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ABSTRACT

Wheat is a critical crop, extensively consumed worldwide, and its production enhancement is essential to meet
escalating demand. The presence of diseases like stem rust, leaf rust, yellow rust, and tan spot significantly
diminishes wheat yield, making the early and precise identification of these diseases vital for effective disease
management. With advancements in deep learning algorithms, researchers have proposed many methods for the
automated detection of disease pathogens; however, accurately detecting multiple disease pathogens simultaneously
remains a challenge. This challenge arises due to the scarcity of RGB images for multiple diseases, class imbalance
in existing public datasets, and the difficulty in extracting features that discriminate between multiple classes
of disease pathogens. In this research, a novel method is proposed based on Transfer Generative Adversarial
Networks for augmenting existing data, thereby overcoming the problems of class imbalance and data scarcity.
This study proposes a customized architecture of Vision Transformers (ViT), where the feature vector is obtained
by concatenating features extracted from the custom ViT and Graph Neural Networks. This paper also proposes a
Model Agnostic Meta Learning (MAML) based ensemble classifier for accurate classification. The proposed model,
validated on public datasets for wheat disease pathogen classification, achieved a test accuracy of 99.20% and an
F1-score of 97.95%. Compared with existing state-of-the-art methods, this proposed model outperforms in terms
of accuracy, F1-score, and the number of disease pathogens detection. In future, more diseases can be included for
detection along with some other modalities like pests and weed.
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1 Introduction

Wheat is an important crop which is consumed worldwide and is considered as one of the world’s
major food crops. Over the past few years, the production has been increased from 697 million metric
tons to 781 million metric tons due to high demand as shown in Fig. 1. The growing global demand for
wheat-based foods shows the economic importance of wheat production. However, challenges such as
climate change-driven weather variability, water scarcity, and crop diseases hinder consistent yields.
Fungal diseases, including rusts, powdery mildew, and Fusarium head blight, significantly contribute
to reduced harvests and their symptoms can help identify the occurrence of disease [1]. The timely
identification and effective control of crop diseases are imperative for satisfying the growing global
demand, averting potential loss in yield, and guaranteeing the enduring sustainability of agricultural
practices.

Global Wheat Production Over Last Decade

280 774.55 77933 78131

o 5550 76154 76151
740 728.30 735.90 730.92
717
700 697
680
660 635
640
620
600

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Wheat Production (MMT)
~J
(o)
(=]

Figure 1: Global wheat production over the last decade [1]

Researchers have proposed various techniques for preprocessing [2,3], feature extraction [4],
and machine learning (ML) or deep learning (DL) methods for the classification of diseased wheat
plants [5-9]. Some researchers have used limited datasets to perform various classification techniques
to classify wheat diseases without performing preprocessing of the dataset [10]. Various prepro-
cessing techniques, such as Data Augmentation and Data Standardization, have been performed
by researchers in the past [11,12]. Image Filtration and Histogram Equalization have also been
utilized and implemented for the purpose of preprocessing by various scientists [9,13,14]. Extensive
preprocessing was performed on the collected data to enhance the feature extraction and classification
capability of the models being used [15]. Multiple researchers have used a Convolutional Neural
Network (CNN) to classify wheat diseases [9,11]. The performance of CNN can be examined based
on various factors, including accuracy and loss. The loss of CNN can be calculated by the formula as
follows:

_ 1S )
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In recent years, transfer learning techniques have shown significant contribution in disease
detection for wheat crops [16,17]. Deep learning algorithms have also shown good results for disease
detection using thermal images [18]. Combination of traditional machine learning methods and deep
learning methods have shown significant improvement in detection results, whereas, ensemble learning
have further improved the accuracy of multiclass classification [19,20]. Performance of such methods
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have been assessed for real time applications of disease detection [21]. These methods have been applied
in both open fields as well as greenhouses to recognize the wheat crop disease to mitigate the effect
of disease to get increased yield of the crop [22]. Semantic segmentation is also applied by researchers
to estimate the area affected by the disease on the leaf so that yield estimation can be performed and
mitigate wheat stripe rust [23]. Vision Transformers (ViT) and deep learning methods have also been
adopted by the researchers [16,24]. Multiple review studies have been published in recent years to
highlight the potential challenges and way forward for disease detection in wheat crop [17,25-28]

