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ABSTRACT

The classification of functional data has drawn much attention in recent years. The main challenge is representing
infinite-dimensional functional data by finite-dimensional features while utilizing those features to achieve better
classification accuracy. In this paper, we propose a mean-variance-based (MV) feature weighting method for
classifying functional data or functional curves. In the feature extraction stage, each sample curve is approximated
by B-splines to transfer features to the coefficients of the spline basis. After that, a feature weighting approach
based on statistical principles is introduced by comprehensively considering the between-class differences and
within-class variations of the coefficients. We also introduce a scaling parameter to adjust the gap between the
weights of features. The new feature weighting approach can adaptively enhance noteworthy local features while
mitigating the impact of confusing features. The algorithms for feature weighted K-nearest neighbor and support
vector machine classifiers are both provided. Moreover, the new approach can be well integrated into existing
functional data classifiers, such as the generalized functional linear model and functional linear discriminant
analysis, resulting in a more accurate classification. The performance of the mean-variance-based classifiers is
evaluated by simulation studies and real data. The results show that the new feature weighting approach significantly
improves the classification accuracy for complex functional data.
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1 Introduction

Functional data analysis (FDA) [1] is an active research field for analyzing random curves or other
multidimensional functional data. With the improvement of data collection technology, functional
data is rapidly emerging in various fields. FDA techniques are also constantly evolving. There is a
substantial overlap between time series data and functional data. Functional data generally contain
smooth random functions, and the domain of functional data can be more than time. The random
function inherent in functional data is usually characterized by a random process and analyzed
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through observed functional trajectories. Compared to multivariate data, functional data is infinite-
dimensional. The high intrinsic dimensionality of these data brings challenges for theory as well as
computation. Usually, the primary task of the FDA is dimensionality reduction.

Among many others, the classification of functional data, such as pattern recognition and
medical diagnosis, is becoming increasingly important in research. Recently, Blanquero et al. [2]
addressed the problem of selecting the most informative time instants in multivariate functional data.
Jiang et al. [3] presented a supervised functional principal component analysis to extract image-based
features associated with the failure time. Castro Guzman et al. [4] proposed a convolution-based linear
discriminant analysis for functional data classification. Weishampel et al. [5] proposed a method that
can classify a binary time series using nonparametric approaches. These researches aim to improve the
classification accuracy of complex functional data, which could be helpful for practical application
research in medicine, remote sensing, and other fields.

Generally, the classification approaches of functional data can mainly be divided into three types:
Model-based, density-based, and algorithm-based methods. The model-based functional classification
methods [6–8] tend to find relationships between functional predictors and class labels. The density-
based functional classification methods [9–12] mainly use Bayes classifiers for functional data classifi-
cation. The algorithm-based functional classification methods [13–15] prefer to project the functional
data to a finite-dimensional space and then use machine learning or statistical learning methods for
classification.

In the algorithm-based functional classification, most studies approximate each functional curve
by a linear combination of a set of basis functions. Functional principal component analysis [16–
18] is a powerful tool to extract the major modes of variation in the functional data. The first several
functional principal components can characterize the information of functional data. Otherwise, prior
basis function expansion is widely used for extracting low-dimensional features, such as B-spline basis
[19–21] and Fourier basis [22]. Afterwards, some classical classification methods can be used for the
extracted features, such as linear discriminant analysis (LDA) [13,14], K-nearest neighbor (KNN) [23],
and support vector machine (SVM) [24], etc.

In order to minimize the loss of information in functional data, retaining more features during the
feature extraction stage is usually necessary. However, these features often contain redundancies that
affect classification accuracy. A common strategy to address this problem is feature selection or feature
weighting. In multivariate data analysis, there are many methods for feature selection [25,26] and
feature weighting [27,28], including mutual information [29–32], information gain [24], and regularized
entropy [33]. Some classification methods based on either feature selection or feature weighting have
been extended to functional data. For instance, Li et al. [13] identified significant features using F-
statistic and LDA, then used SVM for classification. Chang [34] proposed the rotation forest method
combined with the patch selection for functional data classification.

