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ABSTRACT

Remote sensing imagery, due to its high altitude, presents inherent challenges characterized by multiple scales,
limited target areas, and intricate backgrounds. These inherent traits often lead to increased miss and false
detection rates when applying object recognition algorithms tailored for remote sensing imagery. Additionally,
these complexities contribute to inaccuracies in target localization and hinder precise target categorization. This
paper addresses these challenges by proposing a solution: The YOLO-MFD model (YOLO-MFD: Remote Sensing
Image Object Detection with Multi-scale Fusion Dynamic Head). Before presenting our method, we delve into the
prevalent issues faced in remote sensing imagery analysis. Specifically, we emphasize the struggles of existing object
recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex
backgrounds. To resolve these issues, we introduce a novel approach. First, we propose the implementation of
a lightweight multi-scale module called CEF. This module significantly improves the model’s ability to compre-
hensively capture important image features by merging multi-scale feature information. It effectively addresses
the issues of missed detection and mistaken alarms that are common in remote sensing imagery. Second, an
additional layer of small target detection heads is added, and a residual link is established with the higher-level
feature extraction module in the backbone section. This allows the model to incorporate shallower information,
significantly improving the accuracy of target localization in remotely sensed images. Finally, a dynamic head
attention mechanism is introduced. This allows the model to exhibit greater flexibility and accuracy in recognizing
shapes and targets of different sizes. Consequently, the precision of object detection is significantly improved. The
trial results show that the YOLO-MFD model shows improvements of 6.3%, 3.5%, and 2.5% over the original
YOLOv8 model in Precision, map@0.5 and map@0.5:0.95, separately. These results illustrate the clear advantages
of the method.
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1 Introduction

Remote sensing image processing represents an interdisciplinary convergence, bringing together
insights and methods from diverse fields such as remote sensing, computer vision, geographic
information systems, and machine learning. Its historical roots date back to the 20th century and

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.048755
https://www.techscience.com/doi/10.32604/cmc.2024.048755
mailto:Zwq@hut.edu.cn


2548 CMC, 2024, vol.79, no.2

encompass image data captured by aircraft or satellites, providing a vast repository of information
about the Earth’s surface. Its central role extends to critical areas such as urban planning, agricultural
management, and homeland security [1].

In the field of remote sensing image processing, Object detection and image processing are
important problems in computer vision [2]. Conventional target detection techniques typically rely
on the construction of artificial features but often have shortcomings in terms of both performance
and efficiency. Initially, target detection involves manual feature extraction using Classic algorithms
like Support Vector Machine (SVM) [3], Adaptive Boosting (AdaBoost) [4], Histogram of oriented
gradient [5], and Deformable Part-based Model [6]. Girshick [7] and others pioneered convolutional
neural networks for target detection by introducing a Region-Convolutional Neural Network (R-
CNN) for this purpose. Firstly, two-stage algorithms typified by the R-CNN series, encompassing
R-CNN [8], Spatial Pyramid Pooling Networks (SPP-Net) [9], Faster R-CNN [10], Mask R-CNN
[11], and others, primarily employ the selective search method to extract candidate frames of interest.
These frames undergo feature extraction within a CNN, followed by a secondary classification utilizing
SVM. Finally, a regressor fine-tunes the localization coordinates. Secondly, a one-stage algorithm,
exemplified by YOLO [12–15] and Single Shot MultiBox Detector (SSD) [16], differs from the two-
stage approach by utilizing a single convolutional neural network to directly localize and classify
all targets across the entire image. YOLO facilitates real-time target detection, outperforming two-
stage detection algorithms by an order of magnitude in speed. Moreover, YOLO accounts for more
background information, reducing the likelihood of misclassifying the background as foreground,
making it more suitable for remote sensing image processing with diverse backgrounds. Presently,
the latest research pertains to the YOLOv8 [17] algorithm, featuring a novel backbone network
architecture and anchor-free detection head. This algorithm excels in feature extraction, target
detection, and segmentation. However, it exhibits sensitivity to changes in target scale, limiting its
efficacy in addressing the challenges posed by remote sensing images.

