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ABSTRACT

Cardiovascular disease is the leading cause of death globally. This disease causes loss of heart muscles and is also
responsible for the death of heart cells, sometimes damaging their functionality. A person’s life may depend on
receiving timely assistance as soon as possible. Thus, minimizing the death ratio can be achieved by early detection
of heart attack (HA) symptoms. In the United States alone, an estimated 610,000 people die from heart attacks each
year, accounting for one in every four fatalities. However, by identifying and reporting heart attack symptoms early
on, it is possible to reduce damage and save many lives significantly. Our objective is to devise an algorithm aimed
at helping individuals, particularly elderly individuals living independently, to safeguard their lives. To address
these challenges, we employ deep learning techniques. We have utilized a vision transformer (ViT) to address this
problem. However, it has a significant overhead cost due to its memory consumption and computational complexity
because of scaling dot-product attention. Also, since transformer performance typically relies on large-scale or
adequate data, adapting ViT for smaller datasets is more challenging. In response, we propose a three-in-one steam
model, the Multi-Head Attention Vision Hybrid (MHAVH). This model integrates a real-time posture recognition
framework to identify chest pain postures indicative of heart attacks using transfer learning techniques, such as
ResNet-50 and VGG-16, renowned for their robust feature extraction capabilities. By incorporating multiple heads
into the vision transformer to generate additional metrics and enhance heart-detection capabilities, we leverage a
2019 posture-based dataset comprising RGB images, a novel creation by the author that marks the first dataset
tailored for posture-based heart attack detection. Given the limited online data availability, we segmented this
dataset into gender categories (male and female) and conducted testing on both segmented and original datasets.
The training accuracy of our model reached an impressive 99.77%. Upon testing, the accuracy for male and female
datasets was recorded at 92.87% and 75.47%, respectively. The combined dataset accuracy is 93.96%, showcasing a
commendable performance overall. Our proposed approach demonstrates versatility in accommodating small and
large datasets, offering promising prospects for real-world applications.
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1 Introduction

Each year, millions of individuals pass away from heart problems, with factors such as poor
nutrition, unhealthy lifestyle, and pollution contributing considerably to its prevalence [1]. In multiple
countries, like Italy and Japan, more than 20% of the population is over the age of 65, and the
proportion (%) of heart attacks (HAs) is rising daily. It is one of the deadliest disease, accounting
for 16% of global fatalities. In 2000, the death rate rose quickly, and by 2019, the World Health
Organization (WHO) indicated that the death toll from cardiovascular disease was between 2 to
8.9 million. People who live alone find no one nearby to help them in an emergency in case of
experiencing heart attack symptoms [2,3]. This vulnerability exposes them to the risk of making
an emergency call for assistance. Many are unaware of the signs and symptoms of a myocardial
infarction. Lack of awareness regarding these warning signs and symptoms could elevate the risk
of death. Patient require quality care when experiencing such symptoms because they may not be
able to detect them early. However, not receiving medical assistance care in hospitals could jeopardize
a patient’s life. The primary symptoms of congestive heart failure include excruciating chest pain,
upper body discomfort, exhaustion, and shortness of breath [4] as shown in Fig. 1. However, for the
identification of cardiovascular diseases, [5] a person does not need multiple or complex devices to
detect congestive heart failure. According to a recent study, a set of images produced by individuals
suffering from heart problems was utilized. A thorough review of deep learning (DL) applications in
a variety of disciplines has been provided by recent research. DL was employed in the previous studies
to train the algorithm, enabling it to examine the dataset and determine whether or not the person
was suffering from heart muscle injury [6,7]. Image segmentation is crucial across domains such as
medical image processing, object recognition techniques, clustering, and surveillance [8]. Advanced
techniques, including stochastic approaches and DL integration, improve segmentation performance.
However, these models might perform well for certain image classes but encounter challenges with
datasets due to image diversity. Critical factors affecting segmentation performance include noise and
intensity in-homogeneity within the image [9].

Figure 1: This image shows the relation between heart attack and chest pressure

Our research, we propose a method that utilizes deep learning (DL) techniques to detect ongoing
heart attacks. The dataset employed in this technique consists of individuals exhibiting postures
associated with heart attacks, which is then divided into two categories. This dataset is used for
training with DL to determine whether a person in any posture is experiencing cardiovascular disease.
Our study suggests that employing a hybrid model to predict cardiac delays results in a powerful
classification ability.

Our contributions are as follows: Dataset Splitting: Initially, we divided the dataset into two
subsets based on gender, male and female derived from the original combined dataset. Introduction
of MHAVH Model: We introduced a novel Multi-Head Attention Vision Transformer Hybrid
(MHAVH) model, designed to enhance classification performance. This model is trained on all three
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datasets male, female, and combined to capitalize on the diverse data sources available. The drawbacks
of the previous study are outlined below:

a) The initial exploration into posture-based heart attack detection was documented in 2019
[3]. The subsequent 2021 research delved further into posture detection [10]. However, it
is noteworthy that the majority of prior studies did not focus on posture-based cardiac
arrest detection until this recent technological advancement, as evidenced by the latest paper
published in 2022 [6].

b) Researchers aim to design specialized hardware for the challenging task of posture-free
diagnosis of coronary infarction. This hardware should seamlessly integrate with existing
models, as there has been limited exploration in posture-based heart disease diagnosis. Previous
studies have primarily focused on conventional diagnostic tools such as Electrocardiograph
(ECG) machines and magnetic resonance imaging (MRI) [11,12]. The envisioned hardware
would cater to the unique demands of posture-free diagnosis, enhancing the accuracy and
efficiency of detecting coronary infarction.

c) However, there is not too much HA data with posture available on the internet, and ViT-based
techniques might not be able to extract features as well. Furthermore, redundant associations
between many local patches may be produced by ViT’s self-attention mechanism, which would
negatively impact the performance [13].

d) The presence of imbalanced data between two distinct classes poses challenges during neural
network training, resulting in inaccurate detection and potentially misleading analysis. It is
essential to mitigate this imbalance to ensure a more reliable and unbiased model learning
process [14].

