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ABSTRACT

Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis, achieving
tremendous success recently with the development of deep learning. However, there have been still many challenges
including crowd multi-scale variations and high network complexity, etc. To tackle these issues, a lightweight Res-
connection multi-branch network (LRMBNet) for highly accurate crowd counting and localization is proposed.
Specifically, using improved ShuffleNet V2 as the backbone, a lightweight shallow extractor has been designed by
employing the channel compression mechanism to reduce enormously the number of network parameters. A light
multi-branch structure with different expansion rate convolutions is demonstrated to extract multi-scale features
and enlarged receptive fields, where the information transmission and fusion of diverse scale features is enhanced
via residual concatenation. In addition, a compound loss function is introduced for training the method to improve
global context information correlation. The proposed method is evaluated on the SHHA, SHHB, UCF-QNRF and
UCF_CC_50 public datasets. The accuracy is better than those of many advanced approaches, while the number of
parameters is smaller. The experimental results show that the proposed method achieves a good tradeoff between
the complexity and accuracy of crowd counting, indicating a lightweight and high-precision method for crowd
counting.
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Symbol Description
LE;LC;L Euclidean distance loss; Global context loss; Total loss function
Xi The i th picture
DGT

i The ground truth density map corresponding to the i th picture
Θ; α; σ The parameters of the model; Weight coefficient; Distance threshold
G (Xi; θ) The density map obtained by the model using parameter θ

MAE The mean absolute error
MSE The root-mean-squared error
CET

i ;CGT
i The number of people in the ith image estimated by the proposed network; Truth in the

i th image
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TP The distance between the predicted head position and the real marker points less than
the pixel threshold

FP The distance between them greater than the pixel threshold
FN The extracted position matched the real marker point does not exist

1 Introduction

Crowd counting, as a significant task in computer vision, can accurately calculate the number
and density distribution of the crowd in the image or video, which is widely used in extensive
fields including security monitoring, urban planning, scene understanding traffic management, etc.,
hence attracting considerably increasing interest [1,2]. Traditional crowd counting methods often
rely on handcraft features based on machine learning, suffering from low accuracy and robustness
when applied to complex scenarios. In recent years, with the development of computing power and
algorithms, deep learning has gained huge success in artificial intelligence [3,4]. And, crowd counting
methods based on deep learning have been developed rapidly, achieving end-to-end high precision and
robust counting [5–7].

In realistic applications, it is difficult to quickly and accurately calculate the number of people
from images due mainly to some challenges, such as uneven illumination, complex backgrounds
and large-scale variations. Many efforts have been devoted to designing various networks and tricks
including multi-scale fusion structures and attention mechanisms to tackle these problems mentioned
above, making remarkable progress [6–9]. As far as we know, Zhang et al. [8] have for the first time
attempted to design the three-column convolution network, named multi-column convolutional neural
network (MCNN), obtaining multi-scale feature fusion for crowd counting. Subsequently, two-branch
[9] and multi-branch [10] networks have been proposed widely, enormously improving the accuracy of
counting. Besides, the single-column network with different expansion rate convolutions has been used
to effectively resolve the multi-scale variation.

In addition, to reduce the computational complexity of crowd counting methods and improve
their real-time performance, many lightweight structures have been proposed such as MobileCount
[11], lightweight multi-scale adaptive network (ligMSANet) [12], lightweight scale-aware network
(LSANet) [13], lightweight multi-scale network (LMSNet) [14] and so on, providing a good reference
for the efficient crowd counting. For instance, Jiang et al. [12] proposed LigMSANet, obtaining multi-
scale fusion and real-time counting. More recently, Chavan et al. proposed CrowdDCNN [15] for real-
time crowd counting on Internet of Things (IoT) edge. However, in practical applications, especially
in edge devices, the high efficiency and accuracy of crowd counting methods still need to be further
improved. Specifically, on the one hand, in order to improve the counting accuracy, complex network
structures are usually designed, resulting in a large increase in parameters and calculation time. On the
other hand, lightweight networks can improve computational efficiency, while they suffer from low
counting accuracy in complicated scenarios originating from insufficient learning ability. Therefore, it
is of great significance to further explore efficient and precise crowd counting methods.