To reduce wheat yield loss and close the supply-demand gap, it is necessary to diagnose the disease
in the developmental phases as early as possible. The wheat disease may affect the yield of crops
significantly, resulting in a shortage of supply of wheat [29], and its detection may face intense chal-
lenges. The wheat disease detection system involves the preprocessing of wheat plant images, features
extraction and classification. This research makes several key contributions to the field of wheat disease
detection. It addresses challenges of class imbalance in the dataset, simultaneous detection of multiple
diseases and dataset images under a controlled environment. Transformer-based GANs were used to
mitigate the problem of class imbalance, enhancing disease classification reliability. Feature extraction
and fine-tuning employed cutting-edge techniques like ViTs and Graph Neural Networks (GNNs),
enhancing the model’s capacity to capture disease-related features. Simultaneous classification of
multiple disease classes was achieved through Model Agnostic Meta-Learning (MAML) with Long
Short Term Memory (LSTM), Support Vector Machine (SVM), and Random Forest (RF) classifiers.
Emphasizing real-world image analysis, this method is practical for application. These innovations
result in significantly improved accuracy, offering a promising solution for agriculture.

The rest of the paper is organized as follows: Section 2 provides an analysis of existing research in
the past few years, the proposed methodology is illustrated in Section 3, depicting the details regarding
methodology and dataset, and results and observations are shown in Section 4. Section 5 includes an
insight discussion regarding the existing and proposed methods, whereas the research is concluded in
Section 6.

2 Related Work

The primary step in disease detection is data acquisition, which involves gathering relevant image
data. Subsequently, preprocessing is performed where the collected data is cleaned, normalized, and
standardized to remove noise and inconsistencies. Feature extraction is then performed to identify
relevant patterns and characteristics from the preprocessed data, which may involve techniques like
dimensionality reduction or feature engineering. In the last phase, the features that are extracted are
put to work for classification. This research uses ML and DL techniques to train a model adept at
telling the difference between healthy samples and those with some sort of disease. Picking the right
calculations and measurements for assessment is a significant piece of this cycle. Preprocessing is key,
which implies cleaning up and separating the information to dispose of any commotion or superfluous
subtleties. This step frequently includes techniques like normalizing the information, enlarging it,
and adjusting it, as numerous scientists have performed [12,13]. When preprocessing is finished, the
following stage in information examination includes taking out huge highlights from the accumulated
information. This is where profound learning-based techniques become possibly the most important
factor, using the strength of brain organization.

The last step includes utilizing the highlights that have been removed to sort the information into
either infected or non-unhealthy classes. At this stage, an Al model was trained on a dataset that is, as of
now, marked. This model is then used to foresee whether new, inconspicuous information falls into the
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classification of disease or not. Conventional Al procedures for this assignment incorporate calculated
relapse and choice trees. This proposed methodology additionally has further developed profound
learning calculations like repetitive brain organizations and convolutional brain organizations. The
task for the classification model is to accurately identify the correct category for each image in the
dataset, which can be either a simple yes-or-no (binary) or more complex (multi-class) challenge. In
past years, much research work has been carried out by various researchers in order to develop such
models which can detect and classify each diseased image of wheat crop into their respective classes
with significant accuracy and efficient computational complexity.

Size normalization has been used in many studies for scaling the images into uniform sizes
to perform better classification. Researchers have applied Image Filtration to preprocess the wheat
images in order to filter out ineffectual dataset images [13]. Histogram Equalization has been used to
preprocess the gathered dataset [14]. The technique of Data Enhancement to perform preprocessing on
the used dataset has also been employed in previous work [15]. Multiple researchers have used Image
Augmentation to elevate the dataset size to enhance the accuracy of classification models [12].