This paper focuses on enhancing the MHAVH deep learning algorithm for vital sign detection
associated with heart attacks, emphasizing object detection’s role in assessing chest pain severity. The
modified MHAVH technique tailored for posture-based chest pain detection shows promising results,
particularly in hospital settings, aided by data augmentation techniques. Leveraging Residual Neural
Network (ResNet-50), Visual Geometry Group (VGG-16), and vision transformer (ViT), this hybrid
model combines multiple approaches to improve overall performance, with data augmentation playing
a crucial role in enhancing performance on image datasets.

Initially, we implemented these models individually, starting with VGG-16, then ResNet-50, and
the ViT. However, we encountered overfitting issues. To address this issue, we experimented using
multiple combinations (hybrid) of different models before ultimately implementing the MHAVH
model. One of the prominent hybrid approaches we used was based on a combination of ViT, Mobile-
NetV2, and VGG-16. Although it resolved overfitting issues. However, we did not get satisfactory
results in accuracy and performance. In further experiments, we adjusted the parameters of each
model, such as the number of heads and selected mid-head attention. We also determined that
changing the number of heads directly impacted the image patch size in the ViT model. Additionally,
we optimized parameters like dropout and replaced the Gaussian error linear unit (GeLU) with
rectified linear unit (ReLU) activation functions, results into improved performance. Despite these
adjustments, we found the combination (hybrid) model’s results were insufficient. Then, we further
explored data augmentation techniques to improve performance, which significantly impacted our
experiments while comparing results with each approach. That is why we proposed and used the
MHAVH model in our experiments, as it showed satisfactory results, thereby concluding our research
efforts. Our main goals related to the proposed study are as follows:
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a) Using machine learning (ML), we proposed a method for detecting congenital heart disease in
red, green, blue (RGB) color images.

b) We designed a novel three-in-one stream fuse model called MHAVH by collecting posture and
feature extraction data for every class of images, followed by data augmentation techniques at
the pre-processing stage.

c) Two pre-trained transfer learning models (VGG-16 and ResNet-50) combined with ViT are
employed to enhance the model’s performance and resolve unbalanced data issues.

d) We performed Deep Neural Network (DNN) classification and conducted many experiments
to improve model performance metrics using ablation studies, quantitative analysis, and
qualitative methods to represent the proposed model’s effectiveness.

e) To validate our model in the detection of HA.

Hence, to achieve the primary goal with novelty, we made some developments in this study, the
main contributions are as follows:

a) Contribution 1: We proposed a model named MHAVH, this is a Three-in-one stream model.
In this proposed model, we introduced a fusion method that combine three different models
simultaneously: Vision transformer, VGG-16, and ResNet-50. The novelty of this research is
combining three separate models. The milestone study, known as ViT, the vision transformer
(ViT), represents a significant advancement in the image classification, leveraging its self-
attention mechanisms [4]. VGG-16 is an open-source framework mostly employed in a range
of multiple research scenarios [15]. It is based on a sequence of six steps. There are two
convolutional layers (CLs) in the first two stages. The first is max-pooling (MP), which has
a stride of two (2). The other is three (3) CLs and one (1) MP layer of stride two (2) are present
for the next three steps. ResNet-50 needs two stages to connect to the feature extraction network
[16]. Average pooling should come first; the fully connected layer should come after average
pooling.

b) Contribution 2: We designed advanced multi-head attention, which leads to a novel and
efficient end-to-end deep method. We increased the number of heads in advance of multi-head
attention. We found out that the intermediate size number of heads is neither too small nor
too big for better results.

c) Contribution 3: We split datasets into two categories: Male and female. We utilized both
categorical datasets along with a combined (original) dataset.

d) Contribution 4: We employed pre-trained convolutional neural network (CNN) models such as
VGG-16, ResNet-50, and ViT in combination with deep neural networks (DNN). This hybrid
model approach was utilized to enhance detection capability.

The paper is organized into several sections as follows: Section 2 provides a detailed summary
of prior research conducted in this field; Section 3 presents a comprehensive methodology for the
proposed framework; Section 4 discusses the results achieved; and Section 5 concludes the paper and
outlines avenues for future research.

2 Background and Related Work

Image processing is a vital technique, which is being utilized and implemented across various
domains of biology. It helps to detect and analyze problems related to object detection and multiple
disease detection, such as heart attacks. This paper considers RGB images of posture-based HA
detection, as many researchers have worked on heart disease detection using machine and deep
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learning techniques. In this section, we categorized our discussion into four different sections: (1)
Machine Learning; (2) Deep Learning and Heart Attack Survey; (3) Color Images; (4) Transformers,
and Multi-Head Attention.

