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ABSTRACT

Due to the time-varying topology and possible disturbances in a conflict environment, it is still challenging
to maintain the mission performance of flying Ad hoc networks (FANET), which limits the application of
Unmanned Aerial Vehicle (UAV) swarms in harsh environments. This paper proposes an intelligent framework
to quickly recover the cooperative coverage mission by aggregating the historical spatio-temporal network with the
attention mechanism. The mission resilience metric is introduced in conjunction with connectivity and coverage
status information to simplify the optimization model. A spatio-temporal node pooling method is proposed to
ensure all node location features can be updated after destruction by capturing the temporal network structure.
Combined with the corresponding Laplacian matrix as the hyperparameter, a recovery algorithm based on the
multi-head attention graph network is designed to achieve rapid recovery. Simulation results showed that the
proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to
the existing studies. The results demonstrate that the average connectivity and coverage results is improved by
17.92% and 16.96%, respectively compared with the state-of-the-art model. Furthermore, by the ablation study, the
contributions of each different improvement are compared. The proposed model can be used to support resilient
network design for real-time mission execution.
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1 Introduction

With its high mobility, low cost, and strong flexibility, unmanned aerial vehicle (UAV) swarm has
been widely used in various applications, such as surveillance [1], agriculture [2], rescue [3], etc. In these
applications, large numbers of UAVs cooperate with others as a UAV swarm relying on communicating
with one another, thus the connectivity of the communication network is a vital necessity for a UAV
swarm. However, the harsh working environment and complicated mission requirements make it
difficult to ensure the connectivity of the networks. As a kind of flying Ad hoc network (FANET),
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the occurrence of communication links between UAVs depends on the communication radius and
location distribution [4]. Although expanding the communication radius of each drone seems intuitive
and effective, however, it is not practical due to the energy constraint and the fading effect [5]. At the
same time, a certain amount of redundant drones can not ensure resilient connectivity when more
drones are damaged. Thus, changing location deployment has become a common strategy to keep the
network resilient after destruction.

However, there are still some challenges to quickly rebuilding network connectivity by redeploying
locations. First, when drones are destroyed, it is difficult to model the network structure consisting
of changing nodes and edges under continuous destruction [6]. The second challenge is how to
further reduce self-recovery time with real-time communication and storage limits, which is closely
related to network resilience. At last, quick network connectivity recovery and adequate coverage have
contradicting focuses. It is seemingly straightforward to rebuild the connectivity by drones moving
closer to each other. However, to ensure the network coverage performance each drone should cover
enough non-overlapping area to avoid duplicate effort. Thus, how to balance the network coverage
and network connectivity needs to be carefully considered.

To tackle the challenges above, we propose a graph attention network (GAT)-based mechanism
to recover both coverage and connectivity for a resilient swarm network against random destruction
in this paper. The main contributions of our work are summarized as follows:

• We build a system recovery model for a swarm network from the perspective of engineering
resilience. Our model considers both the coverage and the connectivity when serious damage happens.

• We propose a temporal aggregation graph generating method to provide a persistent connected
graph structure for computing the combination of the drones’ location feature vectors. Our model
is based on the historical and current location information of both destroyed drones and remaining
drones, which can still update the new location features on all nodes even if the node is isolated from
other nodes in the current network.

• We incorporate structural information from the temporal aggregation graph into GAT. Simula-
tion results show that the proposed methods can recover coverage and connectivity. At the same time,
the results show that our methods reduce recovery time.

The remainder of the paper is organized as follows: Section 2 reviews the related work. Section 3
describes the system model, the temporal aggregation graph generating method, and the graph self-
attention mechanism with the aggregation graph for feature vector updating. Section 4 presents
simulation results and analysis of the proposed algorithm and Section 5 concludes the work.

Most of the notations applied in this paper are standard. To ease readability, all the primary
notations of the paper are listed in Table 1.

Table 1: Primary notations used in the paper

Notations Definition Notations Definition

hmax The maximum height of drones. vp The pooling node.
R(i)

s,t The radius of the i-th drone’s
coverage on the ground at time t.

G(i)
j,c The new connected graph generated

by node pooling of the drone i.

(Continued)
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Table 1 (continued)

Notations Definition Notations Definition

h(i)
t The i-th drone’s height. G(i)

S,c The new connected graph set
generated by node pooling of the
drone i.

Rc The communication radius of drones.GA The temporal connected aggregation
graph.

Luv (G) The element of the Laplace matrix of
the graph G.

