 90 degrees, 1157 images 180 degrees, and 438 images 270
degrees to test the suggested model’s resilience to rotated faces. In addition, 107 face shots were made
blurry to evaluate the performance of the proposed model on these blurry images. Fig. 9 displays the
LFW dataset’s twisted and blurred facial images.

Figure 9: LFW dataset with rotated and blurred images

5 Results

The suggested model performed effectively while recognizing faces images having several diffi-
culties. Fig. 10 displays the validation accuracy of the gathered camera photos for 128 × 128 pixels,
40 × 40 pixels, and 30 × 30 pixels. The recognition accuracy after 100 epochs is 95.29% for 128 × 128
pixels, 94.81% for 40 × 40 pixels, and 91.26% for 30 × 30 pixels.

Fig. 11 depicts the suggested model’s recognition accuracy on the COMSATS face dataset for
seventeen different positions. The total accuracy of the suggested model for the COMSATS face
dataset is 92.47%. On the LFW dataset, the proposed model’s facial recognition performance was
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approximately 97.3%; however, after rotating and blurring images, as illustrated in Fig. 12, it fell to
95.82%.

Figure 10: Validation accuracy of camera images for 128 × 128 pixels, 40 × 40 pixels, and 30 × 30
pixels

Figure 11: Recognition accuracy of the suggested model on the COMSATS face dataset for seventeen
different positions

The suggested model was contrasted with five of the most sophisticated algorithms currently in
use: (i) PAL [43], (ii) CapsNet algorithm [45], (iii) Eigen Faces [55], (iv) AdaBoost-LDA [56] and
(v) Multi Modal Deep Face Recognition (MM-DFR) approaches [57]. Figs. 13 and 14 display the
comparisons between the proposed model and the latest publicly available algorithms.

Figs. 13 and 14 provide a summary of the observations.

• The proposed FR method outperformed all prior FR strategies, as illustrated in Fig. 13, with
97.3% recognition accuracy on the LFW dataset.

• With an accuracy of 92.47%, the proposed FR algorithms outperform the conventional FR
algorithms on the COMSATS face dataset (Fig. 14).



CMC, 2024, vol.79, no.2 2181

Figure 12: Accuracy of proposed model recognition on LFW dataset

Figure 13: Recognition accuracy on the LFW dataset

Figure 14: Recognition accuracy on the COMSATS face dataset

The performance of the published FR models and the proposed model on each facial pose of the
COMSATS face dataset is shown in Fig. 15.

Fig. 15 highlights the following points:
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• All algorithms achieved 100% recognition accuracy for frontal facial positions (±00, ±50, and
±100).

• The suggested model outperformed rival FR algorithms and attained satisfactory precision for
non-frontal face images.

• In terms of face pose recognition, the proposed FR model performed more effectively than the
most recent best FR approach (PAL).

Figure 15: Recognition accuracy on COMSATS face dataset for seventeen different poses

6 Limitations and Future Directions:

The limitations of the proposed approach may be:

• The quantity and variety of the training data may have an impact on the model’s performance.
The model’s capacity to generalize to a wider range of settings can be improved by augmenting
the dataset with more varied facial images and variants.

• Although proposed model performed efficiently but still unable to recognize images having high
occlusion.

Moreover, the proposed face recognition algorithm could be used to identify criminal suspects
more accurately and efficiently. Additionally, facial recognition algorithms may be employed in border
security to help identify people who might be on watch lists or who might be trying to enter the nation
illegally.

In the future, we will concentrate on making the proposed model more efficient for real-time
uses including augmented reality, robotics, and video processing. In order to guarantee low latency
performance, this involves model compression, hardware acceleration, and other methods.

7 Conclusion

This research presents a Capsule Networks based FR model that was tested on images captured
by a camera with an image size of 128 × 128 pixels, 40 × 40 pixels, and 30 × 30 pixels, as well as the
COMSATS face dataset and the LFW dataset. The findings of this work are:

• The trained model demonstrated promising recognition accuracy of 95.29% for 128 × 128
pixels, 94.81% for 40 × 40 pixels, and 91.26% for 30 × 30 pixels on own collected images.
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• The accuracy of the trained model has decreased to 95.82% on unseen LFW dataset faces
subjected to occlusion or rotation, as compared to the proposed model’s 97.3% accuracy for
the LFW dataset.

• With a high accuracy of 92.47%, the proposed model outperformed the recently published
method utilized for COMSATS face dataset evaluation.

• Due to their special equivariance qualities, capsule networks perform better than deeper CNNs
on unobserved altered data, according to prior research and the findings of this study.
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