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ABSTRACT

Monitoring blood pressure is a critical aspect of safeguarding an individual’s health, as early detection of abnormal
blood pressure levels facilitates timely medical intervention, ultimately leading to a reduction in mortality rates
associated with cardiovascular diseases. Consequently, the development of a robust and continuous blood pressure
monitoring system holds paramount significance. In the context of this research paper, we introduce an innovative
deep learning regression model that harnesses phonocardiogram (PCG) data to achieve precise blood pressure
estimation. Our novel approach incorporates a convolutional neural network (CNN)-based regression model,
which not only enhances its adaptability to spatial variations but also empowers it to capture intricate patterns
within the PCG signals. These advancements contribute significantly to the overall accuracy of blood pressure
estimation. To substantiate the effectiveness of our proposed method, we meticulously gathered PCG signal data
from 78 volunteers, adhering to the ethical guidelines of Suranaree University of Technology (Human Research
Ethics number EC-65-78). Subsequently, we rigorously preprocessed the dataset to ensure its integrity. We further
employed a K-fold cross-validation procedure for data division and alignment, combining the resulting datasets
with a CNN for blood pressure estimation. The experimental results are highly promising, yielding a Mean Absolute
Error (MAE) and standard deviation (STD) of approximately 10.69 ± 7.23 mmHg for systolic pressure and 6.89
± 5.22 mmHg for diastolic pressure. Our study underscores the potential for precise blood pressure estimation,
particularly using PCG signals, paving the way for a practical, non-invasive method with broad applicability in the
healthcare domain. Early detection of abnormal blood pressure levels can facilitate timely medical interventions,
ultimately reducing cardiovascular disease-related mortality rates.
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1 Introduction

Blood pressure (BP) is a crucial vital sign in the human body, serving as a significant risk
indicator for serious health conditions, notably cardiovascular diseases (CVD) and hypertension
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[1–5]. A reliable, continuous, and non-invasive BP monitoring method could significantly aid health-
care providers in enhancing the prevention, detection, and diagnosis of hypertension and effectively
managing related treatment strategies [6–8]. Various factors, including abnormalities in cardiac output,
blood vessel wall elasticity, blood volume circulation, peripheral resistance, respiration, and emotional
behavior, significantly influence BP [1,9–11]. Given the intricate and dynamic nature of the cardio-
vascular system, any BP monitoring system should ideally leverage intelligent technology capable
of extracting and analyzing significant BP features [8,12–14]. Traditional BP measurement methods
[1,15] and the use of handcrafted features for continuous BP monitoring prove to be cumbersome
and computationally demanding [3,16–19]. Recent research has explored BP measurement through
engineered feature [3]. BP is influenced by numerous physiological and neurological factors, and
incorporating feature extraction into a BP estimation model could markedly enhance measurement
accuracy [3,20–22]. Phonocardiogram (PCG) signals have emerged as a valuable and non-invasive
source of information for the estimation of blood pressure, a vital physiological parameter crucial for
monitoring cardiovascular health [1,8,13,23]. PCG signals are acoustic recordings of heart sounds,
capturing the mechanical events within the cardiac cycle [20,24,25]. PCG is a commonly used
feature for developing BP measurement models, recognized as a valid and well-accepted method
for estimating BP [17,20,24]. Nonetheless, methods dependent on hand-engineered face significant
limitations [12,18,19,22,26].

The calculation of multiple features simultaneously proves challenging due to individual specific
waveforms and the impact of motion artifacts [10,25]. Additionally, extracting desired features is
cost intensive and time consuming in real-time monitoring scenarios [27]. Artificial Intelligence (AI),
particularly deep learning algorithms within machine learning, emerges as a promising technique
for recognizing complex function patterns and emulating the non-linear relationship between non-
linear system inputs and outputs. This approach has demonstrated encouraging results in biomedical
technologies, including hypertension risk assessment and echocardiography image analysis [2,19].
Deep learning methods hold promise for extracting features from blood pressure (BP) and classifying
other physiological signals [28,29]. They can also be applied for BP estimation, offering a potential
pathway for continuous and non-invasive BP monitoring [3,24].