Feature extraction proves to be a significant step in ML or DL. Many studies have done auto-
mated feature extraction using CNN [12]. Automated feature extraction included various techniques,
including Spectral Features, ResNet-50 [10], WaterShed, GrabCut, U2-Net [14], PANet, VGG, and
DenseNet [24]. Classification is a very important step in DL, where the model predicts the class of
the input data provided to the model. Researchers have used both machine and DL classifiers for the
classification of diseased wheat crops in wheat disease detection and classification. PSO-SVM, BP and
RF were employed to classify the diseased wheat images into respective diseased classes [10]. Ensemble
learning, in which VGG, ResNet-101, ResNet-152, DenseNet-169, and DenseNet-210 have been used
to improve the accuracy than the accuracy of all the individual classifiers [15].

Classifiers employed in the studies include PSO-SVM, BP, RF, Mask-RCNN, CNNs (such as
ResNet-50, VGG-16, and EfficientNet_B0), Inception-v3, and ensemble learning [10,11,13,15]. These
classifiers leverage ML and DL algorithms to classify wheat disease patterns accurately.

Furthermore, the essential focal point of the examination was on the exactness, dismissing
other critical assessment boundaries like accuracy and mean normal accuracy. Additionally, the
examinations were restricted to just hardly any wheat-diseased classes. Thus, the location of wheat
diseases is of most extreme significance in spurring ranchers and partners to take on better yields the
board rehearses. By giving opportune and precise data about the situation with their harvests, ranchers
can go to suitable lengths to control the spread of infections, lessening the financial misfortunes related
to these diseases.

3 Materials and Methods

This study proposes a four-step approach for the exact location of disease microbes for wheat
crops, including information get-together and assortment, preprocessing strategies, highlight extrac-
tion, and characterization. The data is collected from various publicly available sources and combined
into a single dataset of 6 classes. The information of each class displayed in Fig. 2 is then preprocessed
to make it appropriate for the end goal of component extraction. The proposed approach utilized
hardware that includes an Intel Core 17 with a processing speed of 2.90 GHz as the central processor
unit, NVIDIA GeForce GTX 1650 for powerful graphics processing, and 16 GB of RAM to guarantee
enough memory for effective data handling.
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Figure 2: Wheat disease dataset samples: (a) healthy, (b) leaf rust, (c) stem rust, (d) yellow rust, (¢) tan
spot, (f) wheat blast

The steps and structure of proposed methodology is illustrated in Fig. 3. The features are extracted
using DL model and these features are given as an input to another model for classification.
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Figure 3: Proposed methodology for wheat disease detection

3.1 Preprocessing

Picture preprocessing is fundamental in improving the quality and consistency of information
for profound learning models which might incorporate picture normalization and information
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Expansion. Picture normalization is a critical calculate visual information examination and PC vision.
Everything revolves around ensuring picture information is steady, exact, and equivalent, regardless
of where it comes from, its configuration, or the circumstances under which it was obtained. Through
a scope of strategies and techniques, normalizing pictures makes it more straightforward to examine
information, perceive examples, and complete Al undertakings really.

In the computer vision tasks, it’s not unexpected that images gathered may vary in quality, lighting,
differentiation, size, and variety conveyance [30]. It can lead towards misclassification of the images at
the classification phase and reduce the test accuracies. To address this, all the RGB images were resized
to a uniform size of 500 pixels in width and 500 pixels. In this way, this proposed approach eliminates
any size distinctions that could create problems while applying different models for classification and
also make it device independent.

Image zooming, scaling and normalization also help in reducing the processing time and to
increase the validation accuracies of disease detection. Preprocessing has two main targets: to avoid
x CMC, 202X overfitting and to increase the validation accuracies. The basic exploratory techniques
include various augmentation methods to increase and diversify the number of images in the dataset.
For instance, random rotations, zooms, and contrast adjustment for each image may serve as the most
frequent methods. As a result of preprocessing and data augmentation, software libraries, such as
PyTorch in Python, provide a more robust dataset which is ready for application in deep learning.

