
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.049504

ARTICLE

CMAES-WFD: Adversarial Website Fingerprinting Defense Based on
Covariance Matrix Adaptation Evolution Strategy

Di Wang, Yuefei Zhu, Jinlong Fei* and Maohua Guo

School of Cyberspace Security, Information Engineering University, Zhengzhou, 450000, China

*Corresponding Author: Jinlong Fei. Email: feijinlong_2021@163.com

Received: 09 January 2024 Accepted: 13 March 2024 Published: 15 May 2024

ABSTRACT

Website fingerprinting, also known as WF, is a traffic analysis attack that enables local eavesdroppers to infer a user’s
browsing destination, even when using the Tor anonymity network. While advanced attacks based on deep neural
network (DNN) can perform feature engineering and attain accuracy rates of over 98%, research has demonstrated
that DNN is vulnerable to adversarial samples. As a result, many researchers have explored using adversarial samples
as a defense mechanism against DNN-based WF attacks and have achieved considerable success. However, these
methods suffer from high bandwidth overhead or require access to the target model, which is unrealistic. This
paper proposes CMAES-WFD, a black-box WF defense based on adversarial samples. The process of generating
adversarial examples is transformed into a constrained optimization problem solved by utilizing the Covariance
Matrix Adaptation Evolution Strategy (CMAES) optimization algorithm. Perturbations are injected into the local
parts of the original traffic to control bandwidth overhead. According to the experiment results, CMAES-WFD
was able to significantly decrease the accuracy of Deep Fingerprinting (DF) and VarCnn to below 8.3% and the
bandwidth overhead to a maximum of only 14.6% and 20.5%, respectively. Specially, for Automated Website
Fingerprinting (AWF) with simple structure, CMAES-WFD reduced the classification accuracy to only 6.7% and
the bandwidth overhead to less than 7.4%. Moreover, it was demonstrated that CMAES-WFD was robust against
adversarial training to a certain extent.

KEYWORDS
Traffic analysis; deep neural network; adversarial sample; Tor; website fingerprinting

1 Introduction

Website fingerprinting attack is a traffic analysis attack that uses unique identifying features
of websites, such as packet length, packet direction, and packet interval, to infer a user’s browsing
targets. Privacy Enhancing Technologies (PETs), such as Virtual Private Network (VPN) and The
Onion Router (Tor), have been adopted to protect user privacy [1]. Tor also encrypts data and hides
information about the size of the packets by encasing them in fixed-size cells. However, time and
direction information are still accessible, allowing attackers to construct unique WF features and infer
users’ browsing targets based on this information.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.049504
https://www.techscience.com/doi/10.32604/cmc.2024.049504
mailto:feijinlong_2021@163.com

2254 CMC, 2024, vol.79, no.2

The attackers utilized traditional machine learning in the early stages of WF attacks. The three
optimal attack methods were CUMUL [2], K-Fingerprinting (K-FP) [3], and K Nearest Neighbors (K-
NN) [4], all achieving over 90% accuracy. However, the performance of traditional machine learning
methods depends on manually selected features and classifiers. Over the past few decades, DNN
has made great achievements in image classification and speech recognition. Inspired by this, many
researchers have tried using DNN for WF attacks and achieved significant results, such as VarCnn
[5], and DF [6] have achieved over 98% accuracy. DF can achieve 90% accuracy even for traffic
protected by defensive methods like WTF-PAD [7]. Moreover, unlike machine learning, DNNs can
perform feature engineering automatically without requiring manual calculation and feature selection.
Numerous studies [8–11] have demonstrated that, even though the DNN-based approaches have
great advantages, DNNs are vulnerable to adversarial samples: Carefully crafted inputs with small
perturbations can cause DNN classifiers to misclassify. Szegedy et al. [12] first observed adversarial
examples in image classification, where small changes to an image can fool the classifier, typically
with imperceptible changes to human eyes. The viability of using adversarial examples in WF defense
has been the subject of some research [13–17]. DNN classifiers can be fooled by selecting a target
website and morphing the traffic patterns of the source website into those of the target website [14,17].
However, this method depends on the chosen target website; if the traffic pattern of the source website
is significantly different from that of the target website, there will be an unacceptable bandwidth
overhead. Other studies [15,18] dedicate to generating adversarial perturbations that can be used for
real-time traffic. However, these methods require access to the loss function or internal parameters
of the target models [13]. The target model used by attackers is unknown to us, so this white-box-
based defense approach does not fit realistic scenarios. The study also uses an adversarial patch to
perturb website traffic [15]. However, the generated adversarial patch is trace-oriented. It may not
work for different traces from the same website and may cause a lot of new bursts, increasing time and
bandwidth overhead.

This paper proposes CMAES-WFD, a black-box defense method based on adversarial sam-
ples. Perturbation generation and perturbation injection are the two main parts of CMAES-WFD.
CMAES-WFD transforms the generation of perturbations into a constrained optimization problem.
By random sampling from the Gaussian distribution, the generation of perturbation uses feedback
from the target model to solve the constrained optimization problem. The perturbation injection adds
bound constraints and only selects several critical positions to insert dummy packets. CMAES-WFD
is website-oriented. Therefore, the perturbation can be applied to other traces of the same website.
Experiments show that CMAES-WFD effectively balances accuracy and bandwidth overhead and is
also effective in resisting adversarial training. In summary, our main contributions are as follows:

(1) We propose a WF defense based on adversarial sample. CMAES-WFD uses a black-box
optimization method to generate perturbation without accessing the model’s structure and
internal parameters. We defined minimizing website classification accuracy as the optimization
objective, solved using the CMAES. CMAES does not require the objective function’s explicit
analytical forms, nor is the gradient’s calculation necessary for solving. Perturbation is ran-
domly sampled from a Gaussian distribution, and due to the random nature of the sampling,
the generated perturbation was robust against adversarial training to a certain extent.

(2) CMAES-WFD is website-oriented, and perturbation can be applied to various traces of
the same website. Typically, dummy packets cannot be injected into trace when the data
transmission ends, so a boundary constraint is added to the perturbation injection function.
When injecting perturbation, we selected a few positions with high variance based on the

CMC, 2024, vol.79, no.2 2255

CMAES updating principle of increasing variance along successful search directions. This
method reduced bandwidth overhead while simultaneously increasing robustness.

(3) Through various experiments, we evaluate CMAES-WFD and discover that it made a trade-off
between accuracy and bandwidth overhead, better than most previous defenses. Furthermore,
our method demonstrated strong generalization ability and the adversarial perturbation was
transferable among different models, making it effective against unknown attack models.

The rest of the paper is organized as follows. In Section 2, we review previous studies on
WF attacks and defenses. In Section 3, we describe the preliminaries of the investigated problem.
In Section 4, we introduce our WF defense named CMAES-WFD. In Section 5, we describe the
experimental setup, while Section 6 shows the experimental results. Section 7 discusses the limitation
of the paper and future work. In Section 8, we conclude the paper.

2 Related Work

This chapter mainly reviews the classic network WF attack and defense methods so far.

Traditional ML-Based WF Attacks: Early WF attacks mostly used manual feature engineering-
based traditional machine learning models. Panchenko et al. [2] proposed CUMUL based on Support
Vector Machine (SVM). They used statistical features and interpolated features sampled from the
cumulative representation of directional packet length sequences, and achieved over 91% accuracy in
closed-world scenarios; Hayes et al. [3] proposed K-FP attack. They fed traditional packet features
into a random forest and used the output of leaf nodes as the final feature representation, and then
input the new features into K-NN, achieving 91% accuracy in the closed-world scenario; Wang et al. [4]
used K-NN classifier and collected various features including packet order, incoming and outgoing
packet counts, and bursts. In the closed-world scenario, they achieved 91% accuracy by combining the
features and employing a distance metric to measure the similarity among websites; Hermann et al. [19]
conducted the first WF study with Multinomial Navie Bayers (MNB), achieving only 3% accuracy in
Tor’s scenario with 775 websites. Based on this, Panchenko et al. [20] continuously increased the variety
of features used and denoised the data to increase the accuracy to about 55% using SVM.