2.1 Machine Learning

A noninvasive-based technique is an approach in an ML-based system for predicting HA disease
by utilizing a dataset of heart posture. In this method, they used seven different ML techniques:
A process of cross-validation, algorithms of feature selection, and classifiers that perform well on
evaluation criteria such as accuracy, sensitivity, precision, Matthews’ correlation ratio and calculated
the time of execution [10]. Li et al. employed logistic regression, support vector machine, and extreme
gradient boosting to predict heart-related conditions in patients. Their study, conducted between
July 2016 and December 2019 on 3759 expectant patients, yielded a prediction model with an
accuracy of 0.920, an F1-score of 0.571, and a recall of 0.789 [17]. Another approach is based on
statistical classification using ML methods after the handmade segmentation. However, this approach
is labor-intensive and computationally expensive, this approach requires a large number of experienced
workers, and is error-prone [18].

2.2 Deep Learning and Heart Attack Survey

The leading contributors to cardiovascular disease and the leading cause of high death rates
globally are valvular heart disorders (VHDs) [19]. Jamil et al. introduced three distinct frame-
works leveraging deep learning to accurately detect valvular heart diseases (VHD) using both One-
Dimension (1D) and Two-Dimension (2D) phonocardiogram (PCG) signals. Their proposed method
involves an efficient multi-scale convolutional neural network (CNN) for precise VHD identification,
aiming to improve early diagnosis and treatment outcomes [19]. This technique has been used to extract
the distinguishable features of multiple non-overlapping frequency bands of electroencephalogram
signals from several scales for the motor imagery brain-computer Interface (MI-BCI) classifier [20].
In another research, a CNNs and support vector machine (SVM) based hybrid model was used in
which CNN acts as a feature extractor and SVM as a binary Identifier. The technique for this method,
which is based on handwritten digits, was trained and tested using the Modified National Institute
of Standards and Technology (MNIST) dataset [21]. The author proposed a model based on deep
convolutional neural network (DCNN) architecture codenamed inception that attains the new state
of the art for the classification of images using the ImageNet dataset [22].

2.3 Transformer and Multi-Head Attention

A fusion method [23] proposed an architecture of transformers to combine multi-modal features
effectively. It developed a fused multi-modal presentation for multi-label video emotion detection
from the video dataset. Wang et al. developed a network based on the transformer’s encoder-decoder
structure. The 3D CNN [24,25] is employed to extract or retrieve the spatial feature map from the
global feature modeling carefully transformed by the input transformer. Simultaneously, the decoder
predicts the precise segmentation map by performing progressive up-sampling and utilizing the
features or attributes embedded in the transformer. The popularity of transformers [26] is attributed
to their self-attention mechanism, which calculates a weighted average of features from other tokens
based on similarity scores between pairs of tokens. This allows each token to obtain a contextual
representation by attending to others in the sequence [27]. Multi-head attention [28] displays a specific
orientation of attention heads and proposes multiple phenomena based on subspace and attended
positions. Each attention head displays characteristics that are unique from others. Multiple heads [29]
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are concatenated to compute the final output, and multi-head expands single-head attention to capture
various attention patterns and increase transformer performance. The study is organized into different
phases: Split data, data-augmentation phase, model preparation process, testing, and results.

3 Methodology

Here is a detailed review of the presented MHAVH model working principle for detecting HA
detection into two classes from a posture-based database. The method begins by downloading an
online dataset [3], which is then divided into two classes for binary classification. To ensure optimal
results, various pre-processing techniques are applied to the image dataset. Moreover, a three-in-one
stream framework is developed, incorporating ResNet-50, VGG-16, and ViT architecture. Notably,
enhancements and improvement are made to the Multi-Head Self-Attention layer. Fig. 2 displays the
step-by-step process of the developed model.

Figure 2: The proposed system describes the processes of HA classification

3.1 Multi-Head Attention Hybrid (MHAVH) Model

In this section, we demonstrated the MHAVH proposed framework responsible for binary
classification for HA detection in our research. We further discussed VGG-16, ResNet-50, and vision
transformer in detail and how we associated deep transfer learning models and the vision transformer
model. Furthermore, a deep neural network (DNN) were utilized to perform classification.

3.1.1 Framework

This architecture of MHAVH is a combination of three-in-one feature extraction models. As
shown in Fig. 3, the two pre-trained transfer learning models, VGG-16 and ResNet-50, work alongside
a self-attention-based model (ViT). This three-in-one-stream network model configura-tion provides
robustness for the extraction of hybrid features. In other sub-sections, we discussed each approach
used in the MHAVH model in detail.

3.1.2 ResNet-50

It is comparable to VGG-16, except that ResNet-50 has additional identity mapping capabilities.
ResNet-50 predicts the delta that is required to reach the final prediction from one layer to the
next [30]. Our model used ResNet-50 because of its specific capabilities to deal with the vanishing
gradient problem. Fig. 4 shows the structure of RestNet-50, which is based on its 50 layers within
five blocks (Conv1, Conv2, . . . , Conv5). For each of these blocks, the residual function F has three
convolution layers with the following dimensions: (1 × 1), (3 × 3), and (1 × 1). Eqs. (1)–(3) represent
how to calculate the output Z and add the input X of this block with the residual function (F), where
the weight matrix (Wi) of three successive convolution layers is updated with X by F. During the
feature extraction, the image (I), with the image shape of (256 × 256 × 3), is fed into the ResNet-
50 model, and the output ResNetconv5_block3_out_layer is utilized for the final output. The extracted feature,
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ResNet extracted_feature is converted to produce a 1D vector output of NResNet with the use of flattened
layer.