However, the type of Convolutional Neural Networks (CNN) that will be used in the experiment,
typical CNNs for 1D data, may struggle to effectively handle the spatial changes and variations
inherent in the BP signal [24]. This is necessary to ensure accurate BP measurement, considering these
limitations. This paper therefore proposes the use of CNN, which is a more advanced and flexible
neural network layer structure. It is designed to adjust the sampling position in the feature map.
This adaptability allows the model to better handle a wide range of signal formats. It provides a
new efficient solution for BP estimation using CNN. We expect it to challenge another method of
BP estimation. Previous methods generally struggle to handle diverse and complex BP signal formats
[3]. Even some previous studies have talked about using more than one signal and combining it with a
CNN to get an estimation. This innovative approach is expected to increase the learning capabilities
of the model. This could lead to more accurate, reliable, and efficient blood pressure estimation
[12,18,22,26]. The proposed method is likely to contribute significantly to advances in continuous
blood pressure monitoring technology. To the best of our knowledge, this is the first instance of
employing an end-to-end CNN designed specifically to process raw PCG signals for the purpose of
blood pressure estimation. Our pioneering strategy eliminates the necessity for expert-driven feature
extraction and selection, markedly streamlining the analytical process. Moreover, our research benefits
from an extensive dataset of authentic PCG signals, gathered from 78 participants in a stud. This
breakthrough not only improves the accessibility of the model but also broadens its applicability
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in clinical environments, heralding significant progress in the precision and dependability of non-
invasive blood pressure monitoring methods. The introduction of this method stands to revolutionize
the management and preliminary detection of coronary artery disease and hypertension.

2 Materials and Methods
2.1 Dataset

For this study, a specialized database was diligently compiled, focusing exclusively on phonocar-
diogram signals to ensure the robustness and reliability of the proposed blood pressure estimation
models [11,25]. The database encompasses PCG signal data from a diverse cohort of participants,
spanning various ages, genders, and health conditions. This extensive diversity is pivotal for affirming
the effectiveness and reliability of the proposed models across a wide array of individuals, ensuring the
models’ broad applicability and generalizability in real-world settings. Fig. 1 is the sample of the PCG
signal.

Figure 1: Simultaneous presentation physiological signals PCG of the arterial pressure

Data collection:

The data collection was carried out under strictly controlled conditions to minimize the impact
of external variables on the PCG signals and the corresponding BP readings [11]. Participants were
comfortably seated in a calm, temperature-regulated environment to ensure consistent and accurate
PCG signal recordings. The dataset captured signals within the frequency range of 20–2000 Hz.
Sensors were positioned for optimal PCG signal reception on participants. Efforts were made to
minimize distractions and noise. We meticulously collected PCG signal data from 78 volunteers, which
was considered and approved by the Human Research Ethics Committee Suranaree University of
Technology. The research was conducted in accordance with the ethical principles for human research
in accordance with the Declaration of Helsinki. Received research ethics certificate number Suranaree
University of Technology. The procedure for collecting PCG signal data, along with blood pressure
values, is outlined in Fig. 2.

1. Participants sat comfortably in a calm, temperature-controlled environment for approximately
5 min to ensure consistent and accurate recording of the PCG signal.

2. Interview basic important information from volunteers, including age, weight, height, and
gender.

3. Prepare the automatic blood pressure monitor. Ready to use a pressure measuring strap (Cuff)
to wrap around the upper arm approximately 1–2 inches above the elbow and tie it tightly.
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4. Prepare the digital stethoscope equipment to record signals. and set the signal file name to
match the information of each volunteer.

5. Place the digital stethoscope in the position specified by the attending physician. After that,
start the automatic blood pressure monitor and record the PCG signal.

Figure 2: Sequence of recording PCG signal from volunteer

Equipment for data collection:

Blood pressure monitor: In this research, an automatic blood pressure recording device named
Blood Pressure Monitor NISSEI DSK-1031 was used.

Digital stethoscope: The ThinkLabs One Digital Stethoscope was employed, featuring a frequency
range of 20–2000 Hz.

Fig. 3 shows the new dataset being tested in a hospital. The physician is responsible for overseeing
the collection of data from each volunteer. The test was conducted under human research ethics
number EC-65-78.

Figure 3: Simultaneous recording of PCG signals and measurement of blood pressure take place
concurrently
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2.2 PCG Signal Processing

In the preparation of the database for model development and evaluation, a comprehensive data
pre-processing and PCG signal processing phase was meticulously conducted. This multifaceted pro-
cess entailed the meticulous removal of noise and artifacts from the PCG signals, ensuring the presence
of pristine and high fidelity signals ideal for feature extraction and subsequent model training [3,24].
Simultaneously, the associated blood pressure readings underwent rigorous verification and validation
procedures to validate their accuracy and reliability. Within the PCG signal processing framework, a
rigorous pre-processing routine was applied to enhance signal quality, encompassing noise and artifact
removal, amplitude normalization for standardization, and segmentation to partition the continuous
PCG signals into manageable segments, facilitating further in-depth analysis [5,10].