However, these classification methods do not fully consider between-class differences and within-
class variations of local features of functional data. When the local features have large differences
between classes and minor within-class variations, they correspond to local significant features for
classification. Feature selection methods tend to remove all insignificant features and retain only
significant features for classification. With many redundant features, these methods can achieve a
good dimensionality reduction effect. However, each feature is not ranked according to its own
importance. Furthermore, using feature selection methods will risk losing information in some
cases. For example, when handling data with small between-class differences and large within-class
variations, the classification tasks become difficult. At this point, the feature weighting method is a
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better alternative, which tends to retain information and give more weight to significant features and
less weight to insignificant features.

In this paper, we propose a new mean-variance-based feature weighting method constructed on
the coefficient values. We adopt the B-spline approximation approach for extracting the coefficient
features of functional data. From an intuitive perspective on classification, we directly let the ratio
of between-class differences to within-class variations determine the weights of features. The size of
each weight represents the individual contribution of each feature to classification. The quantified MV
feature weights can strengthen significant features and compress redundant features. To summarize,
the critical contributions of our proposal are briefly demonstrated as follows:

(1) An innovative feature weighting method based on statistical principles is introduced. Sig-
nificant features become more dispersed, and insignificant features become more compact. It can
effectively enhance the contribution of significant features and weaken the influence of confusing
features for classification.

(2) The MV feature weighting method can also be integrated with classical functional classification
methods. We can perform feature weighting on the extracted features or reconstructed functional data
for classification. For instance, we integrate our method with the generalized functional linear model
and functional linear discriminant analysis and achieve a significant improvement in classification.

The rest of this paper is structured as follows. Section 2 introduces the proposed MV feature
weighting method. Section 3 evaluates the classification performance of our proposal through sim-
ulation studies. Section 4 presents the applications of some real data sets, followed by a conclusion in
Section 5.

2 Methodology

Let {yi (t) , i = 1, . . . , n} be the observed functional data set, which can be modeled by

yi (t) = Φ (t) β i + ε i, (1)

where Φ�
(t) = (

φ1 (t) , . . . , φp (t)
)�

are the basis functions, β i are the coefficients of the basis functions,
and ε i is the random error.

Suppose that the i-th discrete observations yi = (
yi (ti1) , . . . , yi

(
timi

))�
are recorded at a series of

time points ti = (
ti1, . . . , timi

)�
, thus the model can be expressed in a matrix form:

yi = Φ iβ i + ε i, (2)

where Φ�
i = (

φ1 (ti) , . . . , φp (ti)
)�

is the p × mi dimensional basis matrix.

Because each sample curve can be approximated by the basis functions, the raw data can be
represented by low-dimensional coefficient features. A widely used basis function is the B-splines. In
the next section, we will demonstrate how to extract features with the B-splines.

2.1 Feature Extraction

A simple linear smoother is obtained if we estimate the coefficient vector by minimizing the
objective function

J
(
β i

) = (
yi − Φ iβ i

)� (
yi − Φ iβ i

)
, (3)



2468 CMC, 2024, vol.79, no.2

solving this for β i provides the ordinary least squares solution: β̂ i = (
Φ�

i Φ i

)−1
Φ�

i yi. In order to control
of the smoothness of functional data, we add a second order difference roughness penalty to Eq. (3)
to obtain the regularized objective function

RJ
(
β i

) = (
yi − Φ iβ i

)� (
yi − Φ iβ i

) + λ‖Dβ i‖2. (4)

Thus, the smooth estimate can be written by

β̂ i = (
Φ�

i Φ i + λD�D
)−1

Φ�
i yi, (5)

where D is the second order difference penalty matrix and λ is a smoothing parameter. The parameter
selection strategy can be seen in [35,36].

By conducting the above estimation process, we can obtain the coefficient features of all sample
curves. Next, we will introduce the calculation of feature weights.