In this article, a lightweight and powerful multi-branch network, named LRMBNet, for crowd
counting and localization embedded in an improved ShuffleNet V2 as backbone is proposed, which
can on the one hand extract multi-scale features, and on the other hand reduce considerably the number
of network parameters via the design of the channel compression mechanism (CCM). Particularly, in
the proposed multi-branch network, the residual connection is tailored to perform multi-scale feature
fusion and enhance the diverse information transfer. In summary, the main contributions of this article
are as follows:
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• We propose a lightweight and powerful multi-branch network for crowd counting and local-
ization, where an improved ShuffleNet V2 is used as a lightweight shallow extractor and then
CCM has been designed to further reduce the number of network parameters.

• We stack three multi-branch modules to extract scale diversity features, where the residual
connection is tailored to perform the concatenation operation between different branches to
enhance the information fusion and transmission. In addition, a compound loss function is
introduced to train the proposed method, gaining the global information correlation.

• Extensive experimental results demonstrate that the proposed method achieves superior perfor-
mance over many advanced methods for crowd counting, indicating a good tradeoff in efficiency
and accuracy. Accordingly, it is a promising method for crowd counting and localization in
realistic scenarios.

2 Related Work
2.1 Crowd Counting

During the past few decades, many approaches have been proposed for crowd counting. Based on
the development of image processing, the methods for crowd counting are broadly divided into two
categories: Traditional methods and deep learning-based ones.

Generally, there are two main types of methods for crowd counting: Detection-based methods
and regression-based methods. Early detection-based methods usually design handcrafted shallow
features to detect body parts for counting, while they perform poorly in crowded scenes due mainly
to large-scale variations and heavy occlusions. Regression-based methods establish a regression model
for image features and number of people, to estimate the number of people in the scene by extracting
features. Regression-based methods avoid these problems mentioned above but lose the ability to
capture spatial information about the crowd in many cases [16].

Recently, deep learning-based methods have dominated the development of related technologies,
most of which usually generate density maps and sum all pixels in those maps to get the total number
of people [7,17]. Depending on the network structure, crowd counting algorithms can be divided into
multi-column and single-column networks. Multi-column-based methods usually divide the network
into multiple columns to extract multi-scale features and combine them at the output layer. For
instance, to solve the challenging problem of scale variations in images, Zhang et al. [8] propose a
multi-column counting network MCNN to extract features at different scales. Since then, multi-scale
fusion structures with multi-column/branches have developed rapidly [10,18]. Zeng et al. [18] propose a
multi-branch crowd counting network, which consists of a front end network and a back-end network.
The front end is a conventional convolutional neural network. The back end uses a maximum scale
combination strategy to learn different levels of scale information. On the other hand, single-column
structures with different convolution kernels have also been proposed to achieve multi-scale fusion.
Among them, congested scene recognition network (CSRNet) [7] is the representative of the single
column methods, where the front-end uses the first 10 layers of VGG16 to extract features and the
back-end uses dilated convolution to expand receptive fields. This network is simple in structure, but
good at processing multi-scale variation information. Furthermore, in order to improve feature scale
continuity and information transfer capability, Dai et al. [19] propose a single-column deep counting
network, which consists of three densely expanded convolutional blocks. The blocks of convolutions
are connected by residual connection. In addition, the application of the Transformer model for crowd
counting is developing rapidly. TransCrowd [20] uses an approach based on the attentional mechanism
to focus on the most informative regions of the crowd, leading to more accurate crowd counting.
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2.2 Lightweight Crowd Counting

Although the methods based on density estimation have achieved excellent counting results, there
have also been some new problems to resolve, such as redundant network structures, large numbers
of model parameters, and some difficulties in training, resulting in poor performance in real-time
counting. Therefore, to tackle these issues, various lightweight networks for crowd counting have been
designed [11–14], which are roughly divided into two categories: Lightweight structure and model
compression methods.

To achieve highly efficient counting, many lightweight structures have been designed based on
CNN. MCNN [8] is an early multi-column network with a lightweight structure that extracts head
features at different scales according to the different sizes of the convolutional kernel. Cascaded
multi-task learning (CMTL) [21] is a multi-task framework that uses prior knowledge of classification
as an auxiliary branch of the model to improve counting performance. Perspective crowd counting
network (PCCNet) [22] is an improvement network based on CMTL, which uses a priori knowledge
of background segmentation to improve counting accuracy. To improve the accuracy and efficiency
of crowd counting, many lightweight methods with high accuracy have been proposed [11,23,24].
MobileCount [11] is an example of a lightweight framework used directly for crowd counting. It is
a combination of the lightweight networks MobileNetV2 [25] and RefineNet [26]. The lightness of
MobileNetCount is mainly due to the use of the first 4 bottleneck blocks of MobileNetV2 as a front-
end, resulting in a significant reduction in the model parameter.