DNN-Based WF Attacks: However, the effectiveness of attacks [19–22] based on traditional
machine learning largely depends on the classifier and features chosen. Inspired by the excellent
performance of DNNs in image classification and speech recognition, numerous studies have used
DNNs to perform more effective WF attacks, which take the packet direction sequence of the raw
traffic as input and automatically conduct feature engineering. Table 1 shows the comparison between
machine learning-based and deep learning-based WF attacks. Bhat et al. [5] proposed VarCnn, a
more complex WF attack based on ResNet-18 architecture that achieves nearly 99% accuracy in a
closed-world scenario and further enhances attack performance; Sirinam et al. [6] proposed a new
CNN-based attack named DF. Compared to AWF, DF has more convolutional layers for extracting
traffic features and achieves over 98% accuracy in closed-world scenarios, outperforming all previous
attack methods. Additionally, with an accuracy of over 90%, DF remains useful for WTF-PAD
defense; Abe et al. [23] were the first to apply DNN to WF attacks. They proposed an attack method
based on the Stacked Denoising Autoencoder (SDAE). It only achieved 88% accuracy, which was
lower than the accuracy of advanced machine learning-based attacks. However, SDAE first used
sequence of packet direction as traffic feature, with −1 and +1 representing incoming and outgoing
packets, respectively [13]; Rimmer et al. [24] proposed Automated Website Fingerprinting (AWF), a
deep learning-based attack for automatic feature engineering. They compared the feature extraction

2256 CMC, 2024, vol.79, no.2

capabilities of three different architectures-SDAE, Convolutional Neural Network (CNN), and Long-
Short Term Memory (LSTM). The result shows that CNN performs best, achieving 96% accuracy
after training on 100 websites and 2500 traces per website.

Table 1: WF attacks based on traditional learning or deep learning

Attack Classifier Weakness

CUMUL [2] SVM Manual feature extraction and the
classification performance depends on the
classifier and features chosen

K-FP [3] Random forest
K-NN [4] k nearest neighbors
MNB [19] Multinomial Navie Bayers
VarCnn [5] ResNet Requires a lot of training data

DF [6] CNN
SDAE [23] Autoencoder
AWF [24] CNN

WF Defenses: To defend against WF attacks, researchers have proposed various defenses to hide
traffic characteristics. Juarez et al. [7] improved the Adaptive Padding (AP) defense and proposed an
adaptive WF defense named WTF-PAD. WTF-PAD sample intervals from a predefined histogram of
packet arrival time distribution, and send dummy packets within the sampled interval when there are
no real packets in the buffer. WTF-PAD can effectively resist WF attacks based on traditional machine
learning but weakens against attacks based on deep learning [25]; Dyer et al. [26] proposed the Buffered
Fixed Length Obfuscator (BuFLO), which protects against traffic analysis attacks by concealing side-
channel data using fixed-length, fixed-rate, and fixed-interval modes. However, BuFLO is expensive
for websites with small packet sizes and short loading times and cannot adjust to changes in network
speed; Cai et al. [27] aimed to make BuFLO more practical by proposing Tamaraw to reduce BuFLO’s
overhead. Furthermore, Cai et al. [28] proposed the Congestion-Sensitive BuFlO (CS-BuFLO), which
can adapt to various network speeds and enhances BuFLO’s rate adaptation and packet padding
mechanisms; Wang et al. [29] proposed Walkie-Talkie (W-T), which finds a super-sequence for sensitive
and non-sensitive pages by treating them as a group. However, W-T requires the client and browser
to communicate in half-duplex mode and requires modifying the way the browser loads the page;
Abusnaina et al. [30] proposed Deep Fingerprinting Defender (DFD), which mainly consists of two
modules: Burst observer and injection buffer. Burst observer is used to record the length of the last
burst and calculate the number of dummy packets accordingly. Injection buffer injects dummy packets
into real-time traffic. DFD reduces accuracy to 14% with 14.2% bandwidth overhead by client-side
injection.

WF defenses based on adversarial samples have been adopted by numerous researchers in recent
years. The comparison between traditional defense methods and adversarial sample-based defense
methods is shown in Table 2. As mentioned earlier, numerous studies [31–34] have demonstrated
that DNNs are vulnerable to adversarial samples despite the distinct advantages of DNN-based
WF attacks. As a result, efforts to use adversarial samples in WF defenses have been made, and
significant progress has been made in achieving a balance between accuracy and bandwidth overhead.
Li et al. [13] proposed MiniPatch, a lightweight WF defense. MiniPatch calculates the size of the
adversarial patches and the insertion position by simulated annealing algorithm, and it reduces model’s
accuracy to 3% with less than 5% bandwidth overhead; Sadeghzadeh et al. [14] proposed Adversarial

CMC, 2024, vol.79, no.2 2257

Website Adaption(AWA), an adversarial website adaptation defense based on GAN. AWA randomly
divides websites into pairs, both source and target websites, and trains a transformer for each website
so that the burst sequences of the two websites are constantly close to each other. AWA can reduce the
accuracy of DF with adversarial training to 19.5% with 22.3% bandwidth overhead. Moreover, AWA
can generate universal perturbations without accessing a website’s trace; Shan et al. [15] proposed
a patch-based WF defense by injecting pre-computed adversarial patches into the network traffic,
which can also be used for real-time traffic. Dolos selects a target website trace from a pool of possible
candidates, and the adversarial patch is determined by minimizing the l2 distance between the original
traffic and the target traffic features in DNN space. However, this process requires white-box access to
the target model. Dolos implements segment-based patch injection, dividing the adversarial patch
equally and injecting each patch segment into a specific location of the original trace. This may
introduce new bursts if inject reverse packets. Even though Dolos reduces DF’s accuracy to less than
6%, it still requires a bandwidth overhead of 30%; Inspired by AdvGAN, Hou et al. [16] proposed a
WF defense based on Generative Adversarial Network (GAN). WF-GAN takes the burst sequences
as input and guides the generator to generate perturbations using the discriminator’s loss function and
the target model’s output. With less than 15% bandwidth overhead, WF-GAN reduces DF’s accuracy
to around 10%; Rahman et al. [17] first applied the idea of adversarial samples to WF defense by
mimicking other website traffic patterns. Mockingbird selects the target trace from a candidate pool
closest to the original trace regarding L2 distance, reducing DF accuracy to around 30% with 58%
bandwidth overhead; Nasr et al. [18] proposed an adversarial perturbation generation approach that
does not rely on specific website traces, which can be applied to real-time traffic. Blind reduces the
accuracy of DF to 9% with 11% bandwidth overhead and 5% with 25% bandwidth overhead. However,
training the generator in Blind requires the loss function of the target model, which is unrealistic in a
black-box attack scenario.

Table 2: WF defenses with different defensive rules

Defense Defensive rules Weakness

WTF-PAD [7] The rules are pre-set, such as
inserting dummy packets or
increasing delay regularly

Bandwidth overhead is high and
the defense effect is poor
against WF attack based on
deep neural network

BuFLO [26]
Tamaraw [27]
CS-BuFLO [28]
W-T [29]
DFD [30]
MiniPatch [13] The packet injection rules

learned against WF attacks,
based on adversarial samples

Difficult to apply to practical
scenariosAWA [14]

Dolos [15]
WF-GAN [16]
MockingBird [17]
Blind [18]

2258 CMC, 2024, vol.79, no.2

3 Preliminary

Threat model: We assume users use Tor to protect their online activity while browsing websites.
However, even if Tor uses three different encrypted routing nodes to protect users’ privacy, attackers
can still extract features from the user’s network traffic, feed these features into a trained classifier, and
identify the user’s browsing target based on the classifier’s output. As can be seen in Fig. 1, this paper
employs the same threat model as previous attacks [5,6,24] and defenses [17,18,35,36]. The attacker is
between the user and the Tor entry node and can be a local system administrator, an Internet Service
Provider (ISP), or an autonomous system. Specifically, the attacker cannot modify, drop, or decrypt
packets; they can only record network traffic. We assume that we can get black-box feedback from
the target model, that is, we input traffic feature into the target model and can know which website
label the traffic belongs to. We further assume that the user only visits one page at a time, allowing
the attacker to distinguish between the beginning and the end of the page [35]. This makes it a more
arduous task for defense since multi-label browsing attacks are complex.