Z = (X) + F(X , Wi) (1)

ResNetextracted_feature = Resnetconv5_block3_out_layer (2)

NResnet = flatten
(
Resnetextracted_feature

)
(3)

Figure 3: Flow of proposed hybrid MHAVH framework

Figure 4: Basic data flow diagram of ResNet-50



2680 CMC, 2024, vol.79, no.2

3.1.3 VGG-16

The VGG-16 network was trained on the ImageNet database [30]. Its extensive training method
provides excellent accuracy even with small image datasets. VGG-16 contains 16 layers, which is
responsible for better results compared to the AlexNet architecture, which substitutes the large kernel
size with a 3 × 3 filter set. Eq. (4) shows a formulated representation of VGGextracted_feature, which is an
outcome of VGGmixed5_dense_layer. Eq. (5) explains how to obtain NVGG as an output of converting from
VGGextracted_feature after applying flattening technique.

VGGextracted_feature = VGGmixed5_denselayer (4)

NVGG = flatten
(
VGGextracted_feature

)
(5)

3.1.4 Vision Transformer

The transformer is one of the popular method of deep learning commonly used to order image
patches. Vision transformers (ViT) have shown better performance in the field of image classifica-
tion, particularly when pre-trained on large dataset and applied to various image reorganization
benchmarks such as CIFAR-100, VTA and ImageNet. They require considerably less computational
resources during training compared to other methods. ViT is a neural network type with a simple
design capable of processing various modalities such as images, text, and speech using processing
blocks that are similar. It demonstrates brilliant capabilities when applied to very large capacity
networks and extremely large datasets. ResNet can be employed to identify and categorize ViT with a
greater level of accuracy. The original transformer model used in natural language processing (NLP),
and is served as a basis for ViT. While the input of ViT is a 1D series of tokens. However, pictures
are 2D, and ViT models distribute images into little parts of 2D patches and images converted into
the patches as tokens, as executed by the first transformer model natural language processing (NLP).
The height (H), width (W), and the number of channel (C) is separated into smaller 2D patches to
organize the input image similarity to NLP. This creates patches (N = HW/P∗2) with a size of pixel P
× P [8]. Before forwarding the image patches to the encoder, flattening, sequence, learning, and patch
embedding are performed in the following sequence: Each patch of input data is flattened and then
converted into a vector. The embedded input image patches are created by projecting the flattened
patches into dimensions (D) using linear projection. A learnable embedding X-class is prefixed to the
order of the embedded input patches. The outcome N is consistent with the X-class values. Finally,
1D positional embedding (Epos) are learned during the training process and are inserted into the
patch embedding’s to prefix positional information to the image. The embedding vectors created as
the outcome of these operations are donated by (ϕo). The transformer encoder, which is a stack of
identical layers (L), is fed (xϕ) to perform the classification task. The value of the X-class at the Lth
layer of the encoder output is then sent to the classification head. Multilayer perceptrons (MLPs) are
used to create the classification head during pre-training, and a single linear layer is utilized during
fine tuning. As the classification head, the MLP carries out the ReLU non-linearity shows in Eq. (6).
Overall, the encoder components of the first NLP transformer architectures were utilized by the vision
transformer. A sequence of 32 × 32 embedded input patches, positional data, and a learnable class
embedding is suspended in the sequence are fed into the encoder. To smaller size of the patch effect the
model, the performance will be improved but the computational cost will be higher. The choice of a 32
× 32 patch size was selected due to its robustness against the loss of performance and computational
complexity. A classification head, connected to the encoder’s output shows in Eq. (7), collects the
learnable class-embedding values and utilizes it to generate a classification output based on its state.
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Transformerextractedfeature = ReLU(MHAVH) (6)

NTransformer = flaten
(
Transformerextracted_feature

)
(7)

In Table 1, we have presented the unique parameters used to get desired output from vision
transformer. These parameters were pruned based on various experiments with the flow we discussed
above in detail.

Table 1: Selected optimum parameters of the vision transformer

Parameter Value

Image size 256
Patch size 32
Number of heads 16
Number of patches 64
Projection dimension 64
Transformer unit (128, 64)
Dropout rate 0.1

3.1.5 Advance Multi-Head Self-Attention Layer

To compare with the results reported by previous work [31], we experimented our model and
successfully improved its performance. We introduced an advanced multi-head attention layer, which
employed a ReLU activation function instead of GeLU, as in the original ViT, to randomly modify
the Multi-Branch (MB) architecture sub-paths in DL mode. We increased the number of heads
in advanced multi-head attention to address the issue of patch size generation, which significantly
impacts the models performance and enhances its capability. We observed a trend against mid-head
attention, where the number of heads increased or decreased, it directly impacts the dimension of the
key (dk) required to get its value. Given that the dk is dk = dv = dimension of key/number of heads.
We increased the number of heads for our model based on its specific requirements. We decided that
our number of heads should be intermediate-head sized, neither too small nor too big. Selection of a
smaller size is directly impacts dk and the training and testing accuracies are affected. If a larger size
is selected, dk can skip out the important information. Consequently, we settled on several heads with
a size of 16, which provided the best outcome.