2.2 The Estimation of Feature Weights

The mean and variance are elementary and important statistics to describe the data characteristics
and we prefer to retain all features to make full use of all information. In binary classification, the
between-class difference can be measured by the difference between two classes’ means, and the within-
class variations can be measured by the sum of two classes’ variances. Thus, the MV weight can be
calculated by

wj =
∣∣∣β(1)

j − β
(2)

j

∣∣∣
2∑

k=1

√∑
i∈Ck

(
βij − β

(k)

j

)2
, (6)

where Ck is the indices of the nk samples in the k-th class, βij is the value of the i-th sample at the j-th
feature, β

(k)

j = ∑
i∈Ck

βij/nk is the mean of all samples of the k-th class at the j-th feature. In multi-class
classification, the MV weight can be calculated by

wj =

K∑
k=1

∣∣∣β(k)

j − β j

∣∣∣
K∑

k=1

√∑
i∈Ck

(
βij − β

(k)

j

)2
, (7)

where K is the number of classes and β j = ∑
i∈n βij/n is the mean of all samples at the j-th feature.

Then we can obtain original MV weight vector WMV = (
W1, . . . , Wp

)�
by normalizing, which

satisfies Wj = wj/
∑p

j=1 wj. For local features with significant mean differences and minor variances,
Wj will be huge. In contrast, for local features with minor mean differences and large variances, Wj

will be particularly small.

Considering the different magnitudes of the data, we add a scaling parameter to control the size
of feature weights. The MV weight vector can greatly identify and weight the features, which is written
by

Wm
MV = (

W m
1 , . . . , W m

p

)�
, m ≥ 0 (8)
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where m is the scaling parameter. The optimal scaling parameter is selected by cross-validation with
the best classification accuracy. In Eq. (8), the weights Wj (j = 1, . . . , p) are all the same as those in the
original MV weight vector WMV . The difference between Wm

MV and WMV is that the elements in Wm
MV

have an additional scaling factor m. The parameter m is a non-negative constant. When m is 0, it is
equivalent to an unweighted case. When m equals 1, it degenerates into the general weighted case. The
increase of m can widen the gap between the weights of features.

2.3 Classification

After obtaining the weights of extracted features, we assign different weight to corresponding
feature and use machine learning algorithms for classification. Specifically, KNN is a nonparametric
learning algorithm that is very sensitive to distance functions owing to its inherent sensitivity to
uncorrelated features. Therefore, we develop a mean-variance-based feature weighted K-nearest
neighbor (MVKNN) algorithm. MVKNN makes its decision by identifying the k weighted nearest
neighbors with the highest similarity to the test data. One of the most common choices for measuring
the similarity between the test data and the training samples is the Euclidean distance. In the MVKNN,
the feature weighted Euclidean distance is defined by

dW
(
β i, β i′

) =
√√√√ p∑

j=1

W m
j · (

βij − βi′ j
)2

, (9)

where W m
j is the j-th weight value of the MV weight vector calculated by Eq. (8). The classification

procedures of the MVKNN can be seen in the Algorithm 1.

Algorithm 1: MVKNN algorithm for classification
Step 1: Extract features of all samples by Eq. (5).
Step 2: Determine the number of nearest neighbors k.
Step 3: Calculate the MV weight vector by Eq. (8) of coefficient features of the training samples.
Step 4: Calculate the feature weighted Euclidean distance between test sample and all training samples
by Eq. (9). Sort the distance in ascending order and select the first k distance samples as the neighbors.
Step 5: Get the label of test sample according to the highest frequency of the neighbors’ labels.