Figure 1: WF threat model

Attackers can collect network traces and extract each website’s unique traffic patterns, including
packet timings and directions, to train their classifiers. It is impractical to visit every website on the
internet to collect traces. Attackers can collect only those sites that interest them, called the monitored
set. This way, the attack scope is limited to the websites in the monitored set. Other websites are called
the unmonitored set.

Closed-World and Open-World Scenarios: WF attacks and defenses [35–37] are typically evaluated
in both closed-world and open-world scenarios. In the closed-world scenario, users only visit sites in the
monitored set, and the attacker only collects traces from monitored sites when training their classifier.
Users can visit websites from monitored and unmonitored sets in the more realistic open-world
scenario, and the attackers’ training data for their classifiers comes from monitored or unmonitored
sites. Therefore, in the open-world scenario, an adversary needs to identify whether the websites visited
by users belong to the monitored set and which class of the monitored set. In fact, the number of
websites visited by users is much larger than those in the closed-world scenario. Consequently, attackers
cannot fully evaluate the actual performance of their classifiers because the closed-world scenario is a
relatively ideal environment for them to operate in. However, from a defense perspective, the attacker’s
attack ability is stronger in the closed-world scenario, so this scenario is sufficient to evaluate the
defense performance. The defense effect in the closed-world scenario is the sole focus of this paper.

CMC, 2024, vol.79, no.2 2259

Data Representation: CMAES-WFD is based on burst sequences, just like some previous studies
[14,16,17]. A burst is defined as a continuous packet sequence with the same direction. −1 and +1
indicate the direction, where +1 represents the client to server, and −1 represents server to client.
Generally, the number of bursts for each trace is different. Like Mockingbird [17], we use the fixed
length of 750 for each website trace. If traces are less than 750 bursts, they are padded with 0. If traces
are more than 750, they are truncated.

However, advanced DNN-based WF attacks [5,6,24] take packet direction sequences as input. In
order to be consistent with the inputs of WF attack literature, we use packet direction sequences as
traffic features and feed them into the classifier. We use a fixed length of 5000 for each website trace,
like DF [6]. If traces are less than 5000 packets, they are padded with 0. If traces are more than 5000,
they are truncated.

Fig. 2 depicts the traffic representation in burst sequences and packet sequences. The following
steps must be taken to convert between burst and packet sequences using our method: When converting
packet sequences into burst sequences, packets with the same direction are accumulated, and the total
accumulation is the size of the burst, with the burst direction consistent with the direction of the packets
and when converting burst sequences to packet sequences, each burst is decomposed into −1 or +1.

Figure 2: Burst sequences and packet sequences

Adversarial Sample: Szegedy et al. [12] first proposed adversarial samples. By adding imperceptible
and small perturbations to an input, the classifier gives an incorrect output with high confidence, and
the perturbed input is called an adversarial sample. The core idea of an adversarial sample is to add
perturbations to the original sample, causing it to be misclassified as another class, and the size of
the perturbations is limited. Specifically, given an input sample x, a trained model f , and a target
class t(t �= f (x)). The goal is to find a perturbation δ such that x′ = x + δ (f (x′) = t), and x′ is as
close to x as possible, which can be measured by distance metrics such as l2 distance. For targeted
attacks, t is a pre-specified class; for non-targeted attacks t may belong to any class other than f (x).
More specifically, taking non-targeted attacks as an example, the perturbation δ can be computed by
solving the following optimization problem:

δ = arg min
δ

[f (x + δ) �= f (x)]

subject to ‖δ‖2 < ε (1)

where ε is a small constant that limits the perturbation δ. Researchers have proposed various methods
to generate adversarial samples in image adversarial attacks. Goodfellow et al. [38] proposed the
Fast Gradient Sign Method (FGSM), which calculates the perturbation by taking the gradient of

2260 CMC, 2024, vol.79, no.2

the loss function concerning the input. Papernot et al. [39] proposed the Jacobian-based Saliency
Map Attack (JSMA), a local pixels attack. JSMA forms a Jacobian matrix by taking the forward
derivative of the model’s output for each pixel, calculates the saliency map value of each pixel based
on the Jacobian matrix, and selects the pixels with the highest saliency map value to perturb; Moosavi-
Dezfooli et al. [40] proposed Universal Adversarial Perturbation (UAP), which aims to generate a
universal perturbation independent of a specific input by employing the shortest distance vector
between the adversarial sample and the original sample as the perturbation vector. The adversarial
samples are regarded as an attack in adversarial machine learning. However, for WF defense, it can be
regarded as a means of defending against the attacker’s classifier. Since WF defense aims to prevent
attackers from identifying the user’s browsing target, this article only considers non-targeted defense,
where the classifier misclassifies the perturbed trace and does not need to classify it as a specific class.

4 Methodology

This section focuses on the CMAES-WFD method. After providing an overview of CMAES-
WFD, which presents the generation of adversarial perturbations as a constrained optimization
problem, this section provides in-depth descriptions of two crucial modules: Generating perturbation
and injecting perturbation. Fig. 3 depicts the CMAES-WFD defense flowchart.

Figure 3: Flowchart of the CMAES-WFD defense

4.1 CAMES-WFD Overview

For website fingerprinting defense, the two goals of adversarial samples are respectively to reduce
the classification accuracy of the model and to reduce bandwidth overhead as much as possible.
Therefore, we can take reducing the classification accuracy of the model as an objective function and
limiting the overhead within a certain range as a constraint condition, thus describing the generation
of adversarial samples as a constrained optimization problem. When generating perturbation, burst
sequences are utilized as the trace feature. However, as Section 2 describes, a conversion between packet
and burst sequences is required because DNN models use packet sequences as input. Additionally,
shorter traces are padded with 0, and longer traces are truncated to meet the DNN model’s fixed-
length input requirement and to unify the traces with different lengths.

CMC, 2024, vol.79, no.2 2261

We assume that the target model is f , and f is a DNN model that has been trained. For instance,
x(xεw) belongs to website w, f can correctly classify it as w(f (x) = w), and fw(x) represents
the confidence that x is classified as website w. Our goal is to compute the perturbation δ =
(δ1, δ2, δ3, . . . , δnburst

) and inject perturbation δ to x to obtain the adversarial sample x′(x′ = x + δ)

so that fw(x′) decreases until x′ is misclassified as w′ (f (x′) = w′, w′ �= w) or the maximum number of
iterations is satisfied. Since this paper only focus on the untargeted defense, w′ can be any class other
than w. Therefore, the perturbation δ generation can be described as solving the following optimization
problem:

δx = argmin
δ

(fw(Φ (x, δ))

subject to 0 ≤ li ≤ L (i = 1, 2, 3, . . . , γ) (2)

where li denotes the insertion position of δi, Φ (x, δ) defines the injection function for injecting the
perturbation to the original trace, and L denotes the transmission end boundary of instance x, L =
min(Lx, nburst), Lx denotes the actual burst length of instance x(xεw), and nburst = 750. However, the
optimization problem is trace-oriented. Even if traces are from the same website, the packet sequences
may differ, and the perturbation calculated for a single trace may not have much effect on other traces
from the same website. Therefore, we modified the optimization problem to transform it to be website-
oriented:

δw = argmin
δ

1
|X f

w|
∑

x∈X
f
w
(f (φ (x, δ)) = f (x)) (3)

where
∣∣X f

w

∣∣ represents traces correctly classified as w by classifier f , its size is strictly less than |Xw|.
Injection boundary Lx takes the minimum actual length of X f

w. In addition, we define a classification
accuracy threshold θ to control the degree of optimization. Therefore, the optimization objective
becomes:∑

x∈X
f
w
(f (φ (x, δ)) = f (x)) ≤ ∣∣X f

w

∣∣ ∗ θ (4)

The value of θ has a direct impact on defensive performance. When θ is small, the optimization
requirement is stricter, which may result in lower accuracy. However, the corresponding bandwidth
overhead will be higher, which can be achieved by modifying θ to compromise bandwidth overhead
and accuracy.