Aj = Softmax
(

QiKi
t√

dk

)
(8)

3.1.6 DCNN Classifier

In this stage, enhancing the model’s capability and gaining a more intricate understanding becomes
possible. The final classifier is a DNN composed of a concatenation of VGG-16, vision transformer,
and ResNet-50. The DNN model consists of 5 layers: 4 dense layers with GeLU activations of sizes
128, 64, and 32 units, respectively, along with a batch normalization layer. The last dense layer has
1 unit with a sigmoid activation function for binary classification. Fig. 5 illustrates the operational
structure of the deep neural network classifier.
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Figure 5: The structural configuration of a deep neural network (DNN) classifier anticipates the class
based on the extracted features

In Algorithm 1, the brief explanation of DNN outlines the operational structure of the Multi-
Head Attention-Vision Hybrid (MHAVH) model. The first two lines define the input and output of the
model, specifying the creation of a function with the parameter ‘i’. Subsequently, the algorithm details
the augmentation process applied to both the training and testing datasets. We extracted features from
each of the given steps 3, 4, and 5 (ResNet-50, VGG-16, and vision transformer). After extracting the
features from each model, we used a DNN classifier to classify them against those extracted features.
In the initial step of the DNN, concatenation is performed to merge the outputs (extracted features) of
the three models in steps 3, 4, and 5 into a single entity named Fhybrid in step 6. After this concatenation,
we used Fhybrid as an input to the dense layers to generate x1, as elucidated in step 7 while classifying
with DNN. We used Block1, which contains a combination of a normalization layer and a dense layer,
shown in step 8, and applied it to x1, demonstrated in step 9. Finally, the dense layer used softmax to
the output x2 for the final classification.

Algorithm 1: Procedure of MHAVH Hybrid Model
Input Train dataset (dtest) Test dataset (dtrain) image size (isize) epoch (e), class mode (cmode)

batch size (bsize)
Output classified labeled images (Normal and Heart attack posture)

L, Performance metrics M(if ground truth is available)
Step 1. Function classification(i)
Step 2. i ← img_datagenerator(tdataset,vdataset) // rescaling and augmentation
Step 3. Rfeature ←(i,Nresnet50) // Eq. (3)
Step 4. Vfeature ← (i,Nvgg ) // Eq. (5)
Step 5. Tfeature ← (i,NTransformer) // Eq. (7)
Step 6. Fhybrid ← concatenate(Rfeature,Vfeature,Tfeature)
Step 7. x1 ← dense(Fhybrid) // DNN operation

(Continued)
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Algorithm 1 (continued)
Step 8. Block 1 ← J(batch normalization, dense) // DNN operation
Step 9. x2 ← Block 1(x1) // DNN operation
Step 10. prediction ← softmax(x2)
Step 11. n ← 1
Step 12. while n ≤ do

hybrid fit( dtest, dtrain, e, bsize, cmode, isize) // Train the MHAVH model
end while

Step 13. accuracy, precision, F1-score // model MHAVH Evaluate matric (dtest)
Step 14. return accuracy, precision, F1-score

The model’s parameters refer to the trainable weights and biases within the layers. In the Dense
layers, each unit has weights connected to all units of the previous layer (plus a bias term). The
BatchNormalization layer contains parameters for scaling and centering the activations as well as
moving averages for these parameters.

3.2 Dataset Description

All the heart attack images used in this study were taken from the Heart-Attack-Detection-In-
Images 2019 dataset. We split the complete dataset into three subsets and archived them in three zip
files, male and female, and a combination of both. The female dataset is the first dataset with two
different classes, the same as the others. This set of images has 10,256 number of images. The male
dataset is the second dataset we used. It has 16,983 images and is relevant to males only. The combined
dataset is the third dataset used for training and testing, which is available to download from this link:
https://github.com/Turing-IA-IHC/Heart-Attack-Detection-In-Images2019. It comprises both males
and females and has 31,920 images. All three datasets have images with postures (heart attack) and
without postures (without heart attack), 80% of images from both classes in the dataset are used for
training and 20% for testing. Our images have a 256 × 256 pixels’ resolution, totaling 65,536 RGB
images.

Fig. 6 shows the postures in the dataset with examples of both males and females. Some exhibit
symptoms, while others do not. We utilized two classes to perform binary classification using our
model.

Figure 6: Examples of dataset image samples

https://github.com/Turing-IA-IHC/Heart-Attack-Detection-In-Images2019
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3.3 Implementation Detail

As a result, the suggested MHAVH models virtually all have their crucial hyperparameter
automatically set utilizing the stochastic gradient descent (SGD) approach. Another architectural
hyperparameter is the number of pooling layers, fully linked layers, filters, size of the filters, and
activation function, for example, ReLU. In addition, we have performed fine hyperparameter tuning
on multiple parameters like momentum, L1 or L2 regularization, batch size, and learning rate. We are
employing the binary cross-entropy function as the objective function. This loss function is commonly
used for binary classification tasks. It used a sigmoid activation function on the model’s output layer.
Binary cross-entropy compares the predicted probabilities and the actual binary labels to compute the
loss, guiding the model to reduce the error in its predictions during training. We implemented this
in our experiments because it works well when the model’s output is a probability value within the
range [0, 1], which aligns with the binary nature of the classification task. After MHAVH is trained
over three epochs due to high graphics processing unit (GPU) constraints, the test set is utilized to
estimate model’s simulated time. Our model takes about 30 min to train, meaning each iteration takes
approximately 10 min or more to complete. For the DNN, we utilized four dense layers with 3660
parameters and one batch normalization layer comprising 120 parameters.

Table 2 outlines the iteration parameters in each experiment conducted on the author’s personal
computer with Python 3.7. The experiments were trained and tested using Google Collaboratory GPU
with TensorFlow. The expanding usage of CNNs in medical image analysis has raised concerns regard-
ing increasing network depth, image quality, and computational costs. Optimizing hyperparameters
can mitigate computational expenses and enhance the efficacy of findings.