Challenges commonly encountered in remote sensing image processing encompass densely dis-
tributed targets, pronounced variations in target scales, and intricate backgrounds. Additionally, the
presence of minuscule targets in distant images poses heightened difficulties in detection, elevating
the likelihood of missed detections and false positives. The demanding performance standards for
detection networks make it arduous for conventional networks to directly address remote sensing
image detection. Considering these characteristics, this paper delves into the structure and technical
enhancements of target detection algorithms tailored for remote sensing image scenes. Leveraging the
YOLOv8 network structure as a foundation, a novel multi-scale and efficient remote sensing imaging
target detection scheme, YOLO-MFD, is presented to increase the detection capability of the network.
The main contributions of our work are as follows:

• Deep feature maps essentially encapsulate richer semantic information, while shallow feature
maps focus mainly on providing precise location information. In the YOLOv8 model, we have
increased the number of detection layers from three to four in the original backbone network.
This increase allows the fusion of shallower layers, which ensures improved localization
accuracy. Therefore, this improvement not only stabilizes the training process but also improves
the accuracy of the model, making it more suitable for remote sensing image detection.

• To address miss and false detection rates in the YOLOv8 algorithm when applied to remote sens-
ing images and to extract multi-scale feature information from complex backgrounds without
incurring additional computational overhead, we propose the lightweight convolutional block
Convolutional-Depthwise Convolution Block (CDW). CDW can extract more multi-scale
feature information from complex backgrounds compared to the standard convolutional block,
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without increasing computational complexity. Subsequently, the proposed Convolutional-
Depthwise Convolution Block-Encoder Modulator Attention (CDW-EMA) is integrated with
the CSP Bottleneck with 2 convolutions (C2f) modules in the backbone network of the YOLOv8
model to form a new CDW-EMA-C2f (CEF) module.

• Within the YOLOv8 model, the output of the backbone network generates a three-dimensional
tensor structured as horizontal × spatial × channel. Consequently, the model substitutes its
detection head with a Dynamic Head [18], allowing the simultaneous merging of scale-aware,
spatial-aware, and task-aware attention mechanisms. This integration applies the attention
mechanism to each distinct dimension of the feature tensor, enhancing the detection head’s
representational prowess. Consequently, this enhancement bolsters the algorithm’s detection
efficacy for smaller targets.

2 Structure of YOLOv8 and Algorithm Principles

The YOLOv8 model comprises several key components: The input layer, backbone network for
feature extraction (Backbone), feature enhancement module (Neck), and detection output module
(Detect). Fig. 1 illustrates the model’s detailed structure and constituent parts.

Figure 1: Structure and details of YOLOv8
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The backbone network serves a primary function in extracting information from images and
transmitting it to the neck and head modules. It comprises multiple convolution blocks, including
the C2f and the terminal Spatial Pyramid Pooling-Fast (SPPF) modules. The convolution (Conv)
module, featuring Conv2d, Batch Normalization 2D (BatchNorm2d), and activation functions, is
pivotal for feature extraction and organizing the feature map. YOLOv8 incorporates elements from
the residual structure of YOLOv5’s CSP Bottleneck with 3 convolutions (C3) module [19] and the
Efficient Layer Aggregation Network (ELAN) concept from YOLOv7 [20], merging them to create
the C2f structure. This innovative design ensures model lightness while acquiring richer information,
dynamically adjusting the channel as per the model scale.

The neck part mainly plays the role of feature fusion, leveraging backbone network features
fully, using the Feature Pyramid Network + Path Aggregation Network (FPN+PAN) construction
approach, which enhances its semantic representation and localization ability on multiple scales.

The head processes the last stage of the network. On the output side, it determines the category
and location of the detected target based on the features from the first two processing parts, thus
enabling detection. This has been replaced by today’s prevalent decoupled head structure, which
separates the classification and detection functions. This modification addresses the issue of different
emphasis between classification and localization. In addition, it adopts the Anchor-Free [21] approach
for target detection, which improves the detection speed. For the loss calculation, it adopts a dynamic
allocation strategy for normal and negative samples and uses the varifocal loss (VFL loss) [22] as the
classification loss.

3 Structure of YOLO-MFD

Our proposed YOLO-MFD architecture, illustrated in Fig. 2, works through several stages. First,
the CEF module within the backbone captures comprehensive multi-scale feature data of the image.
Next, the neck section fuses features from multiple layers to identify the target. Finally, the dynamic
detection head outputs both target and category information.

3.1 Four-Layer Detection Structure

The number of detection layers in the YOLOv8 model has been increased from three to four.
The shallow layer of the convolutional neural network extracts features closer to the input, including
some details and edge information of the image. Meanwhile, the deep network extracts more abstract
semantic information after multiple convolutional pooling, and the features of small targets are easily
masked or lost. However, the details and edge information of the target plays a crucial role in accurate
classification and localization. Therefore, the small target detection layer adds a new output layer
designed by us to the Neck network, which helps the network to better capture the shallow semantic
information, thus improving the detection accuracy of small targets.