4.2 Adversarial Perturbation Injection

Most WF defense [15,18] based on packet sequence inject the perturbations directly into specific
locations of the traces, which can compromise the integrity of the data transmission. For instance,
injecting a dummy packet in the opposite direction of the burst can split the complete burst into
two parts and introduce new bursts. CMAES-WFD is based on bursts sequence. The burst sequence
considers the data transmission direction and the burst length related to the data transmission volume
so that the burst-based defense can fully use the traffic characteristics. Additionally, the direction of
the dummy packets injected is the same as the bursts. The perturbation injection example is shown in
Fig. 4.

CMAES-WFD selects only top γ positions with larger variances each time to reduce bandwidth
overhead. The updated principle of CMAES is to increase the variance along the successful search
direction. This means that the greater the variance, the more significant the position is and how much
of an impact it has on the outcomes. Therefore, we set the perturbations at the remaining positions

2262 CMC, 2024, vol.79, no.2

to zero, keeping only the perturbations on the top γ positions with larger variances. This measure
reduces the bandwidth overhead (corresponding to lines 5–15 in Algorithm 1). In addition, since no
more dummy packets can be injected once the data transmission is over, we set a limit on the injection
boundary, taking the minimum true burst sequence length of traces belonging to the website w as
the injection boundary. No packets will be injected at a certain position even if the variance there is
large but exceeds the boundary limit (corresponding to lines 6–11 in Algorithm 1). The perturbation
injection function is described in detail in Algorithm 1.

Algorithm 1: Injecting perturbation
Input: Xw–website traces correctly classified by f as w

δ– perturbation vector
γ –number of positions with the large variance

Output: X ′
w–perturbed traces

1. L ← take the minimum value of the Xw real lengths as the bound
2. Csort ← sort the diagonal elements of covariance matrix C in descending order and return index
3. count = 0
4. sign_traces ← sign (Xw)
5. for position index i inCsort do
6. if count < γ then
7. if i < L then
8. count = count + 1
9. else
10. δi = 0
11. end if
12. else
13. δi = 0
14. end if
15. end for
16. X ′

w ← |Xw| + |δ| |. . .| represents the absolute value
17. X ′

w ← X ′
w ∗ sign_traces

18. return X ′
w

Figure 4: CMAES-WFD perturbation injection example

4.3 Adversarial Perturbation Generation

The objective of the CMAES-WFD is to reduce the confidence of the true label, in contrast to
studies that focus on the loss function of the model [16,18] or the l2 norm distance between features

CMC, 2024, vol.79, no.2 2263

[15,17]. We cannot directly acquire specific information about the target model. Given the input,
looking at the output is the simplest and most direct method to probe target model. CMAES-WFD
uses the model’s black-box feedback for the label to solve the optimization problem without requiring
an understanding of the model’s architecture or internal parameters.

This paper applies a new evolution algorithm to solve the optimization problem, namely CMAES
[41]. CMAES does not require the objective function to be differentiable. Thus, it can be used for
probabilistic labeling optimization. CMAES-WFD is based on a variant of CMAES–(1, λ)-CMAES.
(1, λ)-CMAES generates λ offspring as candidate solutions at each iteration and selects the offspring
with the highest fitness function value from the λ offspring as the parent for the next iteration. CMAES
uses Gaussian distribution to search for candidate solutions randomly. The Gaussian distribution
has the highest entropy of all distributions in R

n given variances and covariances, and coordinate
directions are not distinguished in any way. Both make the Gaussian distribution a particularly
attractive candidate for randomized search [41].

The specific perturbation generation function is detailed in Algorithm 2. Perturbation generation
follows the optimization problem defined in Eq. (2) and the criteria defined in Eq. (3). In each
iteration, we randomly sample perturbation δ (δ = (δ1, δ2, . . . , δnburst

)) from the Gaussian distribution
(m, σ 2C). CMAES-WFD is based on burst sequences, and each element δi of the perturbation δ

represents the number of dummy packets to be injected. Therefore, the perturbation vector δ should
be an integer sequence, but random sampling from the Gaussian distribution does not satisfy this
criterion, and we use rounding to obtain an integer sequence δ (corresponding to lines 5–6 in Algorithm
2). The perturbation vector δ sampled from the Gaussian distribution is injected into the website traffic
X f

w to obtain an offspring (candidate solution). After λ samples, λ offspring (candidate solutions) are
obtained and then calculate fitness function values of λ offspring, which in this paper is the model’s
accuracy for traces belonging to website w. In this iteration, we choose the candidate solution with
the lowest fitness value as the best one and use it as the parent for the next iteration (lines 4–12 in
Algorithm 2) until either Eq. (3) is satisfied or the maximum number of iterations is reached. The
adaptive updating procedure for some parameters during each iteration is then discussed.

Adaptive updating of covariance matrix C: The update of covariance matrix C can simulate local
search directions. This paper employs the rank-one update strategy, in which only the best offspring
is used for updates each time. Additionally, the evolution path pC is constructed to preserve sign
information and make use of historical search information [41]. The update formula of pC is as follows:

p(g+1)

C = (1 − cC) p(g)

C + √
cC(2 − cC)μeff

m(g+1)−m(g)

σ (g) (5)

where p(g)

C denotes the evolution path of C at generation g, and cC denotes the learning rate for
cumulation for the rank-one update of covariance matrix C, and μeff denotes variance effective
selection mass, and m(g) denotes the mean value of the distribution at generation g, and σ (g) denotes the
step size at generation g [41]. The opposite direction components among these directions cancel each
other out, while the same components are added up. Moreover, exponential smoothing is introduced,
which assigns recent generations a higher weight. The rank-one update of covariance matrix C is:

Cii = (1 − c1) cii + c1 (pC)
2
i (6)

where cii is the diagonal element of C, and c1 denotes the learning rate for the rank-one update of
covariance matrix C, and (pC)i denotes the i-th element of pC.

Adaptive updating of step size σ : CMAES adapts Cumulative Step size Adaptation (CSA) to
update step size σ . The parameter σ is seperated from the covariance matrix and controls the overall

2264 CMC, 2024, vol.79, no.2

scale of distribution. Parameter updates are accelerated when the step size is increased. Similar to the
covariance matrix update, evolution path Pσ is constructed for step size update to determine whether
the current step size is appropriate. By comparing the evolution path Pσ with the expected length
E ‖N (0, I)‖ in the random selection state, if the evolution path is shorter than the expected length,
reduce σ ; otherwise, increase σ [41]. The update formula of σ is as follows:

p(g+1)

σ
= (1 − cσ) p(g)

σ
+ √

cσ (2 − cσ)μeff C(g)
− 1

2 m(g+1)−m(g)

σ (g) (7)

σ (g+1) = σ (g)exp

(
cσ

dσ

(∥∥p(g+1)

σ

∥∥
E ‖N (0, I)‖ − 1

))
(8)

E ‖N (0, I)‖ =
√

2Γ
(

n+1
2

)
Γ

(
n
2

) ≈ √
n + O(1/n) (9)

where p(g)

σ
denotes the evolution path of σ at generation g, and cσ denotes the learning rate for

cumulation for σ , dσ denotes the damping parameter, and E ‖N (0, I)‖ denotes the expectation of the
Euclidean norm of N (0, I) distributed random vector [41].

Adaptive updating of mean m: Mean value determines the search area of the distribution. The new
mean of the search distribution is obtained by averaging the μ best offspring among λ offspring. The
update formula of m is as follows:

m(g+1) =
∑μ

i=1
ωiδ

(g+1)

i : λ
(10)

ωi = 1/μ i = 1, 2, 3 . . . μ (11)

δ
(g+1)

i : λ denotes the i-th optimal solution among λ offspring at generation g + 1. Each offspring
is a perturbed trace, and the perturbation is randomly sampled from the Gaussian distribution. The
classification accuracy of λ offspring is calculated separately and sorted in ascending order. δ

(g+1)

1: λ has
the smallest fitness value, i.e., the lowest classification accuracy.