WA The weight matrix of the edges in the
aggregation graph.

B(i)
t,k The coverage area of node i within

the connected component k at time t.
Wi The edge weight matrix of a graph in

G(i)
S,c.

Gt The communication network at time
t.

Wt The edge weight matrix of the graph
at time t.

Vt The node set at time t. γ The exponentially weighted
parameter.

Et The edge set at time t. we
uv The hyperparameter used to

characterize the structure importance
of the edge between node u and node
v.

R The resilience measure. αuv The weight of the effect of node u.
G(i)

S The set of connected network
structures stored by the drone i with
upper storage limit S.

α The coefficient for calculating the
distance loss.

Vd The damaged node set. GW The swarm network generated with
the pretrained weight.

Vc The candidate node set.

2 Related Works

Due to complicated mission requirements, the network is required to be self-adaptive to destruc-
tive events in the harsh working environment. The attribute measuring this dynamic process is usually
called resilience. Resilience commonly measures the whole process of a system from interference,
damage, and recovery. Currently, the resilience of swarm networks has received increasing attention
[7–9]. However, the above methods only proposed metrics for evaluation but offered little specific
guidance for keeping the swarm network resilient. Despite the lack of resilience-based mechanisms,
some works are aiming at recovering the coverage and connectivity of swarm networks through
deployment techniques.

Some studies proposed theoretical results of network coverage and connectivity by using geomet-
ric models to find analytical solutions under certain conditions [10]. For instance, Mozaffar et al. [11]
utilized circle packing theory to determine the optimal three-dimensional location that maximizes the
total coverage area of the swarm. Bai et al. [12] proposed an optimal deployment pattern that achieves
full coverage and 2-connectivity when the communication radius equals the perception radius of each
drone. However, the strict assumptions for these analytical models make it challenging to apply for
the recovery of a highly dynamic swarm network [13].



2378 CMC, 2024, vol.79, no.2

Several studies attempted to recover the network based on iterative adjustment of drones’
locations. For instance, Sharma et al. [14] introduced a scheme to recover coverage and connectivity by
recursively relocating mobile nodes and enabling backup nodes. Chen et al. [15] proposed a potential
field-based network approach depending upon perceiving network damage, which can recover the
network connectivity in flight paths. Qi et al. [16] presented a network topology construction method
based on connected dominating sets, which iteratively adjusts transmission power and position to
achieve desired fault tolerance levels. However, due to multiple iterations, these works involve extensive
communication and redirection during the recovery, which potentially hinders rapid recovery after
massive destruction events happen.

Several studies have employed machine learning algorithms, such as graph neural networks
(GNN) [17,18], deep learning techniques, and other approaches [19,20], to address the problem. For
instance, Mou et al. [18] proposed a graph convolutional neural network (GCN)-based algorithm for
UAV trajectory planning to rebuild the communication connectivity of the network. However, this
approach relies on a lot of storage space for meta parameters to adapt to changes in the number of
network nodes. Zhang et al. [20] introduced a reinforcement learning method based on an artificial
potential field for a robust network design. Nevertheless, machine learning algorithms demand massive
computational resources and may have poor scalability across different system models.

As shown in Table 2, the existing models through deployment techniques cannot meet all the
requirements of resilient recovery.

Table 2: Comparison of existing redeployment models for swarm networks

Models Connectivity Coverage Dynamic recovery Rapidity Scalability

Mozaffar et al. [11] � \ \
Bai et al. [12] � � \ \
Sharma et al. [14] � � � Low High
Chen et al. [15] � � Low High
Qi et al. [16] � � � Low High
Mou et al. [18] � � � High Low
Zhang et al. [20] � � � High Low

3 Proposed Framework
3.1 The Resilience Optimization Model

We consider a square geographical area with a diameter of L, as shown in Fig. 1, where N UAVs
are deployed as a swarm to fulfill the mission in this area. In this model, we assume that the drones
are homogeneous, i.e., each drone has the same transmit power and field angle. To model the coverage
and connectivity of a network, we provide the following definition.
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Figure 1: The recovery process for the coverage and connectivity of a FANET by redeploying
locations. (a) The network is being destroyed. We assume the initial deployment forms a connected
communication network. Destruct a UAV randomly at time t and thus destroy the connected network.
Then the remaining UAVs react against the destruction and try to restore the by redeploying their
locations. (b) The network after recovery by redeploying locations

Definition 1 (Covering and Connected Network): A covering and connected network denotes a
network composed of N UAVs located in a three-dimensional location set, which can cover the entire
geographical area while ensuring network connectivity.