Transfer Generative Adversarial Networks can be applied as a robust strategy to generate synthetic
data that would resolve the dilemma of class disproportionality and data inadequacy. In one particular
manner, Transfer GAN differs from previous methods by the ability to transfer features, style, or
content from one image to another, which could be utilized to make ordinary images more creative. In
more practical terms, there seem to be numerous opportunities due to which implementing these data
augmentation techniques can noticeably increase the train dataset, ensuring a much more different
and substantial amount for the deep-learning-based model to explore. Therefore, this augmentation
can both diversify the data and help the classifier against overfitting to provide higher accuracies.

3.2 Feature Extraction

This examination digs into the utilization of ViT and GNN as cutting-edge techniques for
highlight extraction in picture examination. The explanation that are being zeroed in on these
advancements is their noteworthy abilities: They are perfect at recognizing complex examples in infor-
mation, can use previous prepared models, perform outstandingly well, and upgrade the utilization of
registering power. Together, these characteristics assume a significant part in supporting the exactness
of identifying diseases in wheat. The objective of this proposed methodology is to take advantage of
the qualities of profound advancing by utilizing ViT and GNN for taking out special and significant
elements from pictures. This method is pointed toward making picture examination more exact and
viable. The engineering of both ViT and GNN, with their numerous layers, is intended to get a
handle on an assortment of picture portrayals. They catch everything from straightforward, low-level
subtleties to complicated, significant level highlights, making it simpler to recognize complex visual
examples in the pictures.

The discoveries show the viability of the models in drawing out complicated, undeniable level
highlights, a capacity that essentially supports the accuracy and usefulness of picture examination
frameworks. For example, the ViT’s engineering, portrayed in Fig. 4, is explicitly intended to recognize
novel and significant highlights in pictures [31]. The depiction of the transformer encoder was
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motivated by [32]. This capacity is essential, as it permits ViT and GNN to handle difficulties like
evaporating angles, which thusly empowers more compelling preparation of these models.

Vision Transformer (ViT)

MLP Head

Transformer Encoder

Patch+ Position
Embedding
LInear Projection of Flattened Patches
Jdih]

ﬂlﬂ Eﬂ.ﬁ

Figure 4: Architecture of vision transformer (ViT) [31]

3.3 Classification

Choosing a fitting machine or profound learning model is basic for the exact and compelling
location of diseases in wheat. In this review, selection of MAML was carried out as a go-to to
demonstrate for characterization. MAML hangs out in the Al people group, particularly among those
zeroing in on hardly any shot and meta-learning, because of its noteworthy capacities. It succeeds in
circumstances where there is a requirement for models to advance rapidly and really from limited
quantities of information, for example, adjusting to new errands or acclimating to new spaces with
negligible models. The flexibility and fast learning skill of MAML make it a fundamental instrument
for specialists and experts who mean to foster models that can sum up well across assorted pain points.
This approach is urgent in propelling the outskirts of few-shot learning and meta-learning. The design
and functions of MAML are definite in Fig. 5.

This research adopted a refined process specifically designed for tasks involving the classification
of multiple classes. Initially, the dataset was preprocessed using Transfer-Based GANs, which signifi-
cantly improved the dataset’s diversity and quality, enriching the features extracted from it. Following
this, ViT and GNN are used for the intricate task of extracting features, effectively capturing detailed
patterns from the images. Finally, this study utilized MAML in conjunction with three different
classifiers—RF, SVM, and LSTM-to complete the classification strategy.
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Figure 5: The architecture of model agnostic meta-learning (MAML)

4 Results

Al methods, particularly profound learning calculations, have exhibited extraordinary likely in
distinguishing and sorting wheat diseases from pictures. For these techniques to be compelling, they
depend on broad and shifted datasets for exact preparation and approval of the models. The quality
and completeness of these datasets are critical to creating fruitful AI models for grouping plant
disease. This examination ordered a nitty gritty dataset that incorporates pictures addressing six
unique kinds of plant diseases: ‘sound,’ ‘leaf rust,” ‘tan spot,” ‘impact leaves,” ‘stem rust,” and ‘yellow
rust,” accumulated from various sources. The dataset at first had 5,691 pictures addressing the plant
infections that is referred before: ‘sound,’ ‘leaf rust,” ‘tan spot,” ‘impact leaves,” ‘stem rust,” and ‘yellow
rust.” Then extended this assortment to 13,731 pictures. This study gives a definite outline of every
diseased class, zeroing in on their particular elements, the effect they have, and the difficulties in
recognizing and ordering them. Table | shows how these pictures are conveyed across the different
disease classes. To handle the issue of class irregularity and to limit contrasts between information
from different classes, this research utilized move-based GANSs to expand the information.