2.3 Blood Pressure Estimation Methods

2.3.1 1D CNN-Based Method

In the Traditional CNN-based Method, the features from the PCG signals are used as the input
to a Convolutional Neural Network for blood pressure estimation [24]. To adapt CNNs for time-
dependent applications, modifications are made to exploit their ability to learn hierarchical patterns,
now from sequences observed over time. By applies a 1D convolutional neural networks over an input
signal composed of several input planes. Such adaptations make CNNs suitable for a wide range of
time series, which following in the Eqs. (1) and (2). Let X be the matrix of PCG signals features, the
CNN maps these features to an estimated blood pressure using a function by the weights θ of the
network:

y [t] =
k−1∑
i=0

x [t + i] · w [i] + b (1)

where

y [t] is the value of the output at time step t.

x [t + i] represents the input values at time steps t, t + 1, t + 2, . . . , t + k − 1.

w [i] represents the convolutional kernel weights at index i.

b is the bias term.

Lout =
[

Lin + 2 (p) − 1(k − 1) − 1
s

+ 1
]

(2)

Lout is the length of the output sequence.

Lin is the length of the input sequence.

p is the amount of padding added to each side of the input sequence.

k is size of the convolving kernel.

s is stride of the convolution.

The network comprises multiple convolutional layers followed by pooling layers, fully connected
layers, and a regression output layer. The convolutional layers apply a set of learnable filters to the
input features. Fig. 4 shows a diagram illustrating the envisioned Conv1D model structure, from input
into the solving Eq. (2). The overall approach employs a 5-layer CNN and depicts the constituent
elements of each CNN layer [30].
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Figure 4: A schematic representation of the proposed Conv1D model architecture. Overall method
using 5-layer CNN and shown the component of CNN layer

3 Experimental Setup
3.1 Design Model Training

3.1.1 Dataset Split

In this study, a 3-fold cross-validation approach is employed to ensure the robust evaluation of the
models. The entire dataset, encompassing PCG signals and corresponding blood pressure readings, is
evenly divided into three folds. In each iteration of the validation process, two folds (approximately
67% of the data) are used for training the model, and the remaining one-fold (approximately 33% of the
data) is used for validation [31]. This process is repeated three times, with each fold used for validation
exactly once. After the completion of the 3-fold cross-validation, the average performance metrics from
each fold are computed to obtain a comprehensive and reliable assessment of the models’ performance.
This approach ensures that every data point is used for both training and validation, enhancing the
reliability of the model evaluation and ensuring the models’ effectiveness and generalizability across
diverse data samples. For final testing and evaluation, a separate test set, which was not involved in
the 3-fold cross-validation, is used. This test set in each iteration comprises 1 fold of the total 3 fold
shown in Fig. 5 and 2 fold using for training. K-fold cross-validation is utilized to assess the models’
performance on unseen data, providing insights into their real-world applicability and effectiveness in
blood pressure estimation from PCG signals. In each iteration, the test performance of each fold after
iteration. Result will be taken to the next average performance.
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Figure 5: Illustration of the K-fold cross-validation

3.1.2 Data Augmentation

To enhance the balance of the models and mitigate overfitting, data augmentation techniques are
employed. These techniques include adding white Gaussian noise, time shifting, and time stretching
to the PCG signals. This augmentation enriches the diversity of the training data, enabling the models
to learn more generalized and robust features [28].

Additive white Gaussian noise (AWGN): In this technique, white Gaussian noise is introduced
into the PCG signals. This noise, following a Gaussian distribution, simulates real-world variations
and adds a level of randomness to the signals. By doing so, the models become more resilient to noise
in actual data, leading to improved generalization and reduced overfitting.

We have added the adding white Gaussian noise as one of the data augmentation techniques to the
text. This technique helps to further diversify the training data and improve the model’s robustness.

3.1.3 Model Architecture

Architecture the CNN-based models are constructed with multiple layers, including convolutional
layers, pooling layers, and fully connected layers. The CNN-based model incorporates convolutional
layers that adaptively adjust the sampling locations in the feature map in Fig. 6, enhancing the model’s
ability to capture complex patterns in the PCG signals.

3.1.4 Loss Function

The Mean Squared Error (MSE) loss function is used to train the models. It calculates the average
squared differences between the estimated and actual blood pressure values, guiding the models to
minimize this error during the training process [28,31].