Alternatively, the model compression methods have been proposed via several operations such as
pruning and knowledge distillation on the original complex CNN crowd counting framework to reduce
the number of parameters and improve the counting speed without affecting the accuracy. Shi et al. [27]
propose Compact-CNN (C-CNN). They directly compressed the multicolumn framework of MCNN,
considering that a layer of convolutional kernels of different sizes can extract different spatial features,
thus reducing the multicolumn redundancy of the MCNN. The method of knowledge distillation
requires an effective but large parametric model of the teacher to induce a small parametric model
of the student for training. Liu et al. [28] propose a new multi-layer knowledge distillation method.
This method uses the original CSRNet network as the teacher model and 1/4 channel CSRNet as
the student model, and trains using knowledge distillation. This structure allows the small model to
achieve similar performance as the original model, but a significantly lower number of parameters and
an improved efficiency.

3 The Proposed Network
3.1 Overview

To extract multi-scale features, and yet reduce the computational complexity, we propose a
lightweight and powerful multi-branch network for crowd counting and localization. The overview
framework is shown in Fig. 1, which is mainly composed of lightweight shallow extractor and three
multi-scale fusion modules. The former is used to extract shallow features, reducing the number
of channels in the network. The latter is proposed to extract multi-scale features, improving the
multi-scale fusion capability. Specifically, the lightweight shallow extractor, composed of an improved
ShuffleNet V2 and CCM, is designed as an extremely simple backbone to extract shallow features
efficiently, where CCM is devised to replace 1024 convolution of ShuffleNet to reduce parameters.
The mid-end of the proposed network consists of three residual connection multi-branch modules
(RCMBs), where each RCMB is designed with five branches, adopting various expansion rate
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convolutions in different branches to obtain multi-scale features. That is, different from other multi-
branch structures, we innovatively propose a Res-connection to link different branches, enhancing the
fusion and transmission of multiple feature information. At the end of the proposed network, 1 × 1
convolution is used to generate density maps. And a compound loss function is introduced to train the
proposed method, enhancing the global information correlation.

Figure 1: The overview framework of the proposed crowd counting network

3.2 The Lightweight Backbone

As shown in Fig. 1, using the improved ShuffleNet V2 and CCM, the lightweight shallow extractor
is designed as backbone to reduce the number of model parameters and simplify the calculation, where
CCM replaces the final convolution and pooling layers of the ShuffleNet V2 block. It is noted that
the number of block channels on ShuffleNet V2 is scaled by 0.5, 1.0, 1.5, and 2.0 times to generate
ShuffleNet V2 networks with different complexity, respectively. They are marked correspondingly
with ShuffleNet V2 0.5, ShuffleNet V2 1.0, ShuffleNet V2 1.5, and ShuffleNet V2 2.0. Here, the
pre-trained ShuffleNet V2 1.0 and ShuffleNet V2 0.5 are utilized to extract features, respectively, and
the corresponding methods are called as V1.0 and V0.5.

CCM is designed with different 3 × 3 convolutions, where the convolutional number and channel
number are adjusted according to the different network structures, resulting in controlling 32 output
channels. That is, the number of output channels is compressed from 464 to 32 in ShuffleNet V2 1.0
via four 3 × 3 convolution operation. And the number of output channels is compressed from 192 to
32 in ShuffleNet V2 1.0 via one 3 × 3 convolution operation. As a result, the redundant information
can be vastly removed by CCM, reducing the calculation amount remarkably.
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3.3 Residual Connection Multi-Branch Module

To enhance the fusion and transmission of multi-scale features, we propose a residual-connection
improved multi-branch module, as shown in Fig. 1, which consists of one 1 × 1 convolution branch and
another 4 branches. Specifically, among 4 branches, each branch is composed of one 1 × 1 convolution
and various 3 × 3 convolutions with dilation rate of 1, 2, 3 and 4, respectively. The pipeline of the multi-
scale feature fusion and transfer is described as follows. Firstly, each branch adjusts the channels of
the input feature maps by 1 × 1 convolution, and expands the receptive fields with the expansion
rates of 1, 2, 3 and 4, to enhance the relevance of context information and extract the features of the
corresponding scales, coping with large-scale crowd variations. Secondly, the different scale features
from 4 branches are fused via residual connection, as shown in Fig. 1. The number of map channels
is adjusted by 3 × 3 convolution, and then the feature maps of each branch are concatenated to
improve the information transfer and fusion ability of multi-scale features, and hence leading to an
improvement in counting accuracy. Finally, the feature maps originated from 4 branches by residual
connection are concatenated directly with the feature maps from one 1 × 1 convolution branch. And
then, the output maps are obtained by controlling the number of channels with a 3 × 3 convolution.