Table 1: Class-wise detail of wheat disease dataset utilized in this review

S. No. Classes Original images Total images
1. Blast leaves 1174 2348
2. Healthy 1602 2403
3. Leaf rust 1128 2256
4, Stem rust 375 2250
5. Tan spot 275 2200
6. Yellow rust 1137 2274
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In this research, rigorous testing was conducted in this study using a meticulously assembled
image database representing a variety of wheat diseases and a training, validation, and test framework.
Performance metrics evaluated the procedures applied in this study, including accuracy, precision,
recall, and Fl-score. The outcomes obtained demonstrated that the combination of preprocessing
recommend in this study- transfer-based GAN and feature extraction through Vision Transformer
and Graph Neural Network during tran- after transfer -, classification witha MAML ensured accurate
and reliable wheat disease detection. This research emphasizes the need of utilizing preprocessing to
improve DL model performance and crop disease detection.

The quality improvement of input data and enlarging the training dataset due to image filtration,
standardization and transfer-based GANs have led to better generalization of the model and thus more
accurate predictions. Additionally, augmentation was crucial for the dramatic rise in the dataset size.
Vision Transformer together with Graph Neural Networks and MAML are an effective combination
in what concerns the accurate identification and types classification of wheat diseases. Table 2
illustrates various possible solutions tested in order to achieve the higher and better performance of
the classification model. The table depicts that the best overall configuration to achieve significant
accuracy was with number of epochs being 50, with 0.2 dropout rate and a learning rate of 0.01 and
in combination of batch normalization.

Table 2: Model performance on various configurations

Configuration Accuracy (%) Precision  Recall F1-score
10 epochs 96.8 0.89 0.92 0.88
20 epochs 97.5 0.91 0.94 0.90
Number of 30 epochs 98.1 0.93 0.96 0.92
epochs
40 epochs 98.7 0.95 0.97 0.94
50 epochs 99.2 0.97 0.98 0.97
No dropout 97.8 0.92 0.95 0.91
Dropout 0.2 99.2 0.97 0.98 0.97
configuration 0.5 98.5 0.94 0.96 0.93
0.6 97.3 0.89 0.93 0.88
Batch With batch 99.2 0.97 0.98 0.97
normalization normalization
configuration No batch normalization  98.3 0.94 0.96 0.93
Only after input layer 98.9 0.96 0.97 0.95
Only after output layer  97.6 0.91 0.94 0.90
0.005 97.2 0.90 0.93 0.89
Learning rate 0.01 99.2 0.97 0.98 0.97
0.02 98.5 0.94 0.96 0.93

0.1 96.7 0.88 0.91 0.87
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This study utilized numerous profound learning calculations to arrange pictures of wheat diseases
and acquired critical discoveries. In the forthcoming area, the paper will introduce the outcomes
from these various models. This part of the research is dedicated to explaining how each DL model
contributed to the detection of wheat diseases. This research work provides an analysis of the training
and testing accuracy graphs, a model’s configuration table and the evaluation metrics obtained from
different models. The well-curated dataset was given as an input to ViT and GNN for the purpose
of feature extraction. Subsequently various classification models were applied to attain substantial
accuracy and other vital performance evaluation parameters with certain configurations given in

Table 3. The softmax activation function was used which is employed as:
Vi

)= 2
gl ST 2
Table 3: Configuration parameters for proposed methodology

Configuration Value
Epochs 50
Batch size 64
Learning rate 0.01
Activation function Softmax
Optimization function Adam

Results obtained using different experimental setting and confusion matrix are presented in Figs. 6
and 7, respectively.