MSE = 1
n

n∑
i=1

(
xi − ∧

xi

)2

(3)

where (xi) and (
∧
xi) are the actual and estimated blood pressure values, respectively, and n is the number

of observations. The Mean Squared Error (MSE) loss function is used to measure the average squared
difference between predicted values and actual values in a regression task.
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The MSE loss measures the discrepancy between predicted values (xi) and actual values (
∧
xi) for

each data point in the dataset. The goal is to minimize this loss during the training process to make
predicted values as close as possible to the ground truth values.

Figure 6: A block diagram depicting the overall system of estimate BP from the PCG signal

3.1.5 Optimizer

The Adam optimizer is employed for training the models. It adaptively adjusts the learning rate
during training, providing efficient and effective optimization.

3.1.6 Training Process

In the training process, machine learning or deep learning models are iteratively optimized to
achieve optimal performance on a given task. This section outlines the key aspects of the training
process.

1. Epoch-Based Training:

The training process is organized into epochs, where each epoch represents a complete pass
through the entire training dataset. This approach allows the model to iteratively learn and improve
from the data. The training process will repeat 2000 times, each time adjusting the model’s parameters
to reduce the error in predictions. In Fig. 7, through experimentation, we observed that our model’s
loss function started stabilized around 1750 epochs, with marginal improvements thereafter. Extending
the training to 2000 epochs allowed us to confirm that the model reached in learning, and for training
with the newly PCG dataset. thereby ensuring that we had fully captured the learning potential of the
newly data without prematurely halting the process.

2. Optimize Model Performance:

The Adam optimizer is used to adjust and improve model parameters based on the calculated
gradients. Adam is chosen for its effectiveness in handling varying data scales and its adaptive
approach to adjusting the learning rate, which is essential for converging to optimal solutions
efficiently.



CMC, 2024, vol.79, no.2 1783

Figure 7: Training loss curve across 3-fold cross-validation

3. Loss Function:

The Mean Squared Error Loss (MSE) function is used to measure the difference between the
model’s predictions and the actual values. MSE is a common choice for regression problems as
it penalizes larger errors more severely, encouraging the model to focus on reducing these larger
discrepancies.

3.1.7 Hyperparameter Tuning

Various hyperparameters Including learning rate and batch size. This process involved employing
a systematic method to select the most effective conditions based on their performance outcomes in
initial experiments. These conditions were then iteratively applied to refine subsequent experiments.
To explore the conditions of various parameters systematically and identify the configuration that
provides the best model performance from this new recording dataset.

1. CNN layer and pooling: The design of our CNN model’s architecture, specifically the con-
figuration of its convolutional and pooling layers, is informed by the guidelines established
in reference [28]. Initially, the model is structured to include three convolutional layers, a
foundational setup aimed at capturing a broad range of features from the input data. Following
each convolutional layer, a max pooling layer is integrated, serving as a critical component for
reducing dimensionality, enhancing computational efficiency, and ensuring the model’s focus
on the most salient features. This initial configuration, chosen as our test’s starting condition.

2. Learning rate: The learning rate is a critical hyperparameter in the training of neural networks.
In this section, the learning rates to be tuned are 0.01, 0.001, and 0.0001. The learning rate
influences how much the model’s weights are adjusted during training. A higher rate can lead to
faster convergence but might overshoot the minimum, while a lower rate ensures more precise
updates but can slow down the training process. The goal is to find an optimal learning rate
that balances convergence speed and accuracy.

3. Batch size: Batch size is another key hyperparameter, and the sizes being experimented with are
256, 128, 64, 32, and 16 [30]. The batch size determines the number of training examples used
in one iteration of model updates. Larger batch sizes offer more stable gradient estimates but
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require more memory and computational power. Conversely, smaller batch sizes can lead to
faster convergence and can also introduce beneficial noise, aiding generalization. The ideal
batch size would efficiently utilize computational resources while maintaining good model
performance.

3.1.8 Model Evaluation

Upon completion of training, the models are evaluated on the test set to assess their performance
using the metrics outlined in the Performance Criteria section. The results from this evaluation provide
insights into the models’ effectiveness in blood pressure estimation from PCG signals and inform
potential refinements and enhancements for further model development.

3.2 Performance Criteria

In evaluating the performance of the proposed CNN-based learning regression model for blood
pressure estimation, several key metrics are employed to ensure a comprehensive assessment. These
metrics provide a quantitative measure of the model’s accuracy, reliability, and overall effectiveness in
estimating blood pressure from PCG signals. Below are the detailed explanations and equations for
each performance criterion used in this study:

• Mean Absolute Error (MAE): This metric calculates the average absolute errors between the
estimated and the actual blood pressure values. It provides a straightforward measure of the
model’s estimation error. A lower MAE value indicates better performance of the model.