Algorithm 2 : Generating perturbation
Input: X f

w–website traces correctly classified by f as w
f–target classifier
nburst– the dimension of bursts sequence
Φ– injection function
θ− classification accuracy threshold
It− maximum number of iterations
λ− number of offspring
μ− number of optimal solutions selected from offspringing
m(g)− mean value of the Gassuian distribution at generation g
σ (g)− step size at generation g
μeff −variance effective selection mass
c1− learning rate for the rank-one update of the covariance matrix
cC− learning rate for cumulation for the rank-one update of the covariance matrix
cσ−learing rate for cunulation for the step-size control
dσ− damping parameter for step-size update
p(g)

C − the evolution path of C at generation g, initialize with zero vector
p(g)

σ
− the evolution path of σ at generation g, initialize with zero vector

(Continued)

CMC, 2024, vol.79, no.2 2265

Algorithm 2 (continued)
C(g)−covariance matrix at generation g, initialize with Identity matrix

Output: δw– perturbation for website w
1. X f ′

w ← X f
w

2. δw ←initialize with zero vector
3. for iteration i in (1, 2, 3, . . . ,It) do
4. for offspring j in (1, 2, 3, . . . ,λ) do
5. δ[j] ← sample from N (m, σ2C)

6. δ[j] ← round (δ[j])
7. fitness[j] ← (f (Φ

(
X f ′

w , δ [j]
) = f (X f

w)))/
∣∣X f

w

∣∣
8. end for
9. fsort ← sort fitness and return index (ascending order)
10. fbest, δbest ← fitness

[
fsort[0]

]
, δ

[
fsort[0]

]
11. δw ← δw + |δbest|
12. X f ′

w ← Φ
(
X f

w, δw

)
13. if fbest < θ then
14. return δw

15. end if
16. update m, pσ , σ , pC, C using Eqs. (4)–(7), (9), respectively
17. end for
18. return δw

5 Experimental Setup
5.1 Datasets

Our experiments use publicly available datasets provided by Sirinam et al. [6] and Rimmer et al. [24],
which are frequently used to evaluate WF attacks and defenses [14–16,18]. There are 95 websites in
the Sirinam dataset, each with 1000 instances. Mockingbird [17] also uses the dataset provided by
Sirinam but preprocesses it by removing instances with less than 50 packets or where the first packet
was sent from the server, as the client should send the first packet to establish a connection with
the server. Mockingbird then converts the preprocessed Sirinam dataset containing 95 websites and
512 traffic instances each website into burst sequences. For convenience, we straightforwardly use
the dataset processed by Mockingbird. Rimmer provides four datasets: Rimmer100, Rimmer200,
Rimmer500, and Rimmer900. Each has 100, 200, 500, and 900 websites and 2500 instances per
website, respectively. Mockingbird splits traces into exclusive training and test sets with a ratio of
1:1 and uses 10% of the training set as a validation set. We split the Rimmer dataset into exclusive
training, validation, and test sets with the recommended ratio of 9:0.5:0.5. Additionally, because
Rimmer uses packet sequences as traffic feature, we need to convert them into burst sequences when
generating and inserting perturbations. However, when fed to the model, we still use packet sequence
as traffic feature.

5.2 Target Model

We evaluate our attack on three advanced DNN models: DF [6], VarCnn [5],and AWF [24]. These
three models mainly consist of convolution and fully connected layers, but their complexities are very
different. AWF with the simplest structure has the lowest accuracy and it is easiest to fool. DF has

2266 CMC, 2024, vol.79, no.2

a higher accuracy than AWF because it has more fully connected layers for classification and more
convolutional layers for feature extraction [13]. VarCnn is the most accurate, has the most intricate
model structure, and is built on the ResNet-18 architecture. Despite reducing the number of parameters
using dilated convolutions to reduce time and memory overheads, VarCnn’s computational complexity
is still 3.7 times higher than that of DF as shown in Table 3. The training parameters for DF and
VarCnn are approximately 26 times those of AWF. Their computational complexities are 42 and 157
times that of AWF, respectively.

Table 3: The complexity of the target model

Model Trainable Complexity
Parameters (FLOPS)

AWF 147k 11M
DF 3979k 463M
VarCnn 3893k 1728M

5.3 Evaluation Metrics

The defensive goal of this paper is to make the perturbed traces misclassified by the target model.
One of the metrics used to evaluate the defensive capability is accuracy, which is the proportion of
perturbed traces correctly classified out of the original samples correctly classified. For a given DNN
model f and dataset X , accuracy is defined as:

Acc = 1
|X f |

∑
xεXf

[f (ϕ[x, δx]) = f (x)] (12)

where X f denotes traces that are correctly classified by model f , and its size is strictly less than|X |. δx

denotes perturbation injected into trace x, and all traces belonging to the same website w use the same
perturbation δw(δx = δw, x ∈ w).

For WF defense, generating adversarial samples involves injecting dummy packets into the
original traces. The link load will be too high if too many dummy packets are injected, affecting the
user’s experience. As a result, we also consider bandwidth overhead as a different metric for evaluating
defense performance. The ratio of the total number of injected dummy packets to the total number of
original packets is known as bandwidth overhead:

BWO =
∑

x ∈ X f ‖δx‖1∑
x ∈ X f ‖x‖1

(13)

where ‖. . .‖1 denotes the l1 norm of the vector, i.e., the sum of the absolute values of all elements.

5.4 CMAES-WFD Configuration

Based on the trained DNN model, CMAES-WFD generates website-oriented perturbation. In
order to find the optimal values of θ and γ , we selected several combinations of θ and γ and generated
corresponding perturbations. After that, we looked at bandwidth overhead and accuracy to determine
the best values for θ and γ . When using CMAES to solve the optimization problem, we initialized the
parameters recommended in the literature. Table 4 displays the initialization values.

CMC, 2024, vol.79, no.2 2267

Table 4: Formulas for initialization of parameters

Parameters Meanings Initialization formulas

λ Number of offspring λ = 4 + floor (3 ∗ lognburst)

μ Number of optimal solutions
selected from the offspring

μ = floor (λ/2)

m Mean value Sample from a standard multivariate
normal distribution

σ Step size Initialized with 0.3
weights Recombination weights weights = log (μ + 1/2) − log (1: μ)

weights = weights/sum (weights)
μeff Variance effective selection mass μeff = sum (weights)2

/sum
(
weights2

)
cC Cumulative learning rate for

rank-one update of C
cC =(

4 + μeff

nburst

) / (
nburst + 4 + 2 ∗ μeff

nburst

)
c1 Learning rate for rank-one

update of C
c1 = 2/

(
(nburst + 1.3)

2 + μeff

)
cσ Cumulative learning rate of σ cσ = (

μeff + 2
)
/
(
nburst + μeff + 5

)
dσ Damping parameters of σ dσ = 1 + 2 ∗

max
(

0, sqrt
(

μeff − 1
nburst + 1

)
− 1

)
+ cσ

pC Evolution path of C Initialized with zero vectors
pσ Evolution path of σ Initialized with zero vectors
C Covariance matrix Initialized with identity matrix

The experiment was run in Ubuntu operating system and Python3.9 environment, and the server
hardware was configured with Intel Xeon Gold 5218 and NVIDIA GeForce GTX 3080 Ti. When the
target model is AWF, the average time required to generate adversarial samples was about 40 s. When
the target model is DF, the average time is about 1 min 27 s, when the target model is VarCnn, the
average time is about 2 min 16 s.

6 Experimental Results

This section primarily presents numerous experiments that evaluate the effectiveness of CMAES-
WFD. The experiments also compare CMAES-WFD with other advanced adversarial-based WF
defenses, demonstrating that CMAES-WFD can effectively defend against DNN-based WF attacks
with lower bandwidth overhead.

1. Choice of parameters θ and γ . The threshold θ and the number of optimal variances γ

selection directly impact the accuracy and bandwidth overhead. To select the best θ and γ , we
evaluated the accuracy and bandwidth overhead of CMAES-WFD against DF using various
combinations of θ and γ on the Sirinam dataset. As θ and γ vary, the bandwidth overhead and
accuracy trends are shown in Fig. 5. It is evident that as θ increases, the DF’s accuracy gradually
rises while bandwidth overhead gradually decreases when γ is fixed. This is because when θ

2268 CMC, 2024, vol.79, no.2

is small, the optimization condition is stricter, requiring more iterations and perturbations
(injecting more dummy packets to satisfy the optimization condition) thus correspondingly
higher bandwidth overhead. When θ is constant, as γ increases, the DF’s accuracy gradually
decreases while bandwidth overhead shows a trend of decreasing first and then increasing.
When γ is small, fewer dummy packets are injected at each iteration, requiring more iterations
to satisfy the optimization condition, resulting in higher bandwidth overhead. When γ is large,
despite a decrease in the number of iterations, there is an increase in the number of dummy
packets injected per iteration, which also has a significant bandwidth overhead.