After two Upsample and Concat operations, the designed fourth output layer undergoes another
Upsample operation to obtain a 160 × 160 feature map. Following Upsample and fusion of features
at different scales, the feature map has stronger semantic information and finer spatial details,
enabling better discrimination and detection of very small targets. The resulting feature map is then
concatenated with the backbone network to further fuse feature information at different scales. A C2f
module is introduced to process the fused feature map, keeping its size at 160 × 160. Finally, a very
small target detection layer is obtained to help the network better capture detailed information about
the target. Its improved overall structure is illustrated in Fig. 3.
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Figure 2: Structure of YOLO-MFD

3.2 The CEF Module

Attention mechanisms originated from neuroscience, describing the brain’s mechanism when
processing information. Later, this concept was integrated into machine learning to bolster model
performance and accuracy. This mechanism works by automatically identifying critical features within
the input data to increase the ability and precision of the model. Enhancing the model’s ability to learn,
attention mechanisms pave the way for further potential and prospects in image processing, computer
vision, and their diverse applications.
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Figure 3: Add YOLOv8 detection layer

Commonly employed attention mechanisms in image processing include channel attention and
spatial attention. Recent insights suggest the potential synergy of combining these mechanisms to
address diverse challenges. For instance, the Squeeze-and-Excitation Networks (SE) [23] model,
epitomized by the channel attention mechanism, facilitates the extraction of channel features by explic-
itly defining interactions across channel dimensions. Attention Module for Convolutional Blocks
(CBAM) [24] is utilized to establish feature mappings spanning channel and spatial information,
facilitating semantic dependencies in both spatial and channel dimensions. However, the conventional
handling of inter-channel relations often involves dimensionality reduction, when extracting deep
visual representations, this can lead to adverse effects. To address those limitations, researchers
like Daliang Ouyang have adapted the Channel Attention (CA) [25] mechanism to retain crucial
channel information while reducing computational costs. Their method includes reconfiguring specific
channels into batch dimensions and organizing channel dimensions into separate sub-features [26,27].
This method encourages a more balanced distribution of spatial semantics across feature groups,
offering novel solutions to reconcile the interplay between channel attention and spatial attention.



CMC, 2024, vol.79, no.2 2553

Additionally, it introduces a novel and efficient multiscale attention mechanism (EMA) [28] module,
depicted in Fig. 4.

Figure 4: Structure of EMA

The EMA attention mechanism employs a distinctive modeling approach to handle cross-channel
interaction information within a channel. Utilizing a global average pooling operation within the
1 × 1 convolutional branch, EMA encodes channels bidirectionally, emphasizing inter-channel
information transfer. Conversely, the 3 × 3 convolutional branch excludes GN normalization and
average pooling operations, focusing on extracting multi-scale feature representations. Moreover,
EMA introduces a unique cross-space information aggregation method to enable more comprehensive
feature aggregation. This method involves incorporating two tensors derived from the outputs of the 1
× 1 and 3 × 3 branches, respectively. Lastly, global dimensional information of the 1 × 1 branch output
is encoded by global mean pooling. This transforms the smallest branch’s output channel features into
corresponding dimensional shapes, following the pooling operation described in Eq. (1).
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ZC = 1
H × W

∑H

j

∑W

i
XC (i, j) (1)

A lightweight convolutional block CDW is introduced to capture diverse feature data in complex
backgrounds without extensive computation. This serves as the basis for CDW-EMA, a lightweight
multi-scale attention mechanism. Fig. 5 shows the detailed structures of CDW and CDW-EMA,
correspondingly.

Figure 5: Structure of CDW and CDW-EMA

Where Depthwise Convolution (DW) [29] convolution is also called separable convolutional
convolution, where the process of one convolution kernel corresponds to one channel, the output
channel count matches the input channel count, which is M, and the dimensions are DF × DF , the
output channels are also M, with a convolution kernel size of DK × DK , its calculated quantity is
shown in Eq. (2).

CDW = DK × DK × M × DF × DF (2)
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The number of its parameters is given by Eq. (3).

NDW = M × DK × DK (3)

The CDW convolution block consists of Conv 3 × 3, DW 3 × 3, Conv 1 × 1, BatchNorm,
and ReLU activation function. Compared with ordinary convolution, DW convolution processes
each channel of the input independently, which can be regarded as a spatial convolution operation
on each channel, and has the advantages of fewer parameters and less computation, etc. Batch
Normalization (BatchNorm) accelerates model convolution and enhances stability, while the Rectified
Linear Unit (ReLU) [30] activation features amplify network nonlinearities and inhibit gradient
disappearance. CDW convolution block consists of regular convolution and depth convolution.
Regular convolution performs channel information adjustment, depth convolution performs efficient
spatial feature extraction, and the two convolution layers are connected in the form of an inverse
residual block, and the gradient disappearance problem of CDW is mitigated by jumping connection,
so as to achieve better information extraction of small objects in remote sensing images and to
minimize gradient disappearance problem.