3.4 Loss Function

Euclidean distance loss LE is widely used as a supervisor to train the methods for crowd counting
by calculating the difference between the ground truth map and the predicted density one [8,7,29].
Considering the characteristics of the proposed multi-branch structure, a global context loss LC is
introduced as the partner of LE to focus as much as possible on the correlation of global context
information. Hence, a compound loss function with different weights of LE and LC is adopted to
improve the counting accuracy by jointly training the proposed methods, which is defined as follows:

LE = 1
N

∑N

i=1

∣∣G (Xi; θ) − DGT
i

∣∣2

2
(1)

LC = 1
N

∑N

i=1

∣∣Pavg (G (Xi; θ)) − Pavg

(
DGT

i

)∣∣ (2)

L = LE + αLC (3)

where N is the number of training set images. Xi and DGT
i , respectively, represent the i th picture and the

ground truth density map corresponding to the i th picture. θ represents the parameters of the model
and G (Xi; θ) represents the density map obtained by the model using parameter θ . Based on extensive
experiments on the SHHA datasets, the weight coefficients α is set to 1000.

4 Experiments and Result Analysis
4.1 Evaluation Metrics

4.1.1 Counting Metrics

To evaluate quantitatively the prediction accuracy and concentricity of the proposed network, the
mean absolute error (MAE) and the root-mean-squared error (RMSE), widely employed in crowd
counting, are introduced as the evaluation metrics, defined as follows:

MAE = 1
N

∑N

i=1

∣∣CET
i − CGT

i

∣∣ (4)
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MSE =
√

1
N

∑N

i=1

∣∣CET
i − CGT

i

∣∣2
(5)

where N stands for the total number of the test pictures. CET
i represents the number of people in the

ith image estimated by the proposed network. CGT
i represents the number of people labelled in the ith

image.

4.1.2 Localization Metrics

To perform the quantitative evaluation of the proposed network for crowd localization, we adopt
Precision, Recall and F-measure as localization Metrics. When the distance between the predicted
point Pp and the labelled point Pg is less than the distance threshold σ , it indicates that Pp and Pg are
successfully matched. In the SHHA dataset, two fixed thresholds (σ = 4, 8) are selected for evaluation.
The specific formulas are defined as follows:

Precision = TP
TP + FP

(6)

Rcall = TP
TP + FN

(7)

F − measure = 2 ∗ Precision ∗ Rcall
Precision + Rcall

(8)

where TP represents the distance between the predicted head position point and the real marker point
less than the pixel threshold. FP represents the distance between them greater than the pixel threshold.
FN represents that the extracted position matched the real marker point does not exist.

4.2 Datasets

We have conducted experiments on several current popular datasets, including sparse scenarios,
dense scenarios, and weather variations.

4.2.1 ShangHaiTech

The ShangHaiTech dataset, proposed by Zhang et al. [8] in 2016, is divided into two parts
depending on the crowd density: Part_A and Part_B, referred to as SHHA and SHHB, respectively.
It has a total of 1198 images and 330,165 annotation headers. SHHA has 482 images, mainly derived
from crowd images on the Internet. 300 images are used for training and 182 images are used for
testing. SHHB has 716 images, mainly sourced from images of Shanghai city area. 400 images are
used for training and 316 images are used for testing.

4.2.2 UCF_QNRF

The UCF-QNRF dataset, proposed by Ideers et al. [30] in 2018, contains 1535 crowd images and
1,251,642 annotated headers in total, among which 1201 images for training and 334 images for testing.
It is the dataset with the largest number of individual images at the time. The images in the UCF-QNRF
dataset are mainly derived from web searches and sights like the Hajj pilgrimage to Mecca.

4.2.3 UCF_CC_50

The UCF_CC_50 dataset [31] contains 50 greyscale images and has a total of 63,874 annotation
headers containing a variety of complex scenes. The number of people in each image is between 94
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and 4543. In the experiments, we adopt respectively 40 and 10 of these images to train and validate the
proposed method with a 5-fold cross-validation paradigm.