MAE = 1
n

n∑
i=1

∣∣∣yi − ∧
yi

∣∣∣ (4)

where (yi) and (
∧
yi) are the actual and estimated blood pressure values, respectively, and n is the number

of observations.

• Standard Deviation (STD): The standard deviation of the errors measures the dispersion of the
errors from the mean error. A lower STD indicates that the errors are closely clustered around
the mean, suggesting consistent model performance.

STD =
√√√√1

n

n∑
i=1

(
yi − ∧

yi

)2

(5)

Each of these performance criteria plays a crucial role in thoroughly evaluating the effectiveness of
the proposed model, ensuring its reliability and accuracy in real-world blood pressure estimation tasks.
The comprehensive assessment allows for the identification and addressing of any potential limitations
or areas of improvement, contributing to the continual enhancement of the model’s performance in
blood pressure estimation from PCG signals.

4 Results and Discussion
4.1 Results Based on Our Proposed Method

The model proposed a Mean Absolute Error (MAE) of systolic and diastolic pressure estimation.
These results are expected to approach the acceptable margin of error within the Association for the
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Advancement of Medical Instrumentation (AAMI) standard. This emphasizes the clinical applicabil-
ity of the mode.

4.1.1 Comparison with Method

In this subsection, we compare the performance of our proposed method with that of several
well-known systems. As mentioned in the introduction section, some systems may not be included due
to differences in the experimental models employed in database-based approaches. Here, we present
a comparison of experimental results to align with the conditions of our experiment. As a result,
we include the results of select known systems for the purpose of adjusting continuous testing and
comparing them with the methods we have tested. Table 1 presents the overall performance, including
the Mean Absolute Error (MAE) and Standard Deviation (STD), for both the training and testing
phases of each network. It can be observed that the CNN with three CNN layers and three hidden
layers has a linear layer for test the new dataset. This network utilizes the PCG signals recorded from
78 volunteers in the dataset.

Table 1: Performance of PCG signals data with CNN model

MAE SBP mmHg MAE DBP mmHg STD SBP mmHg STD DBP mmHg MBP mmHg

32.46 19.81 24.97 15.39 26.13

The MAE SBP value of 32.46 mmHg represents the average systolic blood pressure in the STD
dataset. An SBP of 24.97 mmHg indicates a degree of variability or dispersion of SBP values. A higher
standard deviation indicates a measurement range. A broader SBP MAE DBP value of 19.81 mmHg
represents the average diastolic blood pressure in the STD dataset. DBP of 15.39 mmHg represents the
variability in DBP measurements. MBP of 26.13 mmHg represents the average of both SBP and DBP.
And provide insight into overall blood pressure. In summary Table 1, it is a test of this dataset when
imported into the estimation process with the CNN technique to see if the newly recorded data can
produce a preliminary estimation or not. As shown in the table, Using this new dataset can be used in
the basic CNN system, but the tolerances of the test results are not acceptable. The next step was to
further improve the test by rebalancing the dataset to balance the values that could be estimated. and
increase the chances of the machine learning to learn from an increased dataset

In our examination of the newly acquired PCG signal data, we identified significant fragmentation
with an underrepresentation of higher blood pressure readings. To rectify this imbalance and improve
the dataset’s efficacy for model training, we implemented Additive White Gaussian Noise (AWGN)
as a deliberate method to enrich the dataset with a wider spectrum of blood pressure readings. This
enrichment strategy was aimed at bolstering the dataset with additional data points across a broader
blood pressure range, thereby facilitating a more comprehensive model training.

The impact of this data augmentation is graphically depicted in Fig. 8. Here, kernel density
estimates provide a stark comparison between the distribution of the unmodified dataset and that
which has been enhanced with AWGN. The density plots demonstrate how the application of
AWGN successfully expands the representation of higher blood pressure values, mitigating the initial
disproportionality and fostering a more balanced dataset for the development of our model. Table 2
shows the MAE with AWGN method.
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Figure 8: Kernel density estimates for the distribution of blood pressure data comparing without
AWGN to those with AWGN

Table 2: Performance of PCG signals with additive white gaussian noise (AWGN)

Model MAE SBP
mmHg

MAE DBP
mmHg

STD SBP
mmHg

STD DBP
mmHg

MBP
mmHg

1D CNN w/o AWGN 32.46 19.81 24.97 15.39 26.13
1D CNN with AWGN 15.46 9.53 11.32 7.76 12.49

The presence of AWGN clearly has a significant effect on blood pressure estimation when
comparing the two rows. Table 2 shows that when testing the same model, The finding that the MAE
was much lower when the data were balanced across different blood pressure values. This is due to
the assumption that if there is an increase in the distribution of information in training, It will make
learning work better because there are a number of datasets that are known along with the values used
in training. When testing the results, it was found that adding a more balanced number of trainings
sessions to the dataset resulted in weaker estimation results. To evaluate the CNN model design, we
performed tests and compared the results. Specifically, investigating the variation in extracting PCG
signal features under different numbers of CNN layers, the results are shown in Table 3.