The above definition has generality since it can describe various air-to-ground coverage missions,
including wireless communication, monitoring, lighting, or other services for ground targets. As shown
in Fig. 1, Although the coverage radius will increase with the height of a UAV, increasing the height
will also lead to further distance between the UAV and the target, which may lower the service level
of certain missions. Thus, we assume the service level threshold is ε, the maximum height hmax can be
defined as

hmax = max {h| Ξ (h, ζ , θ) ≥ ε} , (1)

where Ξ can be any well-defined service level measure, ζ can be initial energy or information provided
by the drone for the mission, θ is the drone’s coverage field angle to the ground. Then, the radius of
the i-th drone’s coverage on the ground at time t can be calculated by

R(i)
s,t = h(i)

t tan
θ

2
, h(i)

t ≤ hmax, (2)

where h(i)
t is the i-th drone’s height to the ground at time t. Here, we consider the network to be

homogeneous, thus all drones share the same field angle θ and the maximum height hmax.

In this paper, the FANET between UAVs at time t is modeled as a communication network Gt =
{Vt, Et} consisting of a node set Vt and an edge set Et, with the position features

{
xv,t ∈ R

3, ∀v ∈ Vt

}
of

the drone v. Considering the air-to-air communication links with no ground obstacle, we assume the
signal power threshold that can be received is P0, the communication radius Rc can be calculated as
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Rc = max
{

r| 10η log10

(
4πrfc

c

)
+ pξ (r) ≤ P + G1 + G2 − P0

}
, (3)

where r is the distance between drones, f c is the carrier frequency, η > 0 is the path loss exponent,
pξ (r) is the small-scale fading effect, G1 and G2 are the constant antenna gains of the receiving and
transmitting and P is the drone’s transmit power.

According to the fading effect, communication links only exist between nodes within a certain
distance. Specifically, the communication range is defined as Rc, the necessary and sufficient condition
for an edge euv,t ∈ Et is the distance d (u, v) ≤ Rc between two nodes in three-dimensional space [21].
For a FANET, the definition of a connected network is as follows.

Definition 2 (Connected Network): In a coverage area, if any two drones in the FANET can always
transmit information to each other through the routing, that is, given a network Gt, if any two nodes
can find a path between them, it is said that the network Gt is connected.

Based on spectral graph theory, in a network with only one component, there is only one
eigenvector with eigenvalue zero, the vector 1 (or multiples of it). All other eigenvectors must have
non-zero eigenvalues. Thus, to check whether the network is connected, we calculate the eigenvalues
of the Laplace matrix of the network. Define the adjacency matrix of network G as A (G), each element
Luv (G) of the Laplace matrix L (G) of the graph can be calculated as follows:

Luv (G) = δuv

∑
v

Auv (G) − Auv (G) , (4)

where δuv is Kronecker delta function, when u = v, δuv = 1, otherwise δuv = 0. It is known that for an
undirected graph G with non-negative edge weight, the algebraic multiplicity m0 of the zero eigenvalues
of the Laplace matrix L (G) is equal to the number of connected components C (G) of the network. In
graph theory, the connected component (or only the component) of an undirected graph is defined as
a subgraph in which any two vertices are connected through any path. Thus when m0 = C (G) = 1,
there is only one connected component in a connected graph, i.e., the network is connected [22].

When serious destruction happens, the connected network may be divided into a set of connected
components. However, the neighbors of the destroyed drones can sense the destruction and update
their neighbor sets. Then the drones in the same connected network share real-time location informa-
tion and the existing situation of all drones in the network. Based on the location information, the
remaining drones attempted to recover the network by adjusting their location.

The goal of our work is to provide a mechanism for keeping the network covering and connected
resiliently. Denote the coverage area of node i within the connected component k as B(i)

t,k ⊂ R
L×L can

be written as a set of point x as follows:

B(i)
t,k = {

x
∣∣d (i, x) ≤ R(i)

s,t

}
. (5)

Then the network performance of coverage and connectivity can be defined as the average
coverage of each connected component as follows:

B (Gt) = 1
M

M∑
k=1

∣∣∣∣∣|
Vk

t |∪
i=1

B(i)
t,k

∣∣∣∣∣ /L2, (6)
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where M is the number of connected components and
∣∣Vk

t

∣∣ is the number of nodes within the k-
th connected component. Here, for each connected component, we consider the ratio of the total
non-repeated coverage area of all nodes to the target area as the coverage performance. Denote the
acceptable performance level as 1, then when a failure occurs, resilience can be measured as [23]

R =
∫ t0+T∗

t0
Q (t)

T ∗ , (7)

Rmin = (T ∗ − �BT)/T ∗ = 1 − �BT/T ∗, (8)

where Q (t) is the performance measure, �B is the percentage of the maximum performance loss
after destruction, T is the time required for full recovery, and T∗ is the time interval to determine
performance loss.