It is well known that SVM has advantages in classifying nonlinear features. Thus, we propose
a mean-variance-based feature weighted SVM (MVSVM) algorithm. The detailed feature weighted
SVM algorithm theory has been comprehensively introduced in [24]. The key procedure is selecting a
feature weighted kernel function. In this paper, we mainly consider feature weighted SVM with radial
basis function (RBF) kernel for classification. Because RBF is more efficient than polynomial and
linear kernel functions. The feature weighted RBF kernel is defined by

Kp

(
β i, β i′

) = exp
{−γ ‖Pβ i − Pβ i′‖2

}
= exp

{
−γ

(
Pβ i − Pβ i′

)� (
Pβ i − Pβ i′

)}
= exp

{
−γ

(
β i − β i′

)�
P�P

(
β i − β i′

)}
,

(10)

where P = diag
(
Wm

MV

)
is a p×p diagonal matrix. The j-th diagonal element of P represents the weight

value on the j-th feature of the sample. The classification procedures of the MVSVM can be seen in
the Algorithm 2.
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Algorithm 2: MVSVM algorithm for classification
Step 1: Extract features of all samples by Eq. (5).
Step 2: Calculate the MV weight vector by Eq. (8) of coefficient features of the training samples.
Step 3: Get feature weighted samples by β̃ i = Pβ i, i = 1, . . . , n.
Step 4: Classify the feature weighted samples by SVM with RBF kernel.

The above two algorithms combine machine learning methods with feature weighting for clas-
sification. Now, we want to apply our feature weighting method to some functional classification
methods. Functional linear discriminant analysis (FLDA) [9] and generalized functional linear model
(GFLM) [7] are two popular functional classification methods. Thus, we also propose mean-variance-
based feature weighted FLDA and GFLM methods (MVFLDA, MVGFLM). Different from machine
learning methods, the functional classification methods require that the input features should be
functional data. Thus, we should reconstruct functional data after we obtain coefficient features by
basis expansion.

Detailly, the original generalized functional linear model is defined by

E (Yi|yi (t)) = g
{
α0 + ∫

T yi (t) α (t) dt
}

= g
{
α0 + β

�
i

(∫
T Φ�

(t) Φ (t) dt
)
α
}

= g
{
α0 + β

�
i Wα

}
, i = 1, . . . , n,

(11)

where Yi is the i-th scalar response, g is the link function, yi (t) is the i-th functional predictor, and
α (t) is the slope function. When Yi is a binary class label response variable, g (·) can be considered as
inverse logit function. The functional data yi (t) and slope function α (t) can be represented by a set of
basis functions, such as B-splines. When the basis functions are orthogonal, the W = ∫

T Φ�
(t) Φ (t) dt

is the identity matrix. Thus, we introduce our MVGFLM method as follows:

E
(
Yi|ỹi (t)

) = g
{
α0 + ∫

T ỹi (t) α (t) dt
}

= g
{
α0 + (

Pβ i

)� (∫
T Φ�

(t)Φ (t) dt
)
α
}

= g
{
α0 + β̃

�
i Wα

}
, i = 1, . . . , n

(12)

where ỹi (t) = Φ (t)
(
Pβ i

)
is the i-th reconstructed functional data for the GFLM. The feature weight

matrix P is the same as Eq. (10). Moreover, we also let ỹi (t) be the functional input for original
functional linear discriminant analysis to get the MVFLDA method. The classification procedures
of the MVFLDA and MVGFLM can be seen in the Algorithm 3.

Algorithm 3: MVFLDA (or MVGFLM) algorithm for classification
Step 1: Extract features of all samples by Eq. (5).
Step 2: Calculate the MV weight vector by Eq. (8) of coefficient features of the training samples.
Step 3: Let the reconstructed functional data ỹi (t) = Φ (t)

(
Pβ i

)
, i = 1, . . . , n be input features.

Step 4: Classify the feature weighted functional input features by FLDA or GFLM.

3 Simulation Studies

We evaluate the performance of our proposal through simulation studies with three cases. The
three cases adopt different data generation methods, respectively. In Case 1, we change the variances
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of some features to generate different within-class variations. Therefore, the importance of features is
mainly determined by the variance. In Case 2, we generate functional data from a gaussian process, but
we control the variances of some features by setting different signal-to-noise ratios, which increases
the difficulty of feature extraction. In Case 3, we alternately set significant and insignificant features.