Table 3: Performance of numbers CNN block layer

Number of
CNN block

MAE SBP
mmHg

MAE DBP
mmHg

STD SBP
mmHg

STD DBP
mmHg

MBP
mmHg

1 147.66 74.81 102.99 49.47 111.24
2 15.90 10.53 13.66 8.29 13.22
3 15.46 9.53 11.32 7.76 12.49
4 14.21 10.03 10.35 6.59 12.12

(Continued)



CMC, 2024, vol.79, no.2 1787

Table 3 (continued)

Number of
CNN block

MAE SBP
mmHg

MAE DBP
mmHg

STD SBP
mmHg

STD DBP
mmHg

MBP
mmHg

5 12.68 8.31 8.27 5.86 10.50
6 14.27 9.92 10.88 7.66 12.09
7 13.84 9.63 10.31 7.43 11.73

The results of the experimental table where different modifications of the CNN layers are
presented and compared. Among these modifications. The experiment yielded significantly low error
values. It had a pressure error of 12.68 mmHg for the upper pressure and 8.31 mmHg for the lower
pressure. As shown in Table 3. The results in Table 3 reveal a trend in the performance of a CNN model
with varying numbers of convolutional blocks, as measured by MAE for SBP, DBP blood pressure,
and their STD, along with MBP. A notable observation is the decrease in MAE for both SBP and DBP
as the number of CNN blocks increases from 1 to 5, indicating improved model accuracy. However,
this improvement plateaus beyond five layers, suggesting an optimal number of layers for this specific
application. The standard deviations also follow a similar trend, decreasing with an increasing number
of layers, indicating more consistent model predictions. This analysis reflects the efficiency of deep
learning models in capturing complex patterns in data, with a balance between model complexity
and performance. From the experimental results in the Table 3, there are 7 layers of CNN presented,
because in the test adding layers at 8, 9, 10, the results obtained from the estimation were under-fitting
of estimation. And this continued to happen as more layers of the CNN were added, allowing us to
continue testing other types of parameterizations.

The next phase involves examining Table 4, which is to analyze the impact of different numbers
of linear layers, following the model with 5 CNN layers. This investigation aims to assess how
various linear layer configurations influence the model’s precision and reliability in blood pressure
measurement. Such an analysis is crucial for determining the most effective number and configuration
of linear layers to optimize the model’s performance for the specific application at hand.

Table 4: Performance of number of linear layers

Number of classifier layer MAE SBP
mmHg

MAE DBP
mmHg

STD SBP
mmHg

STD DBP
mmHg

MBP
mmHg

1 19.05 74.73 13.08 8.58 46.89
2 18.77 10.18 12.40 7.22 14.48
3 12.68 8.31 8.27 5.86 10.50
4 12.50 8.80 9.25 6.20 10.65
5 14.66 10.27 10.37 7.57 12.46
6 11.68 7.88 7.44 6.11 9.78
7 12.18 8.81 8.15 5.68 10.49
8 15.05 9.94 10.63 7.09 12.49
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In our analysis of Table 4, we focused on the MAE performance of models with different numbers
of linear layers for estimating blood pressure. Several noteworthy trends have emerged. The key factor
under investigation is the number of linear layers within the model architecture.

Firstly, we observe a clear relationship between the number of linear layers and MAE values. As
the number of linear layers increases from 1 to 8, a consistent impact is observed on both systolic
blood pressure (SBP) and diastolic blood pressure (DBP) MAE. For SBP MAE, the highest value of
19.05 mmHg is associated with a model featuring 1 linear layer. However, as the number of linear
layers progressively increases, SBP MAE consistently decreases. The most accurate SBP estimation,
with an MAE of 11.68 mmHg, is achieved when employing models with 6 linear layers. A parallel
trend is observed for DBP MAE, with the highest MAE of 74.73 mmHg linked to 1 linear layer, while
the lowest DBP MAE of 7.88 mmHg is attained with 6 linear layers.