Figure 2: An interpretation of the resilience loss

As shown in Fig. 2, when Q (t) ≥ (1 − ΔB), R ≥ Rmin = 1 − �BT/T ∗. If we always aim to
fully recover the performance to the acceptable level, the performance loss �B and the time length T∗

are both constants after a certain destruction happens. With the fixed �B and T∗, the resilience only
depends on recovery time T . Thus, maximizing resilience is equivalent to minimizing the recovery
time T . Then, the resilience goal of the recovery problem for a covering and connected network can
be formulated as

P1: max{x̂1,x̂2,··· ,x̂n} min R = max{x̂1,x̂2,··· ,x̂n} 1 − �BT/2T ∗ = min{x̂1,x̂2,··· ,x̂n} T , (9)

T ≤ max
i∈Vt

∥∥x̂i,t − xi,t

∥∥
2
, (10)

when the flying velocity vf is fixed, and the recovery time T of the swarm is determined by the maximum
displacement in the deployment plan. Thus we can formalize the problem as follows:

P1: min{x̂1,x̂2,··· ,x̂n} max
i∈Vt

∥∥x̂i,t − xi,t

∥∥
2
,

s.t. B
(
Ĝt

)
= 1,

C
(
Ĝt

)
= 1,

hi,t ≤ hmax,

Q (t) ≥ (1 − ΔB) .

(11)

where
{
x̂1, x̂2, · · · , x̂n

}
is the planned location set and Ĝt is the formed network with the planned

location under communication range Rc.
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In the next parts, we will describe the specific procedures of the optimization algorithm. The
objective is to maximize the resilience measure defined in formula (11). We describe the two primary
parts of our algorithm: Spatial-temporal connected graph generation and the multi-head graph neural
network. The whole framework of the algorithm is summarized in Fig. 3.

Figure 3: The research flow diagram of proposed framework

3.2 Spatial-Temporal Connected Graph Generation

Noticing that the graph neural network is good at representing graph data features, we developed
an idea using a graph neural network to learn the mapping from the initial locations of drones
to optimized locations. However, if the network Gt at time step t has isolated nodes or connected
components, it is difficult to update the position features of the isolated nodes on the graph neural
network structure according to it. To ensure the features can be updated on all the nodes, we propose
a connected graph generation method.

We denote the set of connected network structures during running stored by the drone i as G(i)
S ={

G(i)
1 ,G(i)

2 , · · · ,G(i)
S

}
, where S is the storage limit. With the upper limit, only the latest connected graph

series will be retained by updating the sequence as a queue. When the network Gt of the swarm is
not connected, we try to aggregate the connected networks in G(i)

S and the network Gt to generate a
connected graph as the basis for the GNN model.

Due to the decrease in the number of nodes after each disruption, the number of connected graph
nodes at different time steps in G(i)

S varies. Meanwhile, the node set of any connected network contains
the destroyed nodes, which should not be aggregated to the network Gt after the destruction [24].
To address this issue, we propose a node pooling method that removes damaged nodes from G(i)

S ={
G(i)

1 ,G(i)
2 , · · · ,G(i)

S

}
while preserving edge connectivity within the remaining node set.

The steps of this method are as follows: As shown in Fig. 4, we perform the pooling operation on
the graph in the set G(i)

S sequentially.
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Figure 4: The generation process of temporal aggregation connected network. For example, the node
set Vt of the network at time t equals the node set VA of the network after aggregation, i.e., VA = Vt.
Node pooling is performed on each graph in the graph set G(i)

S . For an instance of G(i)
1 ∈ G(i)

S , where
the pooling nodes are b, e, and j, we merge the connections on d, a, k, and g with the corresponding
pooling nodes to form a new connected graph G(i)

1,c. Finally, we aggregate the graphs in G(i)
S into an

aggregate graph GA according to formula (1)