Figure 5: Accuracy and bandwidth overhead with various combinations of θ and γ (θ denotes the
accuracy threshold of the objective function, and γ denotes the number of optimal variances)

We use a quantitative approach to calculate the F1 score of different combinations of θ and γ to
achieve a trade-off between accuracy and bandwidth overhead. The combination with the highest F1

score was then chosen as the best values for θ and γ . Table 5 displays the F1 scores. Usually, the F1

score considers two metrics simultaneously, and the higher the value of both metrics, the higher the
F1 score. In this paper, we aimed for lower bandwidth overhead and lower accuracy. We developed
a modified version of the F1 score (Eq. (13)) to achieve this. Additionally, apply the maximum value
normalization to the bandwidth overhead and accuracy when calculating the F1 score. The F1 score is
highest at θ = 0.1 and γ = 5, and bandwidth overhead and accuracy are 14.6% and 5.4%, respectively,
at these values.

F1 = 2 ∗

(
1 − Acc

max (Acc)

)
∗

(
1 − BWO

max(BWO)

)
(

1 − Acc
max (Acc)

)
+

(
1 − BWO

max(BWO)

) (14)

2) Generalization ability of parameters. Although we quantified selected θ = 0.1 and γ = 5
based on the F1 score, we only tested it on one dataset and a single model. We evaluated the
performance of θ = 0.1 and γ = 5 on the Sirinam dataset against VarCnn and AWF to confirm
their suitability for various models. We also selected the Rimmer500 and Rimmer900 datasets

CMC, 2024, vol.79, no.2 2269

and calculated the bandwidth overhead and accuracy against DF, VarCnn, and AWF to verify
the performance of θ = 0.1 and γ = 5 on various datasets.

Table 5: F1 scores with various combinations of θ and γ

θ (Accuracy
threshold)

γ (The number of optimal variance)

1 3 5 7 10 15 20

0.0 0.416 0.422 0.449 0.482 0.246 0.143 1.896e-09
0.05 0.504 0.605 0.648 0.619 0.587 0.573 0.552
0.1 0.541 0.605 0.680 0.648 0.645 0.627 0.619
0.2 5.162e-09 0.264 0.477 0.523 0.596 0.632 0.640

The results in Table 6 show that CMAES-WFD has the best defense performance against AWF
model and the worst defense performance against VarCnn model. This is because VarCnn has better
classification performance and more complex structure compared with AWF, so VarCnn is more
difficult to fool than AWF. Overall, the accuracy of VarCnn could be reduced to below 8.1% with
a bandwidth overhead of less than 20.5%, and the accuracy of DF could be reduced to below 8.3%
with a bandwidth overhead of less than 14.6%. Meanwhile, the accuracy of AWF was less than 6.7%,
with bandwidth overhead below 7.4%. The experimental results demonstrated that θ = 0.1 and γ = 5
can be easily generalized to various models and datasets.

Table 6: Accuracy and bandwidth overhead on different models and datasets with θ = 0.1 and γ = 5

Dataset AWF DF VarCnn

Acc BWO Acc BWO Acc BWO

Sirinam 4.8% 7.4% 5.4% 14.6% 8.1% 20.5%
Rimmer500 6.7% 5.1% 8.3% 10.8% 7.8% 18.3%
Rimmer900 5.6% 4.2% 6.4% 8.2% 6.7% 17.5%

3) Transferability among different models: Previous research [42–44] has demonstrated that adver-
sarial samples have transferability, meaning that adversarial samples designed to attack a given
classifier can also fool other classifiers. In this paper, the transferability of perturbations refers
to the ability of perturbations generated for a target model to have defensive effects still when
fed into other unknown models [13]. Due to the impracticality of generating perturbations for
all possible models and the defender’s inability to predict which classifier the attacker will use;
this transferability feature is essential for WF defense. In order to evaluate the transferability
of CMAES-WFD, we generated perturbations for each target model, then fed perturbed traces
into other different models and calculated the accuracy.

The experiments still used AWF, DF, and VarCnn as target models. The transferability of perturba-
tion generated by CMAES-WFD among the three models is shown in Fig. 6. The rows indicate target
models generating perturbations, and the columns indicate test models. The perturbations computed
by three target models have certain transferability, among which perturbations against VarCnn have
the largest transfer rate among the three models. For example, on Rimmer900, the accuracy of AWF

2270 CMC, 2024, vol.79, no.2

and DF for perturbed traces generated based on VarCnn is 12.1% and 7.5%, respectively. In contrast,
perturbations generated against AWF had the lowest transfer rate, with DF and VarCnn achieving
35.6% and 46.5% accuracy for perturbed traces, respectively. Since AWF has the simplest structure and
is the easiest to be fooled, the results were to be expected. Because the higher the accuracy of the model
and the more complex the model, the stronger the deception ability of the adversarial sample generated
for the model, so that it can fool other target models with lower complexity. Therefore, VarCnn has the
highest transferability rate and the model with higher complexity can be used as the target model for
searching the universal perturbation. As demonstrated by the experiments, we conclude that VarCnn,
with its most complex structure, outperforms other DNN models regarding in resisting adversarial
perturbations and generating transferable perturbations.

(a) (b) (c)

Figure 6: Transferability of CMAES-WFD perturbations among models

4) Adversarial training: Adversarial training refers to adding adversarial samples to the training
set and retraining the model [38]. The literature [17,45] has pointed out that training models
on adversarial samples is the most effective defense against adversarial attacks, and an attack
model with adversarial training can identify the true class of adversarial samples to a large
extent. We assume that the attacker can access the CMAES-WFD source code and generates
perturbations for adversarial training.

We generated perturbations using the same parameters, and then retrained AWF, DF and VarCnn
using the perturbed traces as the training set. As shown in Table 7, the accuracy of AWF, DF
and VarCnn with adversarial training are 52.4%, 56.7%, 62.8%, respectively. This shows that even
if the attacker can fully reproduce CMAES-WFD and use the generated adversarial samples to
train the model, their model’s accuracy is only about 60%, which greatly reduces the classification
performance of the model, indicating that perturbations generated by our method still had a defensive
impact on AWF, DF and VarCnn with adversarial training. The proposed CMAES-WFD generates
perturbations by randomly sampling from the Gaussian distribution, which has a certain degree of
randomness. Therefore, even if the target DNN-based model is trained with perturbed traces, CMAES-
WFD still has a certain defensive ability.

5) Effects of monitored website number: In practical scenarios, researchers may focus on different
monitored websites. Thus, monitored website numbers may also vary greatly. This experiment
further explores the effect of the number of monitored websites on the defensive performance
of CMAES-WFD. The experiment used four Rimmer datasets, Rimmer100, Rimmer200,

CMC, 2024, vol.79, no.2 2271

Rimmer500, and Rimmer900, with DF as the target model. The results are depicted in
Fig. 7. According to the experimental results, DF’s accuracy on perturbed traces decreased
with lower bandwidth overhead as the number of monitored websites increased when using
the same parameters. For instance, with only 8.2% bandwidth overhead, DF’s accuracy on
perturbed traces on Rimmer900 was 7.2%. The accuracy of DF on Rimmer100 was 9.1%,
which was similar to that on Rimmer900. However, the bandwidth overhead was much higher
on Rimmer100, at 18.3%, more than twice that on Rimmer900. This is due to the limited
representation ability of DNN in the feature space. The more monitored websites are, the less
distinguishable among different websites will become in the DNN feature space, making it
easier to generate perturbations.