Table 2: Selected hyper-parameters setting for the proposed MHAVH model

Hyperparameter Values

Loss-function (L) Binary cross-entropy
Epoch (e) 3
Utilized-optimizer (O) SGD
Batch-size (b) 32
Learning-rate (lr) 0.001

3.4 Performance Matrix for Classification

Three CNNs were trained and evaluated based on accuracy, sensitivity, specificity, and F1-score.
Results were summarized in Table 3, and a confusion matrix depicted findings from Class A and Class
B image detection tests. Eqs. (9)–(11) were utilized to calculate classification accuracy, specificity, and
sensitivity using true positive (Tpositive), true negative (TNegative), false negative (FNegative), and false positive
(Fpositive) values.

Precision = Tpositve

Fpositive + Tpositive

(9)

Accuracy = Tpositive + TNegative

Fpositive + Tpositive + TNegaitive + Fpositive

(10)

F1 − Score = 2 ∗ specificity ∗ sensitivity
specificity + sensitivity

(11)
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Table 3: Accuracy, precision and F1-score of implemented model

Datasets Predicted class Precision F1-score Accuracy

Male PHA and PNH 87.39% 92.72% 92.87%
Female PHA and PNH 81.62% 75.98% 75.47%
Combine PHA and PNH 89.62% 94% 93.96%

4 Results and Analysis

The test set is utilized to evaluate the model after being trained for three epochs due to GPU
constraints, with each iteration taking approximately 10 min. This implies that the model undergoes
roughly half an hour of training. In Fig. 7a, the curve represents the proposed model on the combined
dataset, while Fig. 7b displays the curve for the proposed MHAVH framework on the female dataset,
and Fig. 7c shows the male dataset. The testing set is employed to evaluate the model’s performance.
In Fig. 7c, the training accuracy ranges between 89.59% to 99.40%, and the validation accuracy varies
between 71.74% to 93.69% for the combined dataset. In Fig. 7b, the training accuracy fluctuates from
80.14% to 98.97%, and the testing accuracy ranges from 45.40% to 75.47%. In Fig. 7c, representing
the male dataset, the training accuracy varies from 91.39% to 99.33%, and the testing accuracy for
the male dataset lies in the range between 58.09% to 92.88%. However, Fig. 7 indicates that the model
achieves a higher level of accuracy when trained on the combined dataset, respectively.

Fig. 8 depicts the training and testing losses of the MHAVH model, demonstrating a decrease
in both training and testing losses. In Fig. 8a, the training accuracy quickly reaches 1.0, while the
testing accuracy plateaus below that level. This indicates potential overfitting, as the model performs
accurately on the training data but not on the testing data, the loss graph supports this observation,
showing a very low training loss that continues to decrease, while the testing loss starts to plateau.
The training loss decreases from 0.2208 to 0.0186, and the testing loss decreases from 0.8310 to
0.2635. Similarly, in Fig. 8b, the training accuracy again reaches to 1.0, whereas the testing accuracy
is significantly lower and seems to plateau. This is a classic sign of overfitting, where the model has
learned the training data too well, including its noise and outliers, which does not generalize well to
the testing data. The loss for the female dataset shows a training loss nearing zero, while the testing
loss decreases at a much slower rate. The training loss varies from 0.3931 to 0.0337, and the testing loss
varies from 1.1812 to 0.6161. In Fig. 8c, similar to the other two, the training accuracy reaches to 1.0,
with the testing accuracy being lower. The loss graph shown a clear gap between the training and the
testing loss, suggesting overfitting, the training loss varies from 0.2016 to 0.0207, and the testing loss
reaches from 0.7349 to 0.3087. The primary objective is to minimize both training and testing losses,
ensuring the model delivers accurate predictions.

Our evaluation of the model’s performance on separate datasets for males, females, and combined
groups reveals a tendency for overfitting. As shown in Figs. 7 and 8, the model achieves a training
accuracy of 1.0 across all the datasets, indicating a perfect fit of the training data. However, the testing
accuracy is notably lower in each case, suggesting that the model does not generalize as effectively to
unseen data. The corresponding loss graphs further support this observation, where the training loss
approaches zero, but the testing loss plateaus or decreases at a slower rate.
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Figure 7: The accuracy curves illustrate the dynamic changes in both training and testing sets with
respect to each epoch. The x-axis shows the number of epochs, and the y-axis shows the accuracy of
the training and testing of the model. The curves are presented separately for (a) Combined data, (b)
Female data, and (c) Male data
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Figure 8: The loss curve follows a descending trajectory

4.1 Quantitative Analysis

The model’s performance was evaluated using quantitative metrics such as accuracy, precision,
and F1-score on the test set, as detailed in Table 3. For the combined dataset, the model achieved
a notable accuracy of 93.69%, with an F1-score of 94% and precision of 89.62%. The male dataset
demonstrated an accuracy of 87.39% and an F1-score of 92.72%, while the smaller female dataset
exhibited lower performance metrics: Approximately 75.47% accuracy, 75.98% F1-score, and 81.62%
precision. Overall, appropriate dataset combination led to higher accuracy, highlighting the effective-
ness of the model in classifying heart disease while considering postures of normal human (PNH) and
posture of heart attack (PHA).