Specifically, for the j-th graph G(i)
j = {

V (i)
j , E (i)

j

}
, select node v from the damaged node set Vd ={

v
∣∣v ∈ V (i)

j , v /∈ Vt

}
in sequence and search for the pooling node of the damaged node v in the candidate

node setVc = {
v
∣∣v ∈ (

V (i)
j − Vd

)}
. The selection rule is to select the node inVc with the smallest distance

to node v as the pooling node vp. Specifically, the pooling node vp can be determined as

vp = arg min Δ (vc, v) , vc ∈ Vc, (12)

where Δ (·) can be any well-defined distance measure, we use the Euclidean distance in this paper.
Then, the edges on the destroyed node v are retained on the pooling node to generate a new edge set
E (i)

j,c , i.e., the pooling node plays the same role as the destroyed node for the network. Finally, delete the
nodes in the damaged node set Vd from the node set V (i)

j to generate a new point set V (i)
j,c , and delete the

corresponding edge
{
euv

∣∣euv ∈ E (i)
j,c , ∀u, v ∈ Vd

}
on the damaged node from the edge set E (i)

j,c to obtain a
new graph G(i)

j,c = {
V (i)

j,c , E (i)
j,c

}
, which can be written as

G(i)
j,c = {

V (i)
j,c , E (i)

j,c

}
,

V (i)
j,c = V (i)

j − V (i)
d ,

E (i)
j,c = E (i)

j − {
euv

∣∣euv ∈ E (i)
j,c , ∀u ∈ Vd

}
.

(13)
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By preserving all edges on remaining nodes during deletion, connectivity within newly formed
graphs is ensured. Denote the new connected graph set generated by node pooling as G(i)

S,c ={
G(i)

1,c,G(i)
2,c, · · · ,G(i)

S,c

}
. Then combines the graphs in G(i)

S,c with the network Gt to form a temporal connected
aggregation graph GA = {VA, EA, WA}, which can be written as

GA = {VA, EA, WA} ,

VA = Vt, EA =
S⋃

i=1

E (i)
j,c ,

WA (i, j) =
{

1, eij ∈ EA

0, eij /∈ EA

.

(14)

We assume the impact of a historical graph in G(i)
S,c = {

G(i)
1,c,G(i)

2,c, · · · ,G(i)
S,c

}
diminishes over time.

Hence, exponentially weighted average [25] is employed to process the graph time series. Denote the
weight matrix of the edges in the aggregation graph GA as WA and assume the weights of all edges of
any historical graph and Gt are both 1, then

WA = γ WS + γ (1 − γ ) WS−1 + · · · + γ S−1 (1 − γ ) W1 + (1 − γ ) Wt, (15)

where Wi, i ∈ {1, 2, · · · , S} denotes the edge weight matrix of a graph in G(i)
S,c, Wt denotes the edge

weight matrix of Gt, γ denotes the exponentially weighted parameter. The spatial-temporal connected
graph generation can be described below.

Step 1: We calculate the Euclidean distance from the destroyed node to other nodes in the network,
then update the nearest node. We record and determine central nodes for the spatial aggregation based
on the minimum Euclidean distance between nodes.

Step 2: We transfer the edges on the damaged node to the corresponding aggregation node. It
should be noted that when operating on the whole adjacency matrix to avoid the potential interference
of operations on the subsequent nodes. Finally, delete the edges on the damaged nodes as a whole.

Step 3: For each spatial-temporal network, we repeat steps 1 to 2 and record the connected network
structure formed for each spatial-temporal network until there is no spatial-temporal network in the
temporal graph set.

Step 4: We aggregate the connected spatial-temporal network according to the formula (15).

Based on the above mechanism, we can generate a spatial-temporal connected graph according to
Algorithm 1.

Algorithm 1: Spatial-Temporal Connected Graph Generation
Input: Communication network Gt at time t and spatial-temporal graph set G(i)

S ={
G(i)

1 ,G(i)
2 , · · · ,G(i)

S

}
stored by drone i;

Output: Spatial-temporal connected graph GA = {VA, EA, WA};
Initialize: The empty set CI to store central nodes and the empty set WS,c to store the spatial-temporal
connected graph;
1: for k = 1 to

∣∣G(i)
S

∣∣ do
2: Calculate the destroyed nodes set Vd = {

v
∣∣v ∈ V (i)

j , v /∈ Vt

}
;

3: Calculate the adjacency matrix Wk of G(i)
k ;

(Continued)
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Algorithm 1 (continued)
4: for v ∈ Vd do
5: Minimum Euclidean distance dmin ← −1
6: Node index for the minimum Euclidean distance imin ← v
7: for u ∈ Vc do
8: Calculate the Euclidean distance duv between node v and node u&
9: if duv < dmin or dmin == −1 then
10: dmin ← duv