Performance metrics for several DL models employed in a classification job are shown in Table 4
below. The models are judged according to their accuracy, precision, recall, and F1-score. The MAML
achieves an F1-score of 0.97 and an amazing accuracy of 99.20%, displaying exceptional precision and
recall. With a respectable F1-score of 0.88 and an accuracy of 96.5%, ResNet152v2 is next, although its
precision and recall are slightly lower. Inception v3, DenseNet121, and Xception exhibit competitive
results across all metrics, with Fl-scores ranging from 0.83 to 0.87 and accuracies between 93.96%
and 94.79%. On the other hand, VGG19, while maintaining reasonable precision and recall, shows a
comparatively lower F1-score of 0.81 and an accuracy of 82%.
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Figure 6: Results achieved using different experimental setups: (a) VGG19 (b) Xception (c) Inception
v3 (d) DenseNet121 (e¢) Resnet 152v2 (f) MAML ensemble



2806

Figure 7: Confusion matrix of different experimental setups: (a) VGG19 (b) Xception (c) Inception v3
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Table 4: Performance evaluation for detecting wheat disease using deep learning models

Models Precision Recall Fl-score Accuracy (%)
MAML 0.99 0.96 0.97 99.20
ResNet152v2 0.87 0.89 0.88 96.5
Inception v3 0.82 0.84 0.83 93.96
DenseNet121 0.85 0.89 0.87 94

Xception 0.84 0.88 0.86 94.79
VGGI19 0.80 0.82 0.81 82

Table 5 below presents a comprehensive summary of wheat disease detection methods and
techniques, feature extraction methods, classifiers, and percentages of accuracy that each study
obtained using the mentioned techniques. This critical analysis aims to weigh the merits and demerits
of the reviewed techniques to underscore important findings and discoveries’ significance for wheat
disease detection. The table features several feature extraction techniques, such as wavelet analysis,
spectral features, image annotation, and such pre-trained models as ResNet, VGG, and AlexNet. These
methods are important for extracting critical information from input data, which is critical for precise

disease classification.

Table 5: Comparison of existing methodologies with proposed method

Authors Feature extraction Classifier (s) Accuracy (%)
Huang et al. [10] Wavelet, spectral PSO-SVM, BP, RF 1.93.50
features 2.86.10
3.82.40
Kumar et al. [11] ResNet-50 Mask-RCNN 97.16
Sood et al. [12] CNN ResNet-50, VGG-16 1.75.76
2.99.07
Genaev et al. [Y] - CNN (EfficientNet_BO0) 94.20
Aboneh et al. [13] Deep learning 1. VGG-16 1.96.48
framework 2. VGG-19 2.99.38
Bukhari et al. [14] 1. WaterShed ResNet-18 1.88.12
2. GrabCut 2. 84.67
3. U2-Net 3.96.19
Hong et al. [33] PANet MobileNetv3-YOLOv4 93.69
Pan et al. [15] 1. VGG Ensemble learning 92.00
2. ResNet (VGG,ResNet101/152,DenseNet-
3. DenseNet 169/210)
Proposed method Vision transformer + Model-agnostic meta-learning 99.20

Graph neural network

(MAML)
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PSO-SVM, BP, RF, Mask-RCNN, CNNs , which include the ResNet-50, VGG-16, and Efficient-
Net_BO0, Inception-v3, and ensemble learning methods are some of the classifiers used in these studies.
Employing machine learning and deep learning algorithms, these classifiers can detect the patterns
of wheat disease precisely. There is a considerable variability in the datasets used, including data
that were manually collected, publicly accessible datasets, and specialized datasets originating from
specific cameras and unmanned aerial vehicles . A critical review of wheat disease detection methods
uncovers significant challenges and lessons learned. A major issue is the availability of the datasets,
which can impact model generalization and model robustness. Future work should focus on collecting
more diverse and extensive data for improving model performance. In various other cases, images
come from controlled conditions, such as greenhouse-grown plants. These data are insufficient for
learning models that can work under real-world conditions. Data must capture all aspects of natural
environmental variation as much as possible. The other notable issue is that most plant disease studies
suffer from class imbalance. Many studies focus on one class of the disease. This negatively impacts
the performance and accuracy of detecting diseases. In many other studies, only one or a few similar
diseases are detected. Though high accuracy can be obtained when attempting to detect the condition
of interest, the applicability of the models will be very limited.