4.2 Ablation Studies

We proposed the MHAVH framework to justify the effectiveness of the multi-head self-attention
component. Multiple experiments are performed on many other networks. We have compared the
ResNet-50, VGG-16, ViT, and compact model (MobileNetV2, VGG-16, vision transformer) results
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with our implemented model in the experiments, the dataset tested predicted results of each method
are shown in Fig. 9. It is evident that the MHAVH method exhibits the highest accuracy when
using all three datasets compared to the other models. These results are further detailed in Table 4.
To demonstrate the efficiency of our proposed MHAVH model, we compared its performance
with and without a vision transformer. Initially, we independently evaluated the accuracy of each
transfer learning model (ResNet-50, VGG-16). The lowest testing accuracy that the ResNet-50 model
accomplished with the male, female, and combined datasets is (45.22%, 53.84%, and 49.95%). This
indicates that VGG-16 outperforms ResNet-50, but we could not obtain high accuracy alone. After
that, it was tested utilizing the ViT and the accuracy was found improve over the transfer learning
model. The combined male and female datasets all produced higher accuracies than the previous
results, with 70.28%, 56.93%, and 73.04%. Then, we fused ViT with MobileNetV2 and VGG-16 and
compared the results to the transfer learning model and vision transformer, getting an approximate
accuracy of 87.48% with the male dataset, 84.29% with the female dataset, and 90.60% with the
combined dataset, but it was still insufficient. Lastly, we conducted tests using our MHAVH model to
outperform other models’ accuracy and performance.

Figure 9: Different model accuracy comparison graph

Table 4: Prediction of each and every class from dataset images on different models

Model Accuracy Datasets Classes Images

VGG-16 testing 78.44 Female PHA
PNH

10256
RestNet-50 testing 45.22
Vision transformer 56.93
ViT with MobileNetV2 and VGG-16 84.29
Our model (MHAVH) 75.47

(Continued)



CMC, 2024, vol.79, no.2 2689

Table 4 (continued)

Model Accuracy Datasets Classes Images

VGG-16 testing 72.5 Male PHA
PNH

16983
RestNet-50 testing 53.84
Vision transformer 70.28
ViT with MobileNetV2 and VGG-16 87.48
Our model (MHAVH) 92.87
VGG-16 testing 74.52 Combine PHA

PNH
16983

RestNet-50 testing 49.95
Vision transformer 73.04
ViT with MobileNetV2 and VGG-16 90.6
Our model (MHAVH) 93.96

4.3 Evaluation Metrics with and without Augmentation

During the augmentation process, several augmentation techniques were applied to the images.
The augmented image parameters were set according to the specifications outlined in Table 5, which
included a 20% share range and 20% zoom. Additionally, the images were rescaled by a factor of
1/225.0, and the fill mode applied was the nearest.

Table 5: The configuration of parameters for image augmentation

Image augmentation technique Value

Rescaling 1/225.0
Shear range 0.2
Zoom range 0.2
Fill mode Nearest

The analysis reveals that employing augmentation improves accuracy compared to scenarios
without it. Without augmentation, accuracy is lower for the female dataset (74.01%) compared to
augmented results. For male and combined datasets, accuracy without augmentation is 88.14% and
90.72%, respectively, and is found from 92.87% and 93.96% with augmentation. This consistent
trend highlights the potential for superior image recognition quality through augmented data, as
demonstrated in Table 6.

Table 6: Comparative analysis of MHAVH model performance with and without augmentation

Analysis PREC F1 ACCU Train images Test images Datasets

Non-augmentation 99.28 85.27 88.14
Augmentation 87.39 92.72 92.87 14554 2429 Male

(Continued)
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Table 6 (continued)

Analysis PREC F1 ACCU Train images Test images Datasets

Non-augmentation 87.06 72.11 74.01
Augmentation 81.62 75.98 75.47 7932 2324 Female
Non-augmentation 91.13 90.68 90.72
Augmentation 89.62 94 93.96 22344 4788 Combine

5 Model Evaluation and Discussion

In the trial of observing the essential capability of the proposed framework, as mentioned in
Table 7, the MHAVH model is tested with a posture-based dataset proposed by Rojas-Albarracin
et al. [3], which contains two classes with heart-attack and normal posture-based images. The overall
higher accuracy and F1-scores are 93.96% and 94.0%, respectively. Therefore, this indicates that our
proposed model performed well on heart disease classification.

Table 7: A performance of MHAVH model on male, female and combine datasets

Datasets Predicted class F1-score Accuracy

Male PHA and PNH 92.72% 92.87%
Female PHA and PNH 75.98% 75.47%
Combine [3] PHA and PNH 94% 93.96%

5.1 Comparison of Posture-Based Monitoring Systems

A comparative analysis of the proposed MHAVH framework performance with the previous
related work on posture-based datasets [3] is performed as represented in Table 8. The results are
generated on this dataset for all the pre-existing models to compare performance excellently with the
proposed framework. The proposed MHAVH framework achieved better results with an accuracy
of 93.96%. This demonstrates that the study of the model differentiates from other state-of-the-art
methods. Our model gets better results, including CNN [32], ResNet-50 [6], You Only Look Once,
Version 3 (YOLOv3) [33] Multi-Fusion method [34], and Vision Transformer [35]. At the same
time, the performance of the other models was substantially good, with more than 80% accuracy,
respectively. The ViT model performed ineffectively, with the lowest accuracy of 80%. The test results
gave insights into the limited accuracy of a posture-based approach, such as the ViT, for the Blanket-
Penetrating Sleep Posture. Table 8 shows that our recommended MHAVH framework performed well
on heart attack posture-based detection with an accuracy (ACCU) of 93.96%.