Specifically, in Case 1, the different class data are generated from a gaussian process given class
mean function and covariance function

y(k)

i (t) = x(k)

i (t) + ε i

x(k)

i (t) ∼ GP
(
μ(k) (t) , κ (·, ·)) ,

(13)

where κ (t, t′) = B�
(t)ΛB (t′) is the covariance function, μ(k) (t) = B�

(t) m(k) is the k-th class mean
function, and ε i ∼ N

(
0, 0.12I

)
is the random noise. We choose 12 B-spline basis functions.

B (t) = (B1 (t) , · · · , B12 (t))�. For the covariance function, Λ is a diagonal matrix. The diagonal
values control the variance. We set Λ = diag (4, 4, 1/9, 1, 4, 1/9, 1, 4, 4, 4, 1, 4). Obviously, the third and
the sixth value is small, which means small within-class variations. We set three mean functions whose
basis coefficient vectors are as follows:

m(1) = (sin (1) , · · · , sin (12))
�, m(2) = (sin (1) + cos (1) , · · · , sin (12) + cos (12))

�

and m(3) = (2 cos (1) , · · · , 2 cos (12))
�.

In Case 2, we generate data from a gaussian process given class mean function and prior kernel
covariance function:

y(k)

i (t) = x(k)

i (t) + εi (t)
x(k)

i (t) ∼ GP
(
μ(k) (t) , C (·, ·))

εi (t) ∼ GP
(
0, σ 2

i (t) I
)

,
(14)

where C (t, t′) = 0.04 exp
{−0.5 (t − t′)2

}
is the prior kernel function, and the three mean functions

are: μ(1) (t) = 2 sin (2πt) , μ(2) (t) = 2 sin (2πt) + 0.5 cos (2πt) , μ(3) (t) = 1.5 sin (2πt) + cos (2πt).

Different from Case 1, we set random noise with heteroscedasticity: σ 2
i (t) = 25 (t − 0.5)

2 + 0.2.
The class variance of the middle part of the data is small, and the variances of the two ends are large.
The middle part provides large between-class differences and small within-class fluctuations.

In Case 3, we generate data with a linear combination of B-spline basis functions and mean
functions

y(k)

i (t) = μ(k) (t) +
12∑

j=1

A(k)

i,j Bj (t) + ε i, (15)

where Bj (t) is the j-th B-spline basis function, ε i ∼ N
(
0, 0.12I

)
is the random noise. The basis

coefficients control the variance of data. We set the basis coefficients of three classes with

A(1)

i,j ∼ N (0, 10(−1)j), A(2)

i,j ∼ N
(
0, 7(−1)j

)
, A(3)

i,j ∼ N (0, 3(−1)j), and the three mean functions:

μ(1) (t) = 2 sin (2πt) , μ(2) (t) = 2 sin (2πt) + cos (2πt) , μ(3) (t) = 3 cos (2πt) .

For each case, we generate 100 random samples for each class. In each curve, 199 time points
are equally spaced in [0, 1]. We repeat the simulation 10 times by 5-fold cross-validation. Fig. 1 shows
the simulated data of three cases. Under our settings, it is intuitively discernible that the data exhibits
significant and confusing local features, which are determined by the combination of the class mean
and class variance.
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Figure 1: Simulated data of three cases

Firstly, we consider a binary classification scenario with the combination of the first two mean
functions. Table 1 lists the classification accuracies (mean (std)%) of different methods under binary
scenarios. For simplicity, the ‘Original’ represents that we use original features for classification, and
the ‘F’ represents F-score-based feature selection method [37], which performs the significance test of
features through F-score to select significant features and utilizes the subset features for classification,
and the ‘MV’ represents our mean-variance-based feature weighting method. In the KNN and SVM
classifiers, we use estimated basis coefficients as features, while in the FLDA and GFLM, we use the
reconstructed functional data as features.