CDW-EMA consists of four branches: Main Branch, Coordinate Branch, and CDW 3 × 3. We
use CDW 3 × 3 instead of the original Conv 3 × 3. The improved CDW-EMA module reduces the
amount of computation and the number of parameters while keeping the sensor field unchanged,
which improves the speed and accuracy of the model. Then, we fuse the proposed CDW-EMA with
the C2f module in the backbone part of the backbone network of the YOLOv8 model to form the new
module CEF. The overall structure of CEF is shown in Fig. 6.

Figure 6: Structure of CEF

3.3 Dynamic Detection Head

In the YOLOv8 model, the output of the backbone network forms a three-dimensional tensor with
dimensions of horizontal × spatial × channel. Consequently, the YOLOv8 model replaces its detection
head with a dynamic detection head called DyHead (Dynamic Head). The DyHead unifies scale-
aware, spatial-aware, and task-aware attention mechanisms, thereby integrating attention into each
specific dimension of the feature tensor. Given the 3D feature tensor at the detection level FεRL×S×C,
Then applying attention to L, S, and C, respectively, yields three perceptual abilities. Given a feature
layer, applying self-attention to it gives Eq. (4):

W (F) = π (F) · F (4)

If a subsequent process employs a fully connected layer, where π (·) represents an attention
mechanism. If the next process uses a fully connected layer, this approach is too computationally
intensive. So the attention is carried out in three dimensions, each attention over a certain perspective,
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there is Eq. (5):

W (F) = πC (πS (πL (F) · F) · F) · F (5)

Three distinct attention functions πC (·), πS (·), πL (·) are used on dimensions C, S, and L,
respectively. These attention sequences are imposed on the sensing head and can be stacked multiple
times. In improving the design of the detection head model, four groups of modules are used to be
stacked sequentially to give the detection head a stronger representational capability, this improves
the algorithm’s ability to find small targets. The DyHead structure is displayed in Fig. 7.

Figure 7: Structure of DyHead

4 Experimental Results and Analysis

Table 1 lists the environmental configuration used for the experiment.

Table 1: Configuration of the experimental environment

Project Environment

OS Windows11
CPU i5-9400F
GPU NVIDIA 2070 super
Language Python3.10
Pytorch version 2.0.1
CUDA 11.1
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4.1 Evaluation Metrics

Precision, Recall, mAP@0.5, and mAP@0.5:0.95 are taken as the experimental evaluation indexes,
and multifaceted comparison data are used to ensure the model effect.

4.1.1 Precision

Precision, as defined in Eq. (6), measures the ratio of accurately predicted targets to the total
number of targets predicted by the model:

Precision = TP
TP + FP

(6)

Precision’s denominator sums TP and FP, where TP signifies correctly predicted positive cases
and FP represents incorrectly predicted positive cases when the actual cases were negative.

4.1.2 Recall

Recall, as shown in Eq. (7), measures the proportion of real targets correctly predicted by the
model:

Recall = TP
TP + FN

(7)

Recall’s denominator combines TP and FN, with TP representing cases predicted as positive where
the actual value is also positive, and FN representing cases predicted as negative while being positive.

4.1.3 mAP

mAP represents the average accuracy of all labels divided by the total number of categories. A
higher value of mAP indicates a higher average accuracy of the model. Eq. (8) illustrates mAP:

mAP = 1
N

∑
APi (8)

4.2 Datasets

This experiment uses the RSOD dataset, a public dataset from Wuhan University for target
detection in remote sensing images. It includes four categories: Airplanes, playgrounds, overpasses,
and oil tanks, with 976 images and 6950 targets. The training parameters are detailed in Table 2.

Table 2: Experimental parameter setting

Parameters Value

Division ratio 7:2:1 (train:Val:Test)
Optimizer SGD
Batch size 8
Epochs 100
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4.3 Analysis of Results

Firstly, we compared the CEF module with mainstream attention mechanisms (e.g., EMA, SE,
CA, and Environment-Cognition-Action(ECA) [31]) individually combined with the YOLOv8 base
model. This comparison helped determine the most effective attention mechanism for detection.