Table 7: Accuracy of models with adversarial training

Model Accuracy

AWF 52.4%
DF 56.7%
VarCnn 62.8%

Figure 7: Accuracy and bandwidth overhead with different monitored websites numbers

6) Comparison: We compare CMAES-WFD with three representative adversarial-based WF
defenses, and the results are shown in Fig. 8. We evaluate the performance of these WF defenses
against DF and VarCnn on Sirinam and Rimmer900 datasets, respectively. As can be seen,
Mockingbird [17] reduced accuracy to around 30% but still failed to provide sufficient effective
protection, and the overhead of Mockingbird was over 50%, which may hurt user experience.
Dolos [15] reduces accuracy to around 5% with 30% bandwidth overhead. However, Dolos is
trace-oriented when generating adversarial patches and inserts adversarial patches at specific

2272 CMC, 2024, vol.79, no.2

locations. This is unsuitable for other traces of the same website, resulting in high bandwidth
overhead. Dolos is better than us at reducing accuracy because we consider the balance between
accuracy and bandwidth overhead, and our bandwidth overhead is lower, so the accuracy is
higher than Dolos. Blind [18] reduces accuracy to less than 6% with 25% bandwidth overhead.
Although it achieves real-time traffic defense, it has higher bandwidth overhead and requires
computing the gradient of the loss function, which is unrealistic in a black-box scenario.
The comparison shows that CMAES-WFD achieves a good balance between accuracy and
bandwidth overhead by reducing the classification accuracy of both target models to below
8.2% and having a significantly lower bandwidth overhead than other WF defenses. This
opens up the possibility of real-world deployment, because excessive bandwidth overhead can
seriously affect the user experience, after all, users do not want too much network latency when
browsing websites.

Figure 8: Comparison of CMAES-WFD with adversarial-based WF defenses (lower is better). (a) The
comparison of accuracy and bandwidth overhead of CMAES-WFD, MockingBird, Dolos and Blind
against DF model on Sirinam dataset; (b) The comparison of accuracy and bandwidth overhead of
CMAES-WFD, MockingBird, Dolos and Blind against VarCnn model on Sirinam dataset; (c) The
comparison of accuracy and bandwidth overhead of CMAES-WFD, MockingBird, Dolos and Blind
against DF model on Rimmer900 dataset; (d) The comparison of accuracy and bandwidth overhead
of CMAES-WFD, MockingBird, Dolos and Blind against VarCnn model on Rimmer900 dataset

CMC, 2024, vol.79, no.2 2273

7 Limitations and Future Work

When generating perturbations, CMAES-WFD requires prior knowledge of the target website
that the user intends to access. This assumption is common in WF defenses [14,15,29], which focus on
generating perturbations based on specific traffic patterns. However, website traces may significantly
differ due to geographical location variations. Consequently, some WF defenses aim to generate
universal adversarial perturbations, but these attempts increase bandwidth overhead. Future work
could focus more on universal adversarial perturbations, reducing dependence on specific traces and
using lower bandwidth overhead.

In addition, CMAES-WFD is designed to defend against WF attacks that use packet sequences as
features and are based on DNN models. Therefore, our defense may not apply to non-DNN models
using manually extracted features such as packet numbers and intervals. Future work can explore
the combination of our defense with defense against non-DNN techniques. For example, non-DNN
models usually use timing features, which can increase some delay to the original packets or dummy
packets, so that the generated adversarial samples are not only applicable to DNN models, but also
have a certain deception effect on non-DNN models.

Finally, because CMAES-WFD is based on burst sequence when computing adversarial samples,
that is, a complete traffic sequence is required, it cannot be applied to real-time traffic yet. In the
subsequent research, we will focus on how to improve the algorithm to apply to real-time traffic.

8 Conclusion

A WF defense based on adversarial samples that provides effective protection against DNN-based
WF attacks with lower bandwidth overhead is proposed in this paper as CMAES-WFD. CMAES-
WFD only requires black-box feedback from the target model to generate adversarial perturbations
for various websites by solving specific optimization problems. Additionally, to reduce bandwidth
overhead, we only inject dummy packets at locations with higher variances, following the updated
principle of increasing variance along the successful search direction in CMAES.

Experiments show that our method outperforms the majority of previous defenses by reducing the
accuracy of the target models to less than 8.3% with a bandwidth overhead of no more than 20.5%.
We chose three advanced DNN-based models as our target models. In addition, we demonstrate that
the adversarial perturbation vectors generated against VarCnn have the best transferability among the
three models and can defeat unknown attack models. Finally, we also demonstrate that CMAES-WFD
is somewhat resistant to adversarial training.

Acknowledgement: The authors would like to express their gratitude to EditSprings (https://www.
editsprings.cn) for the expert linguistic services provided.

Funding Statement: This work was supported by the Key JCJQ Program of China: 2020-JCJQ-ZD-
021-00 and 2020-JCJQ-ZD-024-12.

Author Contributions: The authors confirm contribution to the paper as follows: Study conception
and design: Di Wang, Jinlong Fei; data collection: Di Wang; analysis and interpretation of results:
Di Wang, Jinlong Fei, Yuefei Zhu, Maohua Guo; draft manuscript preparation: Di Wang, Jinlong
Fei, Yuefei Zhu, Maohua Guo. All authors reviewed the results and approved the final version of the
manuscript.

https://www.editsprings.cn
https://www.editsprings.cn

2274 CMC, 2024, vol.79, no.2

Availability of Data and Materials: The data and materials used to support the findings of this study
are available from the corresponding author upon request after acceptance.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] T. A. Ghaleb, “Wireless/website traffic analysis & fingerprinting: A survey of attacking techniques and

countermeasures,” in Int. Conf. Cloud Comput., New York, NY, USA, 2015, pp. 1–7.
[2] A. Panchenko et al., “Website fingerprinting at internet scale,” in Proc. Netw: Distrib. Syst. Secur. Symp.,

Reston, VA, USA, 2016, pp. 1–15.
[3] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website fingerprinting technique,” in USENIX

Secur. Symp., Austin, TX, USA, 2016, pp. 1187–1203.
[4] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective attacks and provable defenses for

website fingerprinting,” in 23rd USENIX Secur. Symp. (USENIX Secur. 14), San Diego, CA, USA, 2014,
pp. 143–157.

[5] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-CNN: A data-efficient website fingerprinting attack
based on deep learning,” in Proc. Priv. Enhanc. Technol., vol. 2019, no. 4, pp. 292–310, 2019. doi:
10.2478/popets-2019-0070.

[6] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting: Undermining website fingerprint-
ing defenses with deep learning,” in Proc. 2018 ACM SIGSAC Conf. Comput. Commun. Secur., New York,
NY, USA, 2018, pp. 1928–1943.

[7] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward an efficient website fingerprinting
defense,” in Comput. Secur.–ESORICS 2016: 21st Eur. Symp. Res. Comput. Secur., Heraklion, Greece, Sep.
26–30, 2016, pp. 27–46.

[8] Y. Dong et al., “Boosting adversarial attacks with momentum,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Salt Lake City, Utah, USA, 2018, pp. 9185–9193.

[9] S. M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple and accurate method to fool deep
neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las Vegas, Nevada, USA, 2016, pp.
2574–2582.

[10] W. D. L. Cadena, A. Mitseva, J. Hiller, J. Pennekamp, and A. Panchenko, “TrafficSliver: Fighting website
fingerprinting attacks with traffic splitting,” in CCS ’20: 2020 ACM SIGSAC Conf. Comput. Commun.
Secur., USA, 2020, pp. 1971–1985.

[11] R. Tang, G. Shen, C. Guo, and Y. Cui, “SAD: Website fingerprinting defense based on adversarial
examples,” in Int. Conf. Secur. Priv. New Comput. Environ., Qinhuangdao, China, 2021, pp. 88–102.

[12] C. Szegedy et al., “Intriguing properties of neural networks,” in Proc. 2nd Int. Conf. Learn. Rep., Banff,
Canada, 2014, pp. 1–10.

[13] D. Li, Y. Zhu, M. Chen, and J. Wang, “Minipatch: Undermining DNN-based website fingerprinting
with adversarial patches,” IEEE Trans. Inf. Forensics Secur., vol. 17, no. 8, pp. 2437–2451, 2022. doi:
10.1109/TIFS.2022.3186743.

[14] A. M. Sadeghzadeh, B. Tajali, and R. Jalili, “AWA: Adversarial website adaptation,” IEEE Trans. Inf.
Forensics Secur., vol. 16, pp. 3109–3122, 2021. doi: 10.1109/TIFS.2021.3074295.