Table 1: Classification accuracy (mean (std)%) of different methods under binary scenarios (the best
accuracy is highlighted in bold)

Case Method FLDA GFLM KNN SVM

Original 86.2 (6.0) 86.1 (4.3) 79.1 (4.7) 87.9 (4.8)
1 F 87.6 (5.7) 85.5 (5.9) 81.5 (5.0) 62.5 (11.2)

MV 97.0 (2.6) 95.3 (3.1) 97.8 (2.3) 98.9 (1.7)

Original 94.7 (2.9) 89.5 (4.8) 82.3 (5.9) 93.6 (3.5)
2 F 88.3 (7.5) 86.5 (5.8) 81.5 (6.5) 82.8 (5.7)

MV 95.8 (2.9) 94.0 (4.5) 92.8 (3.9) 95.9 (3.4)

Original 70.4 (6.9) 69.8 (6.8) 74.2 (6.6) 80.9 (5.7)
3 F 73.7 (11.6) 69.7 (6.2) 83.4 (6.0) 85.8 (5.9)

MV 92.0 (5.7) 96.7 (3.3) 99.5 (1.0) 99.8 (0.7)

In Case 1, we mainly set two significant local coefficient features, which have a smaller variance
than the other features. Similarly, in Case 3, we alternately set the variance sizes on the coefficients
of the B-spline basis functions to generate data with local significant and confusing features. In
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general, setting disturbances on the coefficients is compatible with the two approaches, i.e., KNN
and SVM. The penalized B-splines method can effectively smooth out some random noise and
extract low-dimensional features. Therefore, in Cases 1 and 3, KNN and SVM can usually achieve
higher classification accuracy than FLDA and GFLM. The MVSVM method achieve the best
classification accuracy at 98.9%, 95.9%, and 99.8% in Cases 1, 2, and 3, respectively, followed by
MVKNN and MVFLDA. Compared with the original classifiers, the F-score-based method exhibits
instability, a notable drawback inherent in feature selection. In contrast, our proposed method not only
demonstrates a substantial enhancement in classification performance but also ensures commendable
stability over varying conditions.

Different from the above two cases, in Case 2, random noise is directly added to the smooth
function to set different variances. It can be clearly found that significant features are positioned
in the middle, while confusing features are situated at both ends of the curves. These settings are
advantageous to FLDA, whose original classification accuracy can achieve 94.7%, which is better than
GFLM, KNN, and SVM. In Case 2, it is evident that the F-score-based method fails to improve the
classification performance, whereas our MV approach markedly enhances the classification accuracy
of the original classifiers. The MVSVM attains the highest classification accuracy at 95.9% in Case 2,
followed by MVFLDA.

In addition, we consider a multi-class classification scenario with the combination of three mean
functions. Table 2 summarizes the classification accuracy (mean (std)%) of different methods under
multi-class scenarios.

Table 2: Classification accuracy (mean (std)%) of different methods under multi-class scenarios (the
best accuracy is highlighted in bold)

Case Method FLDA KNN SVM

Original 78.6 (4.6) 75.0 (4.6) 83.4 (4.3)
1 F 78.4 (4.7) 74.9 (4.7) 36.3 (8.5)

MV 97.5 (1.9) 98.2 (1.3) 98.2 (1.3)

Original 94.4 (2.7) 81.9 (4.9) 95.3 (2.2)
2 F 94.0 (2.9) 81.3 (4.7) 83.7 (4.4)

MV 95.2 (2.6) 93.5 (3.0) 97.0 (1.9)

Original 76.7 (4.0) 81.5 (4.1) 86.3 (4.2)
3 F 76.3 (4.3) 82.8 (4.0) 54.9 (9.9)

MV 97.3 (2.3) 98.4 (1.6) 99.7 (0.7)

For the three cases, the F-score-based method could hardly improve the classification performance
of the original classifier. In the FSVM, the F-score-based method filters out unimportant features,
leading to loss of information and weakening the help of the RBF kernel. However, the MVSVM can
achieve the best classification accuracy of 98.2%, 97.0%, and 99.7% in the three cases, respectively.