4.2.4 JHU-CROWD++
The JHU-CROWD++ dataset [32] is a large-scale crowd counting dataset including 4372 images

and 1,515,005 annotations. It contains a variety of challenging scenarios such as density variations,
light variations, and weather variations.

4.3 Implementation Details

The training and testing processes have been conducted under Ubuntu 22.04 system. The deep
learning framework is PyTorch 1.12 and the programming language is Python 3.8. The GPU used
for training is NVIDIA RTX 3090 with 24 GB of video memory and the CPU computer memory is
64 GB. Iteration epochs are set to 1000 and batchsize is set to 16 during training. At the same time,
Adam optimizer is used to adjust the learning rate, where the initial value of the learning rate is set
to 0.0001 and the decay rate is set to 0.5 every 100 iterations. The images are limited to a minimum
width and height of 512 and a maximum width and height of 1920, while maintaining the original
image scale and being able to be divisible by 16. Each image is randomly scaled at [0.8, 1.2] and fixed
size patches are cropped at random locations. And then random mirroring with 50% probability and
[0.5, 1.5] gamma contrast transformation with 30% probability are used. Finally, the color image is
changed to grey image with 10% probability.

4.4 Results and Analysis

4.4.1 Crowd Counting

The accuracy of the crowd counting. To demonstrate quantitatively the accuracy of the proposed
network, extensive experiments have been conducted on the public challenging datasets, e.g., SHHA,
SHHB, UCF-QNRF, UCF_CC_50 and JHU-CROWD++, whose results are compared with other
state of the arts (SOTA) methods in terms of MAE, MSE and network parameters, summarized
in Table 1. As can be seen from the top half of Table 1, the proposed method (V1.0) with MAE of
53.82 and MSE of 87.35 on SHHA show superiority over most advanced methods with heavy weight
networks including CNN and transformer-based approaches, while it exhibits a much lighter structure.
Among them, compared to our previous multi-scale feature fusion and attention (MSFFA) method
[10], the accuracy of the proposed method (V0.5) is roughly equal, while its number of parameters
is much smaller than that of MSFFA. This may be attributed to the lightweight feature extractor,
especially to the channel compression mechanism. Objectively, the accuracy of the proposed model is
slightly lower than that of Point to point network (P2PNet), but its number of network parameters is
much smaller. From the bottom half of Table 1, When compared with lightweight networks for crowd
counting, the proposed method outperforms the comparative approaches by a large margin across
all the four datasets, indicating excellent robustness both in sparse and highly crowded scenarios.
Amongst, compared to other similar multi-branch methods like LigMSANet [12], LMSNet [14]
and Lightweight multiscale feature fusion network (LMSFFNet) [33], our multi-branch network
performs well in terms of accuracy and parameters. We ascribe it largely to the introduction of residual
connection in the multi-scale fusion structure, improving the diversity information transmission and
fusion. In the dataset JHU-CROWD++, which contains different locations with weather variations,
the proposed method (V1.0) achieves SOTA results, indicating its effectiveness in dealing with different
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scenarios. In summary, the proposed method has strong competitiveness in the accuracy and efficiency
of crowd counting.

Table 1: Comparison results on the different datasets

Methods Params.
(M)

SHHA SHHB UCF-QNRF UCF_CC_50 JHU-
CROWD++

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Switching CNN (2017) [6] 15.1 90.4 135.0 21.6 33.4 228.0 445.0 318.1 439.2 – –
CSRNet (2018) [7] 16.26 68.2 115.0 10.6 16.0 120.3 208.5 266.1 397.5 85.9 309.2
LSC-CNN (2020) [34] 20.6 66.4 117.0 8.1 12.7 – – 225.6 302.7 – –
TransCrowd (2022) [20] 90.4 66.1 105.1 9.3 16.1 97.2 168.5 – – – –
BL (2019) [35] 21.5 62.8 101.8 7.7 12.7 88.7 154.8 229.3 308.2 105.4 454.2
CAN (2019) [36] 18.10 62.3 100.0 7.8 12.2 107.0 183.0 212.2 243.7 100.1 314.0
UEPNet (2021) [37] 26.21 54.64 91.15 6.38 10.88 81.13 131.68 165.24 275.9 – –
CTASNet (2022) [38] 30.3 54.3 87.8 6.5 10.7 85.6 148.3 211.0 291.5 – –
P2PNet (2021) [39] 18.34 52.74 85.06 6.25 9.9 85.32 154.5 172.72 256.2 – –
SFPANet (2023) [40] – 65.7 106.4 7.4 11.7 – – – – –
CHS-Net (2023) [41] – 59.2 97.8 7.1 12.1 83.4 144.9 – – – –
PESSNet (2023) [42] 21.75 57.3 95.9 6.4 9.9 85.3 154.5 – – – –
DMCNet (2023) [43] – 58.46 84.55 8.64 13.67 96.52 163.99 – – – –
MSFFA (2023) [10] 59.5 96.3 6.7 11.6 94.6 170.6 190.2 263.2 – –
LRMBNet V1.0 (Ours) 2.29 53.82 87.35 6.64 11.14 84.43 147.78 184.0 263.4 52.5 201.8