CEF is superior to other mainstream attention mechanisms in achieving optimal results across
all metrics. Compared to the original Yolov8 algorithm, it improves precision by 2.2%, recall by 2%,
mAP50 by 2.5%, and mAP95 by 1%, as detailed in Table 3.

Table 3: Comparison with other attention mechanisms

Model Precision Recall mAP@0.5 mAP@0.5:0.95

YOLOv8 0.862 0.912 0.916 0.600
+CA 0.822 0.892 0.885 0.571
+SE 0.805 0.879 0.842 0.582
+ECA 0.887 0.857 0.895 0.580
+EMA 0.865 0.888 0.895 0.601
+CEF 0.884 0.932 0.941 0.610

We performed ablation experiments on the YOLO-MFD algorithm using the validation set.
Table 4 shows the detailed data from these experiments. Compared with the original YOLOv8, our
proposed YOLO-MFD algorithm improves the precision, Recall and mAP@0.5:0.95 by 6.3%, 3.5%,
and 2.5%, respectively, and these data completely demonstrate that the performance of the proposed
YOLO-MFD algorithm achieves a huge improvement over the original YOLOv8.

Table 4: Ablation experiment

Model Precision Recall mAP@0.5 mAP@0.5:0.95

YOLOv8 0.862 0.912 0.916 0.600
+detect 0.841 0.891 0.909 0.621
+CEF 0.884 0.932 0.941 0.610
+DyHead 0.891 0.907 0.921 0.597
YOLO-MFD 0.925 0.915 0.951 0.625

Finally, to confirm the detection capability of the YOLO-MFD algorithmic model, its target
detection performance with the mainstream algorithms Faster R-CNN, SGD, YOLOv3, YOLOv4,
YOLOv5 and YOLOv7 on the RSOD dataset was quantitatively analyzed, and the validation part of
the dataset was examined using different models, and the results of comparing their metric values are
shown in Table 5, which is not compared with the playground model in the dataset RSOD. The data
of the playground model in the RSOD dataset are excellent and are not compared.
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Table 5: Experimental comparison of mainstream algorithms

Model mAP@0.5

Aircraft Oil tank Overpass All

Faster R-CNN 0.631 0.841 0.769 0.805
SSD 0.521 0.668 0.567 0.764
YOLOv3 0.802 0.931 0.672 0.851
YOLOv4 0.813 0.965 0.688 0.873
YOLOv5 0.947 0.940 0.669 0.902
YOLOv7 0.935 0.981 0.841 0.924
YOLO-MFD 0.949 0.995 0.874 0.951

4.4 Comparison Test

Fig. 8 shows the loss and map@50 plots for each module after insertion, and it can be seen that
YOLO-CEF outperforms the other algorithms in terms of both loss function convergence and map50
improvement.

Figure 8: Loss and map50 comparison across models

To better showcase the algorithm’s adaptation to various scenarios in solving the RSOD dataset
detection issue, we performed visualization and comparison experiments. Fig. 9 shows the instances
where small targets were missed, Fig. 10 illustrates false detections of small targets, and Fig. 11 presents
a comparison of detection accuracy for large targets. This ensured a more comprehensive adaptation
of the algorithm to diverse scenarios.

The detection results of the YOLO-MFD (left) and the YOLOv8 (right) are shown below.
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Figure 9: Missed detection of small targets in more complex backgrounds

Figure 10: False detection of small targets in more complex contexts
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Figure 11: Target detection accuracy comparison

5 Conclusions

This paper introduces a novel algorithm designed for remote sensing image object detection.
YOLO-MFD is an algorithm that improves the YOLOv8 model. First, we developed a lightweight
multiscale module called CEF. Second, an additional detection layer was added to improve the
accuracy of target localization in remote sensing images. Finally, the integration of a dynamic attention
mechanism further refined the accuracy of target detection.

In the evaluation conducted on the RSOD dataset, the YOLO-MFD algorithm exhibited a
detection accuracy of 92.5%, a map@0.5 of 95.1%, and a map@0.5:0.95 of 62.5%, all of which
surpass the existing mainstream methods. Compared to the original YOLOv8 model, the YOLO-MFD
algorithm demonstrated a 6.3% increase in accuracy, with increases of 3.5% and 2.5% in map@0.5 and
map@0.5:0.95, respectively. Collectively, these improvements effectively address challenges in remote
sensing image detection, including low average detection accuracy, false alarms, and missed detections
due to scale diversity, small target areas, and complex backgrounds.

In future research, we will focus on exploring model pruning and lightweight strategies. The aim is
to optimize the algorithm while maintaining detection accuracy, facilitating more efficient deployment
in practical applications.
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