Based on the foregoing studies, the MV feature weighting method not only significantly enhances
the classification performance of the original classifier but also exhibits heightened classification
stability, as evidenced by a reduced standard deviation in classification accuracy. The more significant
features within the dataset, the more effective our method becomes.
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The principle of the F-statistic method is to filter features based on the F-statistic and a specified
level of significance. The F-statistic methods can uncover the essential features of classification. After
spline approximation or functional principal component decomposition, there are not many nuisance
features for the functional data. The feature selection method based on F-statistics carries the risk of
losing important information, leading to limited classification accuracy.

4 Application

We apply the proposed method to six time series data sets, which can be taken from http://www.
timeseriesclassification.com. The detailed information on these data sets is listed in Table 3. The
training samples of the six time series data sets are plotted in Fig. 2.

Table 3: Summary of six time series data sets

Dataset Train size Test size Length No. of classes

DodgerLoopGame 20 138 288 2
ECG200 100 100 96 2
ECGFiveDays 23 861 136 2
PowerCons 180 180 144 2
CBF 30 900 128 3
BME 30 150 128 3

Figure 2: Training samples of the six time series data sets

http://www.timeseriesclassification.com
http://www.timeseriesclassification.com
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The first example is the DodgerLoopGame traffic data, which is collected with the loop sensor
installed on the ramp for the 101 North freeway in Los Angeles. This location is close to Dodgers
Stadium. Therefore, the traffic is affected by the volume of visitors to the stadium. The curves in this
dataset are categorized into two classes: Normal Day and Game Day. All samples with missing values
in the DodgerLoopGame dataset have been excluded for ease of analysis.

The second example is the ECG200 data. Each series traces the electrical activity recorded during
one heartbeat. The two classes are a normal heartbeat vs. a myocardial infarction event (heart attack
due to prolonged cardiac ischemia).

The third example is the ECGFiveDays data, sourced from a 67-year-old male. The two classes
correspond to two dates that the electrocardiogram (ECG) was recorded, which are five days apart:
12/11/1990 and 17/11/1990.

The fourth example is the PowerCons data, which encompasses individual household electric
power consumption throughout the year. The data is categorized into two seasonal classes: Warm
and cold. Classification is based on whether the power consumption is recorded during the warm
seasons (from April to September) or the cold seasons (from October to March). Notably, the electric
power consumption profiles exhibit distinct variations within each class. The dataset is sampled every
ten minutes over one year.

The fifth example is the CBF data, which is a simulated data set. Data from each class are standard
normal noise plus an offset term, which differs for each class.

The sixth example is the BME data, which is a synthetic data set with three classes: One class is
characterized by a small positive bell arising at the initial period (Begin), one does not have any bell
(Middle), one has a positive bell arising at the final period (End). All series are constituted by a central
plate. The central plates may be positive or negative. The discriminant is the presence or absence of a
positive peak, which is at the beginning or the end of the series.

In the application, we add supervised functional principal component analysis (sFPCA) [38] to
compare the classification performance of binary data. We use the leading two functional principal
components to get the classification result.

Table 4 summarizes the classification accuracy (%) of different methods under four binary clas-
sification time series data sets. For the DodgerLoopGame data, due to the presence of observational
noise, our method does not lead to a significant improvement in GFLM and sFPCA. However, both
MVKNN and MVSVM are significantly enhanced compared with the original classifier. The F-score-
based method is ineffective for data with a high signal-to-noise ratio and lacking significant local
features. In the case of the ECG200 dataset, the F-score-based method exhibits instability, whereas
the MV method effectively preserves or enhances the classification performance. Notably, in this
dataset, MVSVM attains the highest accuracy of 89.0%, closely approaching the performance of
the best algorithm. For the ECGFiveDays data, the MV method substantially enhances the original
performance. Specifically, MVSVM achieves an accuracy of 98.5%. For the PowerCons data, from the
perspective of classification, the difference in the level of electricity consumption in different seasons
is obvious and easy to classify. Our method can maintain a stable classification performance.