Table 8: Comparison of existing posture based monitoring system

Ref. Model ACCU Background Dataset

[36] CNN 92 Color and
depth images

Own capture (Hand posture and
gesture dataset)

(Continued)
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Table 8 (continued)

Ref. Model ACCU Background Dataset

[32] CNN 74 RGB image Captured with his own camera
using Kinect

[35] ViT 80 RGB color
images

Blanket-Penetrating sleep posture
images using a triple
ultra-wideband radar system

[6] Modified
Resnet-50

92 RGB-d color
images

Heart-attack-detection-in-images

[33] YOLOv3 88 RGB input Wave
83 Punch (Posture-based images)

[34] Multi-fusion
method

85.7 – Capture with smartphone and
RFID device (Posture-based
images)

[37] CNN 65 RGB input YouTube data fall images (human
posture images)

[3] CNN 91.7 RGB Own internet-images
(Heart-attack-detection-in-images

OWN MODEL MHAVH 93.96 RGB input Combine dataset
92.87 Male dataset
75.47 Female dataset

In Fig. 10, we demonstrated the visual comparison of multiple models vs. experiments with their
results on posture-based dataset (not limited to heart attack posture based), comparing each with our
proposed MHAVH model.

In Table 9, statistical data in terms of accuracy, precision, and F1-score based on the heart attack
posture based datasets. On comparison, we found that our proposed model performed well compared
to previously reported models.

Table 9: Comparison of the proposed MHAVH framework performance with existing state-of-the-art
methods on the heart attack posture datasets

Ref. Model Accuracy Precision F1-score

[3] CNN 91.75 90.84 45.91
[6] Modified ResNet-50 network 92 90 92
[38] Faster R-CNN – 78.5 80.06
Our MHAVH 93.96 89.62 94
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5.2 Comparative Analysis with Other Hybrid Models

Table 10 presents a diverse array of deep-learning hybrid models. Notable combinations include
Inception-V3, ResNet-50, and Vision Transformer for retinal disease detection, achieving an accuracy
of 92.37% in 2023 [18]. Another hybrid model, combining a Convolutional Neural Network (CNN)
with a vision transformer-based framework, achieves an 89.6% accuracy for surveillance anomaly
detection in the same year [39]. Inception combined with convolutional vision transformers achieves
77.54% accuracy for plant disease identification [40]. Vision transformer paired with a Deep Convo-
lutional Neural Network-based Model attains a 70.24% accuracy for classifying X-ray images [41]. In
2021, InceptionV3 combined with SVM achieved 94.8% accuracy for malaria cell-image classification
[42]. ResNet, InceptionV3, and CNN combined reach an impressive 99.2% accuracy for diabetic eye
disease detection in 2023 [43]. VGG, DenseNet, and logistic regression achieved an 87% accuracy
for breast cancer detection in 2023 [44]. A convolutional neural network combined with long short-
term memory (LSTM) for emotion recognition attained a 92.38% accuracy in 2022 [45]. Lastly, a
hybrid model combining SVM, logistic regression, decision trees, Naive Bayes, random forest, and
deep learning classifiers achieved a remarkable 98.14% accuracy 2021 for posture detection [46]. The
chart shows how adaptable and successful hybrid deep learning models are in various computer vision
and healthcare applications.

Figure 10: The graph shows the best accuracy achieved by our model as compared to other model
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Table 10: Comparison of the proposed framework performance with existing other hybrid model state-
of-the-art methods

Ref. Hybrid models ACCU Year Technique Purpose of research

[17] Inception-V3 +
ResNet-50 + Vision
Transformer

92.37 2023 Conv-Vit Retinal disease
detection

[38] Convolution neural
network (CNN) +
vision
transformer-based
framework

89.6 2023 TransCNN Surveillance
anomaly detection

[39] Inception +
convolutional vision
transformers

77.54 2023 – Plant disease
identification

[40] Vision transformer +
Deep convolutional
neural network-based
model

70.24 2023 – Classifying X-ray
Images

[41] InceptionV3 + SVM 94.8 2021 – Malaria cell-image
classification

[42] ResNet + InceptionV3
+ CNN

99.2 2023 – Diabetic eye disease

[43] VGG + DenseNet +
Logistic regression

87 2023 – Breast cancer
detection

[44] Convolutional neural
network + LSTM

92.38 2022 CNN-LSTM-
attention
(CLA)

Emotion recognition

[45] Support vector
machine (SVM) +
logistic regression +
k-nearest neighbors
algorithm (KNN),
decision + tree, Naive
Bayes, random forest +
deep learning classifiers

98.14 2021 Hybrid (CNN) Posture detection
framework

Own
model

VGG-16 + ResNet-50
+ Vision transformer

93.96 MHAVH Heart attack posture

6 Conclusion and Future Work

We proposed a Multi-Head Attention Vision Hybrid (MHAVH) model for an efficient posture-
based heart attack detection technique. VGG-16 achieved only 74.61% accuracy with the female
dataset and 75.34% with the male dataset. Subsequently, we applied RestNet-50, which provided
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an accuracy of 55.25% with the male dataset and 43.80% with the female dataset. In comparison
to the vision transformer combined with MobileNetV2 and VGG-16 on the female dataset, the
accuracy was 77.62%; on the male dataset, it was 82.17%, and with the combined dataset, the given
accuracy was 88.74%. We used the MHAVH model, which obtained 89.21% accuracy with the male
dataset. However, with female and combined datasets, we got an accuracy of 74.04% and 93.96%,
respectively. The primary purpose of presenting this method is to control the death ratio and save
human lives at early stages. This technique uses an RGB image with three datasets based on male
and female, and it combines datasets with a data augmentation technique on each image dataset
for the best result and increased training accuracy. This model also provides good accuracies with
large and small datasets. Despite these efforts, the model’s complexity and the datasets nature have
presented significant challenges. To improve the model’s generalization capability, further research
is required to explore additional strategies, such as gathering more diverse data and simplifying the
model architecture.
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