11: imin ← u
12: end if
13: end for
14: end for
15: CI ← CI ∪ {imin}
16: for h = 1 to |CI | do
17: r (Wk)CI (h) ← r (Wk)CI (h) + r (Wk)Vd (h)

18: c (Wk)CI (h) ← c (Wk)CI (h) + c (Wk)Vd (h)

19: end for
20: Delete both row j and column j of Wk at the same time, j ∈ CI

21: WS,c ← WS,c ∪ {Wk}
22: end for
23: Calculate the adjacency matrix Wt of Gt;
24: Set WA = 0
25: for k = 1 to

∣∣WS,c

∣∣ do
26: if k == 0 then
27: WA ← Wk

28: else
29: WA ← γ WA + (1 − γ ) Wk

30: end for
31: WA ← γ WA + (1 − γ ) Wt

32: VA ← Vt, EA ← E (WA)

3.3 The Multi-Head Graph Network with Structure Importance Hyperparameter for Target Location
Generation
To generate the target location for the recovery of the swarm, We propose the temporal aggregation

graph attention network (TAGAT) to map the location after destruction to the new location for quick
recovery. GCN or Graphsage was employed by some existing methods [26]. However, both GCN
and Graphsage are based on the assumption that the effect of each dimension of each neighboring
node’s features on the central node features is homogeneous, for instance, the effect of the distance
in each direction on the Euclidean distance between nodes is the same in three-dimensional space
for connectivity recovery. However, this assumption may not be suitable for coverage recovery. When
considering coverage performance, the effect of height features and horizontal position features on
the radius of ground horizontal projection is different, so it is necessary to consider using attention
mechanisms to learn the difference between these features. The self-attention mechanism allows
models to adaptively select key information based on task requirements when processing data, thereby
focusing on important features and ignoring relatively unimportant ones. Therefore, using attention
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mechanisms can enhance the modeling ability of models for complex equipment system state changes.
For example, Transformer models and their variants based on attention mechanisms have been
widely used in fault diagnosis of mechanical systems [27,28]. Both Transformer and GAT utilize self-
attention mechanisms to capture the correlation between inputs, while GAT is more suitable for graph-
structured data. However, GAT lacks direct utilization of graph structure information of data, which
makes GATs prone to underfitting in learning tasks related to structural features [29,30]. Thus, it is
necessary to consider combining the temporal aggregation graph with GAT to improve the learning
ability of the network.

We provide the definition of the graph attention operator. The input is graph data G = {V , E , X},
where X ∈ R

|V|×D is the feature matrix of the nodes and D = 3 is the dimensionality of the feature. Our
goal is to output new feature vector representations Z ∈ R

|V|×3 of nodes.

The self-attention mechanism is calculated point by point, assuming the central node is v, the edge
weights from neighboring node u to node v are calculated as follows:

euv = σ
(
we

uv [Wxu‖Wxv]
)∀ (u, v) ∈ E , (16)

where W is a weight transformation applied to each node used to learn the weights between different
features, we

uv ∈ We is a hyperparameter used to characterize the structure importance of the edge
between node u and node v, and the activation function σ selected is the LeakyReLU function. Here,
the normalized Laplace matrix Lrw

ij is used to characterize the structural relationship between node v
and neighboring node u [31], and the calculation formula is as follows:

We = −Lrw = D−1WA − IN, (17)

where D = diag

(|VA|∑
j=1

WA (1, j) ,
|VA|∑

j=1

WA (2, j) , ...,
|VA|∑

j=1

WA (|VA| , j)

)
, the value at any position in the

matrix Lrw
(i, j) is

Lrw
(i, j) =

{
1 if i = j
−WA(i,j)

D(i,i)
else . (18)

When i �= j,
|V|∑
k �=i

we
ik = 1, so the requirements of weight normalization are satisfied. Then the

softmax function is used for nonlinear transformation, the weight of the effect of node u is

αuv = exp (euv)∑
k∈Nv

exp (ekv)
. (19)

Then, using a multi-head attention mechanism with K independent heads for calculating features,
the new feature vector of the central node v can be obtained by averaging the weighted sum of the
feature vectors of itself and neighboring nodes.