MCNN (2016) [8] 0.13 110.2 173.2 26.4 41.3 243.5 364.7 467.0 498.5 188.9 483.4
LCN (2020) [24] 0.032 93.3 157.0 15.1 23.3 262.0 358.6 – –
MobileCount (2020) [11] 3.4 89.4 146.0 9.0 15.4 131.1 222.6 284.8 392.8 – –
C-CNN (2020) [27] 0.073 88.1 141.7 14.9 22.1 224.2 331.0 – – – –
LCNet (2019) [24] 0.062 87.0 143.3 13.9 22.4 – – – – – –
LigMSANet (2022) [12] 0.63 76.6 121.4 10.9 17.5 – – 231.5 339.7 – –
PCCNet (2019) [22] 0.55 73.5 124.0 11.0 19.0 148.7 247.3 240.0 315.5 – –
SANet (2018) [44] 1.39 67.0 104.5 8.4 13.6 152.6 247.0 – – 91.1 320.4
LSANet (2020) [13] 0.20 66.1 110.2 8.6 13.9 112.3 186.9 – – – –
LMSFFNet (2023) [33] 4.58 85.85 139.9 9.2 15.1 112.8 201.6 105.7 120.3 – –
LMSNet (2023) [14] 0.73 62.9 108.4 8.2 13.5 110.7 178.7 223.5 281.0 – –
LRMBNet V0.5 (Ours) 0.25 59.94 97.38 7.62 12.82 93.90 155.08 198.1 251.9 56.0 223.0

To present the distribution of predicted crowd counting points, the scatter and fitting plots are
shown in Fig. 2, where the x-axis and y-axis represent the ground truth and the predicted results,
respectively. As can be seen, on SHHA, the fitting line is slightly deviated from the theoretical line
(y = x), which maybe ascribe to the complexity scene in crowd counting but the lightweight network
of the proposed method. Fig. 3 shows the comparative results between the predicted density maps
generated by our proposed model and the ground truth on the four datasets, where the image samples
with sparse and highly congested scenes are randomly selected from the SHHA, SHHB, UCF-QNRF
and UCF_CC_50 datasets. It can be seen that the predicted results are approximately consistent with
the ground truth in various scenes, which indicates excellent generalization and robustness.
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Figure 2: Comparison of the theoretical and estimated values on the SHHA, SHHB, UCF-QNRF
and UCF_CC_50 datasets. The blue dots for the results predicted by our LRMBNet V1.0. and the red
dotted line for its fitting

The inference speeds. To characterize the efficiency of the proposed method, the experimental
results of inference speeds, FLOPs and time on SHHA have been tested on two types of GPU
(RTX3090 and GTX1080ti) chips. Table 2 shows the comparative results with other SOTA methos.
It is worth pointing out that the experimental results conducted on different GPU are relative values,
while they are still of some comparative significance. As can been seen, the inference speeds and time
of our method with high accuracy are better than those of most existing SOTA methods, showing a
good tradeoff between accuracy, speed, and computational resources. Fig. 4 depicts the visualization
comparation results of our method in terms of inference speeds, parameters and MAE with other
classic methods including CSRNet [7], MobileCount [11], LigMSANet [12] and MCNN [8]. As shown
in Fig. 4, the size of the circle represents the speed, where the larger the circle, the higher the speed.
And the proposed methods are in leading positions, indicating their significant advantages in both
counting accuracy and network efficiency.
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Figure 3: Examples of generation density maps