[15] S. Shan, A. N. Bhagoji, H. Zheng, and B. Y. Zhao, “Patch-based defenses against web fingerprinting
attacks,” in Proc. 14th ACM Workshop Artif. Intell. Secur., Korea, 2021, pp. 97–109.

[16] C. Hou, G. Gou, J. Shi, P. Fu, and G. Xiong, “WF-GAN: Fighting back against website fingerprinting
attack using adversarial learning,” in 2020 IEEE Symp. Comput. Commun. (ISCC), Rennes, France, 2020,
pp. 1–7.

https://doi.org/10.2478/popets-2019-0070
https://doi.org/10.1109/TIFS.2022.3186743
https://doi.org/10.1109/TIFS.2021.3074295

CMC, 2024, vol.79, no.2 2275

[17] M. S. Rahman, M. Imani, N. Mathews, and M. Wright, “Mockingbird: Defending against deep-learning-
based website fingerprinting attacks with adversarial traces,” IEEE Trans. Inf. Forensics Secur., vol. 16, no.
6, pp. 1594–1609, 2020. doi: 10.1109/TIFS.2020.3039691.

[18] M. Nasr, A. Bahramali, and A. Houmansadr, “Defeating DNN-based traffic analysis systems in real-
time with blind adversarial perturbations,” in USENIX Secur. Symp., Vancouver, B.C., Canada, 2021,
pp. 2705–2722.

[19] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting: Attacking popular privacy
enhancing technologies with the multinomial naïve-bayes classifier,” in Proc. 2009 ACM Workshop Cloud
Comput. Secur., Chicago, IL, USA, 2009, pp. 31–42.

[20] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website fingerprinting in onion routing based
anonymization networks,” in Proc. 10th Annu. ACM Workshop Priv. Electron. Soc., Chicago, IL, USA,
2011, pp. 103–114.

[21] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from adistance: Website fingerprinting attacks
and defenses,” in Proc. ACM Conf. Comput. Commun. Secur., Raleigh, NC, USA, 2012, pp. 605–616.

[22] T. Wang and I. Goldberg, “Improved website fingerprinting on tor,” in Proc.12th ACM Wrkshop Priv.
Electron. Soc., Berlin, Germany, 2013, pp. 201–212.

[23] K. Abe and S. Goto, “Fingerprinting attack on Tor anonymity using deep learning,” in Proc. Asia Pac. Adv.
Netw., vol. 42, no. 1, pp. 15–20, 2016.

[24] V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and W. Joosen, “Automated website fingerprinting
through deep learning,” in Proc. Netw., Distrib. Syst. Secur.: Symp., Reston, VA, USA, 2018, pp. 1–15.

[25] B. Sun, W. Yang, M. Yan, Y. Zhu, and Z. Bai, “A practical website fingerprinting defense approach with
universal adversarial perturbations,” in 2022 7th Int. Conf. Comput. Commun. Syst. (ICCCS), Wuhan,
China, 2022, pp. 752–760.

[26] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-Boo, I still see you: Why efficient
traffic analysis countermeasures fail,” in 2012 IEEE Symp. Secur. Priv., San Francisco, CA, USA, 2012,
pp. 332–346.

[27] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A systematic approach to developing and
evaluating website fingerprinting defenses,” in Proc. 2014 ACM SIGSAC Conf. Comput. Commun. Secur.,
Scottsdale, AZ, USA, 2014, pp. 227–238.

[28] X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A congestion sensitive website fingerprinting
defense,” in Proc. 13th Workshop Priv. Electron. Soc., Scottsdale, AZ, USA, 2014, pp. 121–130.

[29] T. Wang and I. Goldberg, “Walkie-Talkie: An efficient defense against passive website fingerprinting
attacks,” in USENIX Secur. Symp., Vancouver, BC, Canada, 2017, pp. 1375–1390.

[30] A. Abusnaina, R. Jang, A. Khormali, D. Nyang, and D. Mohaisen, “DFD: Adversarial learning-based
approach to defend againstwebsite fingerprinting,” in Proc. IEEE INFOCOM2020-IEEE Conf. Comput.
Commun., Toronto, ON, Canada, 2020, pp. 2459–2468.

[31] Y. Dong et al., “Boosting adversarial altacks with momentum,” in Proc. IEEE/CVF Conf. Comput. Vs.
Pattern Recognit., Salt Lake City, Utah, USA, 2018, pp. 9185–9193.

[32] C. Xiao, B. Li, J. Y. Zhu, W. He, M. Liu and D. Song, “Generatingadversarial examples with adversarial
networks,” in Proc. 27th Int. Joint. Conf. Artif. Intell., Stockholm, Sweden, 2018, pp. 3905–3911.

[33] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses for deep learning,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 30, no. 9, pp. 2805–2824, 2019. doi: 10.1109/TNNLS.2018.2886017.

[34] S. Henri, G. García, P. Serrano, A. Banchs, and P. Thiran, “Protecting against website fingerprint-
ing with multihoming,” in Proc. Priv. Enhanc. Technol., vol. 2020, no. 2, pp. 89–110, 2020. doi:
10.2478/popets-2020-0019.

[35] J. Gong, W. Zhang, C. Zhang, and T. Wang, “Surakav: Generating realistic traces for a strong web-
site fingerprinting defense,” in 2022 IEEE Symp. Secur. Priv. (SP), San Francisco, CA, USA, 2022,
pp. 1558–1573.

[36] J. Gong and T. Wang, “Zero-delay lightweight defenses against website fingerprinting,” in Proc. 29th
USENIX Conf. Secur. Symp., Berkeley, CA, USA, 2020, pp. 717–734.

https://doi.org/10.1109/TIFS.2020.3039691
https://doi.org/10.1109/TNNLS.2018.2886017
https://doi.org/10.2478/popets-2020-0019

2276 CMC, 2024, vol.79, no.2

[37] M. S. Rahman, P. Sirinam, N. Atthews, K. G. Gangadhara, and M. Wright, “Tik-Tok: The utility of packet
timing in website finger-printing attacks,” in Proc. Priv. Enhanc. Technol., vol. 2020, no. 1, pp. 5–24, 2020.
doi: 10.2478/popets-2020-0043.

[38] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in Proc. 3rd
Int. Conf. Learn. Rep., San Diego, CA, USA, 2015, pp. 1–11.

[39] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik and A. Swami, “The limitations of deep
learning in adversarial settings,” in 2016 IEEE Eur. Symp. Secur. Priv. (Euro S&P), Saarbrücken, Germany,
2016, pp. 372–387.

[40] S. M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial perturbations,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu, HI, USA, 2017, pp. 1765–1773.

[41] N. Hansen et al., “The CMA evolution strategy: A tutorial,” Evol. Comput., vol. 9, no. 2, pp. 159–195, 2016.
doi: 10.1162/106365601750190398.

[42] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 IEEE Symp.
Secur. Priv. (SP), San Jose, CA, USA, 2017, pp. 39–57.

[43] A. Demontis et al., “Why do adversarial attacks transfer? Explaining transferability of evasion and
poisoning attacks,” in 28th USENIX Secur. Symp. (USENIX Secur. 19), Santa Clara, CA, USA, 2019,
pp. 321–338.

[44] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical evaluation of website fingerprinting
attacks,” in Proc. 2014 ACM SIGSAC Conf. Comput. Commun. Secur., Scottsdale, AZ, USA, 2014, pp.
263–274.

[45] X. Zhang, J. Hamm, M. K. Reiter, and Y. Zhang, “Statistical privacy forstreaming traffic,” in 26th Annu.
Net. Distrib. Syst. Secur. Symp. (NDSS), San Diego, CA, USA, 2019, pp. 24–27.

https://doi.org/10.2478/popets-2020-0043
https://doi.org/10.1162/106365601750190398

	CMAES-WFD: Adversarial Website Fingerprinting Defense Based on Covariance Matrix Adaptation Evolution Strategy
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Methodology
	5 Experimental Setup
	6 Experimental Results
	7 Limitations and Future Work
	8 Conclusion
	References