Secondly, the analysis extends to the STD of SBP and DBP MAE. These STD values exhibit a
consistent pattern mirroring the behavior of MAE. As the number of linear layers increases, STD
values decrease, reflecting a reduction in variability. Models with 1 linear layer produce the highest
STD values, signifying greater variability in MAE. Conversely, models with 6 linear layers yield the
lowest STD values, indicating reduced variability in MAE.

Lastly, the Mean Blood Pressure (MBP) values align with the trends observed for SBP and DBP
MAE. The highest MBP MAE is associated with 1 linear layer, while the lowest MBP MAE is achieved
when employing models with 6 linear layers.

In summary, the analysis highlights the important role of selecting the appropriate number of
linear layers within the model architecture. For accurate blood pressure estimation, The model with
6 linear layers outperformed the other models. Consistently, showing lower MAE and lower STD in
MAE, these findings highlight the importance of optimizing the number of linear layers to effectively
increase the accuracy of blood pressure estimation. From the experimental results in Table 4, there are
8 linear layers presented because in the test plus the 9th layer, the results obtained from the estimation
caused underfitting to the estimation. And this continues to happen as more linear layers are added.
This leads us to continue testing other types of parameterizations.

The next step involves testing by adjusting the values in specific learning areas. Scale the data to
be fed into the learning section and compile the learning rate values in Table 5.

Table 5: Performance MAE of batch sizes and learning rates

Batch size/Learning rates MAE SBP
mmHg

MAE DBP
mmHg

STD SBP
mmHg

STD DBP
mmHg

MBP
mmHg

256/0.01 11.68 7.88 7.44 6.11 9.78
256/0.001 11.43 7.97 7.79 6.37 9.70
256/0.0001 11.75 9.04 8.30 5.47 10.40
128/0.01 11.73 8.11 7.70 5.80 9.92
128/0.001 11.11 7.91 7.96 4.78 9.51
128/0.0001 12.22 8.87 8.11 5.39 10.55
64/0.01 10.26 7.81 7.95 4.99 9.04
64/0.001 12.43 9.03 9.22 6.02 10.73

(Continued)
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Table 5 (continued)

Batch size/Learning rates MAE SBP
mmHg

MAE DBP
mmHg

STD SBP
mmHg

STD DBP
mmHg

MBP
mmHg

64/0.0001 12.69 8.84 8.67 6.28 10.77
32/0.01 12.56 8.22 8.84 5.59 10.39
32/0.001 11.77 8.75 7.85 5.53 10.26
32/0.0001 14.65 10.55 10.47 7.19 12.60
16/0.01 10.69 6.89 7.23 5.22 8.79
16/0.001 14.18 9.62 9.89 6.53 11.90
16/0.0001 16.12 11.50 11.11 7.85 13.81

The analysis of the results presented in Table 5, which investigates the MAE performance of
models across different batch sizes and learning rates, offers valuable insights into the influence of
these hyperparameters on the accuracy of blood pressure estimation.

Considering the impact of learning rate on MAE, the results show that learning rate selection plays
an important role in accurate blood pressure estimation. A higher learning rate (0.01) tends to result
in lower MAE values, indicating increased accuracy in estimating blood pressure. On the contrary
The lowest learning rate (0.0001) often leads to higher MAE values, highlighting the importance of
an appropriate learning rate in achieving model convergence and accuracy. Table 5, which examines
the MAE performance across different batch sizes and learning rates, reveals several trends. Smaller
batch sizes, particularly 16, demonstrate lower MAE values in many cases, suggesting better model
performance. This can be attributed to smaller batch sizes offering more frequent updates and
potentially better generalization. The interaction between batch size and learning rate also appears
significant; for instance, a batch size of 16 with a learning rate of 0.01 shows notably lower MAE
values across most table, indicating an optimal combination for this specific model and dataset. This
suggests that both the batch size and learning rate play crucial roles in model accuracy and should be
carefully tuned to achieve optimal performance.

Table 5 is observed with a batch size of 16 and a learning rate of 0.01. This combination yields the
lowest Mean Absolute Error (MAE) values across the board: SBP (10.69 mmHg), DBP (6.89 mmHg),
STD SBP (7.23 mmHg), STD DBP (5.22 mmHg), and MBP (8.79 mmHg). This indicates that for
this model and dataset, a smaller batch size combined with a moderately high learning rate optimizes
performance, leading to more accurate blood pressure predictions with lower variability.

Fig. 9 shows is a scatter plot illustrating the correlation between blood pressure values predicted by
our model and the actual blood pressure measurements. The plot showcases how closely our model’s
estimates align with the true values. This visual representation demonstrates the effectiveness of our
proposed in estimating blood pressure.