2476 CMC, 2024, vol.79, no.2

Table 4: Classification accuracy (%) of different methods under four binary classification time series
data sets (the best accuracy is highlighted in bold)

Dataset Method FLDA GFLM sFPCA KNN SVM

Original 84.3 76.4 77.2 65.4 51.2
DodgerLoopGame F 83.5 80.3 85.0 74.8 51.2

MV 87.4 76.4 79.5 80.3 78.0

Original 81.0 77.0 70.0 87.0 88.0
ECG200 F 82.0 76.0 74.0 83.0 87.0

MV 81.0 77.0 77.0 87.0 89.0

Original 83.5 66.6 79.3 65.2 80.3
ECGFiveDays F 68.5 81.3 84.9 83.7 85.9

MV 84.2 80.3 83.5 85.4 98.5

Original 93.9 97.2 95.0 95.6 99.4
PowerCons F 92.8 96.1 96.1 96.1 95.6

MV 98.3 98.3 99.4 97.2 99.4

Table 5 summarizes the classification accuracy (%) of different methods under two multi-
classification time series data sets. The CBF and BME are multi-classification data sets. For the CBF
and BME data, our method can improve the performance of the original classifiers. The MVFLDA
achieves the best accuracy of 94.6% in CBF data, and the MVSVM reaches the best accuracy of 88.0%
in BME data.

Table 5: Classification accuracy (%) of different methods under two multi-classification time series
data sets (the best accuracy is highlighted in bold)

Dataset Method FLDA GFLM KNN SVM

Original 94.0 / 64.2 89.1
CBF F 62.4 / 65.3 89.0

MV 94.6 / 71.0 92.9

Original 66.0 / 62.0 64.7
BME F 57.3 / 62.0 88.0

MV 78.7 / 84.7 88.0

The outcomes from all instances demonstrate that: First, the MV method can greatly enhance the
contribution of important local features to classification; second, the MV method can be integrated
with diverse classification methods to adapt to different data scenarios, enhancing classification
performance while ensuring stability.

From Fig. 2, the smoothness of the BME curves is relatively high. Therefore, there is less
information lost after extracting features through spline approximation. Moreover, the BME curves
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exhibit distinct segmented features, which are beneficial for enhancing the differences among different
classes through feature weighting. These characteristics result in better classification performance of
the data through the weighted method.

As shown in the outcomes, the F-statistic method often does not improve classification accuracy
compared to the original methods. The principle of the F-statistic method is to filter features based
on the F-statistic and a specified level of significance. The F-statistic method can uncover the essential
features of classification. When there are a lot of nuisance features, it can filter them out to prevent
overfitting. However, when there are not many nuisance features or the difference among F-statistics
of the features is not significant, it carries the risk losing important information, leading to limited
classification accuracy.

Additionally, when the class labels can be identified through linear features of functional explana-
tory variables, FLDA and GFLM may perform better. Otherwise, SVM may be better when the class
labels need to be identified through the nonlinear features of the functional explanatory variables.

5 Conclusion

In this paper, we propose a mean-variance-based feature weighting method for curve classification.
This method can be integrated with various functional classification methods. On the one hand, we use
B-spline basis expansion to extract coefficient features and combine them with KNN and SVM. On
the other hand, we treat the reconstructed functional data as features and use FLDA and GFLM for
classification. An important advantage of this method is that the relative importance of each feature
is considered in the classification rather than being dominated by confusing features. We demonstrate
the classification performance on one-dimensional function curves. The proposed feature weighting
approach can still work after tensor spline basis expansion for multi-dimensional functional data.
When functional data appears sparse [39,40] or contains outliers [12,41], the feature weighting methods
are attractive for future studies.

Our method did not utilize the class labels while extracting functional data features. Therefore,
there may be situations where important features are lost or situations where there are too many
nuisance features. At this point, the weighting method may not be effective. We suggest using
supervised learning methods [42,43] to extract features to ensure the efficiency of feature weighting.
In addition, we only weighted each feature separately and did not consider the correlation between
features. This also affects the weighting effect to a certain extent. In addition, we only weighted each
feature separately and did not consider the correlation between features. Further research is needed
on assigning correlated weights based on the correlation of features.
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