zv = 1
K

K∑
k=1

σ

(∑
u∈Nv

α(k)

uv W(k)xu

)
, (20)

where the activation function σ is the LeakyReLU function. We use n-layer GAT layer stacking to
increase learning ability as shown in Fig. 5, where the training parameter of the i-th layer is Wi =
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{
W(1)

i , W(2)

i , · · · , W(k)

i

}
. According to formula (8), the loss function with the weight of the multi-layer

GAT network is calculated as

Loss (W1, W2, · · · , Wn, X) = λB

(
1 − B

(
GW

))︸ ︷︷ ︸
guarantee the coverage constraints

+ λC

(
C

(
GW

) − 1
)︸ ︷︷ ︸

guarantee the connectivity constraints

+ α max
i∈Vt

∥∥xW
i − xi

∥∥
2︸ ︷︷ ︸

distance loss

(21)

where λB and λC are the Lagrange multipliers are set as positive constants, xW
i are the output matrix,

and GW are the swarm network generated with the location xW
i and the communication radius Rc. We

define the coefficient α for calculating the distance loss as

α =
⎧⎨
⎩

1
Br (GW)

if B
(
GW

) = 1

1 else
, (22)

Br

(
GW

) = 1
M

M∑
k=1

|Vk
t |∑

i=1

∣∣B(i)
t,k

∣∣ /L2, (23)

where M is the number of connected components,
∣∣Vk

t

∣∣ is the number of nodes within the k-
th connected component. Here we calculate the total coverage area Br

(
GW

)
as the performance

redundancy level to characteristic the satisfaction of regional coverage requirements, which differs
from the first term in (19) [32]. Through coefficient α, we tend to choose output locations with higher
performance redundancy levels.

Figure 5: The structure of the temporal aggregation graph attention network. With the spatial-
temporal connected graph as the backbones, TAGAT is composed of n multi-head attention layers.
The k-th layer receives a topology matrix from the last layer and outputs a new topology matrix
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We use randomly generated pairs of the connected and non-connected graph to pretrain the
network, then use pretraining parameters to accelerate the training speed of the algorithm in on-line
execution as Fig. 6 shows. Specifically, a connected graph is randomly generated and a certain number
of nodes are destroyed, if the generated graph is not connected, the damaged node number is recorded.
The above connected graph and the non-connected graph are input into the network for training. Since
the weights need to be retrained only when the number of network layers and dimension of features
vary, and the weights Wi ∈ R

k×D can be applied to the networks with various numbers of nodes. Thus
compared to GCN, TAGAT needs fewer parameters that need to be precalculated and stored.

Figure 6: The structure of the temporal aggregation graph attention network. We highlight the
interaction between the database unit and the GAT unit. The GAT consists of two parts: Offline
training and online execution. With the pretrained parameter, the model can output the action
efficiently. At the same time, the collected network data can be used in offline training, which updates
the weight parameter to keep the model scalability with the few hyperparameters
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4 Simulation Results

In the simulation, the initial swarm consists of 200 drones, with drones distributed in 1000 × 1000
× 100 patches space, thus the size of the target ground area to cover is 1000 × 1000 patches, as shown
in Fig. 7. Due to the large number of drones, there is some redundancy in the network’s coverage
of the ground area. However, under destruction, the coverage will be split with the components of
the network. We apply standard parameter values as shown in Table 3 unless otherwise specified. In
addition, all the results of simulations are averages obtained over 30 simulations.

Figure 7: The coverage area of the initial swarm network after a certain destruction. (a) The coverage
area of the maximal component of the network; (b) The coverage area of the second largest component
of the network; (c) The coverage area of the third largest component of the network. The red dot
represents the destructed drones
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Table 3: Parameters for the simulation

Parameter Description Value Parameter Description Value

N Number of drones 200 S Storage limit of
graph series

5

L Diameter of the map 1000 hmax The maximum height 100
Rc Communication radius of

each drone
120 K Number of heads 3

θ Field angle 150 n Number of layers 11
vf Flying velocity 1 T Simulation duration 300
γ Exponentially weighted

parameter
0.5

To study the performance of our method, we simulate the process of network connectivity
recovery under single and continuous destructions, and compared the performance with SIDR [15],
CM-MGCM [18], and CEN [18]. To conduct the experiments, the AMD Ryzen 7 5800H processor
with Radeon Graphics is exploited. For connectivity verification, our main concern is to keep the
entire network connected. Thus, we use the connected time step ratio as the evaluation measure for
connectivity recovery. For coverage recovery verification, the resilience can be represented by the
average network coverage performance R in a certain time slot based on (6) and (7), which can be
represented as follows:

R = 1
Ts

t0+Ts∑
t0

1
M

M∑
k=1

∣∣∣∣∣|
Vk

t |∪
i=1

B(i)
t,k

∣∣∣∣∣ /L2, (24)

where Ts is the time slot length, t0 is the beginning time, M is the number of connected components,
and

∣∣Vk
t

∣∣ is the number of nodes within the k-th connected component.