4.1.2 Systolic Blood Pressure Estimation

To estimate systolic blood pressure model performed. It has an MAE 10.69 mmHg, Fig. 10a, and
a standard deviation is 7.23 mmHg, indicating that the model estimates can provide an approximation
to the real data. This indicates linear relationship between the estimated and actual systolic blood
pressure values. These findings reinforce the model’s feasibility for estimating systolic blood pressure.
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This points to the potential usefulness of the PCG signal feature in this context, and it is clear from
the picture that the estimated vs. actual values tend to be similar.

Figure 9: Scatter plot both actual and estimated blood pressure values by the proposed model

Figure 10: Scatter plot of the algorithm for (a) systolic BP estimation and (b) diastolic BP estimation

4.1.3 Diastolic Blood Pressure Estimation

In terms of diastolic blood pressure estimation, it comes to estimating diastolic blood pressure
model performed. With a mean absolute error of 6.89 mmHg. This indicates a lower error rate
compared to systolic blood pressure values. The standard deviation of the error was recorded as 5.22
mmHg. Fig. 10b visually shows that the model’s estimates correspond closely to the real data. These
findings also confirm the model’s consistent performance in estimating systolic and diastolic blood
pressure.

4.2 Comparison of the Results with the Related Works

Table 6 presents a comprehensive comparative analysis of the performance of PCG-based blood
pressure estimation using the proposed CNN approach in this study, along with recent related works
from the literature. The evaluation is based on key metrics, including Mean Absolute Error and
Standard Deviation [3,32], for both systolic blood pressure and diastolic blood pressure. Table 6
presents a comprehensive comparison of CNN-based PCG methods for blood pressure estimation.
This work is detailed alongside other contemporary studies such as the use of PCG signals with
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traditional machine learning techniques and artificial neural networks. Work using dual signals,
namely PCG and PPG for blood pressure estimation This demonstrates the diversity of approaches
within the field. This table includes the standard deviation and absolute mean error. Table 6 shows
that the estimated SBP using the recommended technique is close to the measured value, as the MAE
± STD is 10.69 ± 7.23 mmHg reported. The proposed approach yields similar results to the method.
Given in [3] when it comes to estimating DBP, this result is of course higher but due to the new method
used, namely CNN, and the simplification of data readout. Along with testing with new data collected
under the supervision of a doctor.

Table 6: Comparison with other works

Work Number of
subjects

Signals Index SBP mmHg DBP mmHg

MAE STD MAE STD

This work 78 PCG CNN 10.69 7.23 6.89 5.22
[3] 37 PCG S21 6.48 4.48 3.91 2.58
[12] 85 PCG-PPG VTT 6.67 8.47 – –
[15] 24 PCG-PPG PTT 7.47 11.08 3.56 4.53
[32] 10 PCG-PPG VTT 4.07 3.07 5.61 4.09
[33] 32 PCG-PPG PTT 6.22 9.44 3.97 5.15

Indeed, the MAE ± STD was 10.69 ± 7.23 mmHg for the former and 3.91 ± 2.58 for the latter,
respectively. Although the results obtained by the proposed method are globally very comparable to
the results described in reference [3], the proposed method is much simpler because only one signal
(PCG signal) is required to measure blood pressure.

5 Conclusion and Future Work

In this study, we introduced a novel method for storing phonocardiogram (PCG) signal data,
collected from 78 volunteers at the Suranaree University of Technology Hospital. This method
leverages a unique device and is subject to the Human Research Ethics approval number EC-65-
78. Utilizing cutting-edge techniques such as convolutional neural networks (CNN), a form of deep
learning, we demonstrated the potential of using a single PCG signal for blood pressure estimation.

Our approach centers on optimizing dataset adjustments and fine-tuning the parameters within
the CNN’s layers to capture the characteristics of the PCG signal. Analysis revealed a distinct
correlation between the features of the PCG signal and blood pressure readings, underscoring the
viability of this method for non-invasive blood pressure monitoring.

Despite these promising results, further research is necessary to expand the scope of our study,
including the exploration of additional physical parameters and other measurement units that are
compatible with our outpatient blood pressure measurement techniques. There is significant potential
to enhance healthcare delivery through this methodology, as it enables direct blood pressure estimation
from a single PCG signal without the need for expensive equipment. Moreover, the compatibility of
PCG recordings with smartphone technology paves the way for integrating mobile devices to refine
PCG signal analysis accuracy. Embracing this single-signal approach also presents new challenges in
analysis, making it a compelling direction for future research.
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