Table 2: Comparison of the inference speed and FLOPs of different models

Method Backbone FLOPs(G) Input GPU FPS Time
(ms)

MAE MSE

CSRNet [20] VGG16 108.34 384 × 384 RTX TitanXP 21.67 46.1 68.2 115.0
TransCrowd [20] Transformer 384 × 384 RTX TitanXP 46.73 21.4 66.1 105.1
MCNN [13] 24.81 1280 × 720 RTX 2080 32.70 30.6 110.2 173.2
CAN [36] VGG16 114.83 1024 × 768 RTX 3090 21.28 47.0 62.3 100.0
SCAR [38] VGG16 108.44 1024 × 768 RTX 3090 21.28 47.0 66.3 114.1
CTASNet [38] VGG16 102.22 1024 × 768 RTX 3090 25.00 40.0 54.3 87.8
MobileCount [11] MobileNet V2 7.26 1920 × 1080 GTX1080Ti 22.40 44.6 89.4 146.0
LigMSANet [12] MobileNet V2 1.3 400 × 400 RTX2080Ti 23.80 42.0 76.6 121.4
LSANet [13] VGG16 6.34 1280 × 720 RTX 2080 24.90 40.2 66.1 110.2

Ours (V1.0) ShuffleNet V2 16.17 Original
size

RTX3090 37.45 26.7 53.82 87.35
GTX1080Ti 20.44 48.9

Ours (V0.5) ShuffleNet V2 2.62 Original
size

RTX3090 49.19 20.3 59.94 97.38

GTX1080Ti 40.44 24.7
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Figure 4: Comparisons with SOTA crowd counting methods in terms of inference speed, MAE, and
model parameters on the SHHA dataset

4.4.2 Crowd Localization

Crowd localization is a challenging task associated with crowd counting, which helps to predict
the position of each person. To reflect the precise position of individuals, the extensive experiments of
crowd localization have been carried out based on the FIDTM framework [45], where the proposed
method is adjusted to match FIDTM. Specifically, in the channel compression mechanism, the
transposed convolution is used to replace the convolution so as to get 8 times up-sampling, resulting
in that the output density map is the same size as the labeled map. The results compared to other
methods on SHHA are summarized in Table 3. As can be seen, the crowd localization performance of
the proposed method is slightly lower than that of FIDTM, which can be attributed to the lightweight
structure. However, it is still higher than many advanced methods. It is noted that the number of
FIDTM parameters is about 66 M reproduced in this article according to the open codes. Fig. 5
shows the visualization results of crowd localization estimated on SHHA, where head labeled points
are shown in red dots and prediction points are shown in green dots, respectively. It can be seen that
the prediction results of the proposed method are roughly in good agreement with the ground truth,
demonstrating its excellent performance in accurate crowd localization.

Table 3: Crowd location results on the SHHA dataset

Methods σ = 4 σ = 8
P R F P R F

FIDTM(LCFCN) [45] 43.3% 26.0% 32.5% 75.1% 45.1% 56.3%
FIDTM (Method in) [45] 34.9% 20.7% 25.9% 67.7% 44.8% 53.9%
FIDTM (TopoCount) [45] 41.7% 40.6% 41.1% 74.6% 72.7% 73.6%
FIDTM (LSC-CNN) [45] 33.4% 31.9% 32.6% 63.9% 61.0% 62.4%
FIDTM (HRNET) [45] 59.1% 58.2% 58.6% 78.2% 77.0% 77.6%
CSRNet [7] 37.7% 35.6% 36.7% 60.0% 56.5% 58.1%

(Continued)



CMC, 2024, vol.79, no.2 2117

Table 3 (continued)

Methods σ = 4 σ = 8
P R F P R F

MSFFA [10] 37.0% 34.2% 35.6% 60.7% 56.1% 58.3%
LRMBNet V1.0 (Ours) 56.4% 55.2% 55.8% 77.7% 76.0% 76.9%

Figure 5: Crowd location visualization results. P for Precision, R for Recall and F for F-measure

To further evaluated the performance under varying conditions such as lighting, weather, or
occlusions, the experiments have been conducted using selected images and the results are shown in
Fig. 6. As can be seen, our method achieves good results under some various conditions. However,
in some extremely hard conditions, the performance degrades due to its relatively simple structure,
limiting the learning ability.