5 Discussion

This study denotes a huge headway in identifying wheat disease, successfully spanning basic
exploration holes noted in past works. In this proposed study, various shortcomings of previous
research studies have been resolved. The requirement for diverse and large-scale data is highlighted
by the limited availability of datasets, which hinders generalizability and robustness which is resolved
by collecting data from various sources and assembled into a single dataset of 6 classes. The images
utilized in the previous research were under a controlled environment, which was in contrast to the real
scenario, and this issue has been resolved as this study makes use of real-world images in uncontrolled
and natural environments. Furthermore, the issue of class imbalance was faced in previous studies,
disrupting the accuracy of classification models, and hence, different techniques, including GANS,
have been used to resolve the issue of class imbalance. This study also helps to classify multiple diseases
simultaneously, not only focusing on specific diseases as was the case in previous works.

This study tends to the basic need to recognize different diseases influencing wheat crops an
element frequently neglected in the past examinations, which normally centered around individual
diseases. This proposed cross-breed technique empowers the exact conclusion of five distinct wheat
diseases on the double. This lines up with the mind-boggling difficulties ranchers face in the field,
where harvests can be at the same time impacted by numerous diseases, affecting yield and prompting
monetary misfortunes. To beat the constraints of past investigations that utilized dataset pictures from
controlled conditions, this research’s exploration presents a creative picture readiness strategy. This
procedure joins transfer GANs with conventional increase techniques, changing it up and adding a
dash of authenticity to the dataset.

The augmentation process does not only augment the limited number of original images but also
highlights the efficiency and dependability of the proposed method. The model attains an accuracy
of 99.20%, which means that the proposed approach is efficient when used in a real application. The
primary strength of this approach is the use of transfer GANs ensures that the dataset is expanded,
thereby dealing with the deficiencies in the original images for some diseases and striving for equal
representation of the diseases. The expanded dataset is critical to the improved ability of the model
to differentiate the different diseases that exist in the datasets, thereby contributing to a high level
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of accuracy. During the classification process, the Model-Agnostic meta-Learning is used which
synthesizes the classifiers outcomes, such as RF, SVM, and LSTM. The proposed method enhances
generalization in detecting wheat diseases, addressing challenges such as class imbalance and data
scarcity, and enabling the detection of multiple diseases concurrently.

6 Conclusion

This research examined the capacity of deep learning models in the division of wheat diseases.
Model Agnostic Meta-Learning was the most viable ensemble learner in precision. This discovery
emphasizes the importance of selecting the best deep learning design for certain classification tasks
since the choice of model has a significant impact on results. The various and preprocessing strategies
such as rescaling, zooming, shearing, flipping, and the use of Transfer GAN s improved the models’
performance by mixing training data and decreased the overfitting. The primary application of the
features from powerful convolutional layers enabled the models to efficiently identify the most critical
elements needed for accurate classification of various wheat diseases. This research, however, is based
mainly on a data set that contains six classes of wheat diseases.

In the future, more datasets can be used in the analysis, and the number of disease types and pests
covering shall be increased. This step will help understand how well these models trivialize and how
strong they are. Expanding the dataset to use more wheat diseases, a wide variety of environmental
conditions, and multiple stages of individual disease development will lead to full-scale assessment
and the antifragility of proposed models. Moreover, it might help to use various transfer learning
techniques from other crops in the grass family which are similar to wheat, such as barley or corn.
This step can help enrich shareable features and disease regularities between wheat diseases detection
and other crops. Lastly, researchers, various agricultural companies, and farmers should collaborate
and share data. Developing extensive datasets and establishing open-access repositories through such
partnerships will play a crucial role in advancing wheat disease detection efforts.
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