Figure 6: (Continued)
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Figure 6: Crowd location visualization results in complex scenarios

4.5 Ablation Studies and Network Design

4.5.1 The Effectiveness of Each Component

To evaluate the effectiveness of different components, ablation studies have been performed on the
SHHA dataset, in which the network including the lightweight shallow extractor, Euclidean distance
loss and density map generator is used the baseline. Based on the baseline, the multi-branch structure
without/with residual connection and global loss function are introduced successively. The ablation
study results are shown in Table 4, where with the introduction of each component, the performance
of the proposed network grows gradually. As can be seen, the MAE and MSE decrease from 63.56 and
105.78 to 53.82 and 87.35, respectively. Compared with the baseline, the introduction of loss function
improves the accuracy significantly. And, using multi-branch structure and residual connection, the
counting accuracy is gradually improved. This indicates that the global context loss and RCMB can
effectively enhance diversity feature fusion and information transfer. To demonstrate the effectiveness
of the components more intuitively, the ablation experiment results are shown in Fig. 7, where the
accuracy of the crowd counting is enhanced with the introduction of various tricks.

Table 4: Ablation studies on the SHHA dataset

Components MSE MAE FLOPs (G) Params. Time (s)

Baseline 105.78 63.56 15.93 2.23 M 0.0231
Baseline + LC 91.40 57.20 15.93 2.23 M 0.0236
Baseline + LC + RCMB∗ 89.51 55.49 16.12 2.28 M 0.0253
Baseline + LC + RCMB 87.35 53.82 16.17 2.29 M 0.0267
Note: “*” represents for the multi-branch module without residual connection.

4.5.2 Network Design

To design the quantities of RCMB modules, a series of experiments have been conducted on
SHHA. The results are shown in Table 5, where the performance gradually improves with the number
of modules increasing. In contrast, the performance decreases when the number of modules exceeds 3.
As a consequence, considering the performance and the number of parameters, we design a network
structure with three RCMB modules. Table 6 shows the experimental results of the effect on the
lightweight network of the channel compression mechanism. As can been from Table 6, the parameter
amounts of the compressed network (V1.0 and V0.5) decrease from 13.96 and 2.99 M to 2.29 and
0.25 M, respectively. Furthermore, the accuracy of the compressed network (V1.0 and V0.5) improves
slightly. We ascribe to the lightweight design possibly reduces redundant information and effectively
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improve the generalization of the model, enhancing the counting accuracy. It is concluded that the
proposed method has a good tradeoff between the complexity and accuracy.

Figure 7: Visualization of the ablation experiment

Table 5: Results of RCMB with different quantities on the SHHA dataset

Metrics 1 RCMB 2 RCMB 3 RCMB 4 RCMB 5 RCMB

MAE 57.08 56.87 53.94 55.59 56.21
MSE 92.78 93.71 89.37 91.61 90.64

Table 6: Comparison of results with or without channel compression module in SHHA dataset

Compression MAE FLOPs (G) Params. FPS

V0.5 (w/o) 60.17 13.81 2.99 M 45.5
V1.0 (w/o) 55.26 63.97 13.96 M 25.3
V0.5 (w) 59.94 2.62 0.25 M 49.2
V1.0 (w) 53.82 16.17 2.29 M 37.5

5 Conclusions and Outlook

In this article, we propose a lightweight and powerful multi-branch network, named LRMBNet,
improved by a residual connection to enhance the accuracy and efficiency of crowd counting and
localization. Principally, we demonstrate a powerful multi-branch structure improved by residual
connection to extract multi-scale features, enhancing the information transfer and fusion of diverse
scale features. In addition, a lightweight shallow extractor is designed using the improved ShuffleNet
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V2 and channel compression mechanism, reducing enormously the number of network parameters.
Besides, to improve global context information correlation, a compound loss function is introduced.
Extensive experimental results show that the proposed method outperforms many SOTA methods in
terms of counting precision and speed, achieving a good tradeoff in efficiency and accuracy of crowd
counting. In our future work, application research on edge devices will be conducted to enhance the
performance of crowd counting and localization in practical scenarios.

In the outlook, although we have reduced the number of parameters of our method enormously
and improved the inference speed, while maintaining accuracy as high as possible, the future deploy-
ment on edge devices needed to be conducted as well as for real-time implementation. In addition, the
performance under complex conditions in realistic scenarios needs to be further improved by designing
more excellent network structures. Besides, the generalization between different domains needs to be
further studied in the future when integrating with existing surveillance or traffic systems.
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