Fig. 8 shows the different trajectories and coverage areas of the drones during a certain recovery
process with TAGAT and CEN. It can be seen that the flight trajectory with TAGAT is not only simply
moving toward the center of the group but also can achieve coverage recovery.

4.1 Effect of the Proposed Framework on Network Connectivity Recovery

As shown in Fig. 9, we randomly destroy several nodes in the network from 15 to 135. In Figs. 9a–
9c, we show the number of network clusters changes when the number of destructed drones is 15,
60, and 105, respectively. Figs. 9a–9c show the number of network clusters that changes with time
under different numbers of destructed drones. When the number of damages is equal to 15, the
performance of the TAGAT is similar to that of the CR-MGCM. Although the CR-MGCM has the
best performance in the above cases, with the number of destructed drones increasing, the performance
of the CR-MGCM obviously decreases. In contrast, when the number of damages is greater than 15,
the TAGAT shows significantly better performance than the existing algorithms.
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Figure 8: The recovery process of drones after a certain destruction. (a) Trajectories when drones fly
to the target locations with TAGAT; (b) Trajectories when drones fly to the center of their positions
directly, i.e., with the CEN; (c) Coverage area when drones fly to the target locations with the TAGAT;
(d) Coverage area when flying to the target locations with CEN

In Fig. 9d, we calculate the ratio of time T required for full recovery to the total time interval T∗,
and here set the T∗ = 300. Fig. 9d specifies the average of the connected time step ratio under different
numbers of destructed drones with different algorithms. When the number of destructed drones varies
from 15 to 135, the average results of the TAGAT are greater than those of the other three algorithms,
i.e., the TAGAT algorithm can recover network connectivity faster. As shown in Fig. 9d, the connected
time step ratio of TAGAT when the number of damages is greater than 15 is the highest, and the average
result is improved by 17.92% compared with CR-MGCM.
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Figure 9: The results and comparisons between connected time step ratios with different algorithms.
(a) The number of network clusters changes with time when the number of destructed drones is 15;
(b) The number of network clusters changes with time when the number of destructed drones is 75; (c)
The number of network clusters changes with time when the number of destructed drones is 135; (d)
The connected time step ratio under different number of destructed drones with different algorithms

As shown in Fig. 10, we simulate multiple destructions using a fixed case to ensure the same effect
on the network, with a total time duration set to 150. In Fig. 10a, the destructions happen at times t =
10, t = 30, t = 100, and the number of destructions was 50, 10, and 10, respectively. It can be seen that
after each destruction, the TAGAT can quickly recover network connectivity. Although with the CR-
MGCM and the CEN, the network was not segmented after the third destruction, the recovery time of
the above two algorithms was still too long after the first and second destruction. Thus, in terms of total
connected time, the TAGAT maintains the network connected for the longest time. In Fig. 10b, the
average and median connected time step ratios are higher than other algorithms regardless of the length
of the time slot. Furthermore, with more destructions happening, the more TAGAT outperforms other
algorithms.
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Figure 10: The results of connectivity with different algorithms under a certain case of three destruc-
tions. (a) The number of network clusters vs. time steps under a certain case of three destructions; (b)
The distribution of the connected time step ratio with different algorithms in different time slots

4.2 Effect of the Proposed Framework on Network Coverage Recovery

To validate the effectiveness of the proposed method in coverage recovery, we also simulate the
process of network connectivity recovery under single and continuous destructions and calculate the
network resilience with different algorithms. As shown in Figs. 11a–11c, with the same experiment
settings, the distribution of the network resilience under different numbers of destructed drones with
different algorithms is similar to the results on connectivity. When the number of damages is more
than 15, the coverage performance of the TAGAT is better than that of the CR-MGCM. With the
number of destructed drones increasing, the gap between the coverage performances of TAGAT and
CR-MGCM obviously increases. In Fig. 11d, the network resilience of TAGAT when the number of
damages is greater than 15 is also the highest, and the average result is improved by 16.96% compared
with CR-MGCM.

Fig. 12 presents the changes in coverage performance during the process of recovering network
coverage. In Fig. 12a, it can be seen that the TAGAT, the CM-MGCM, and the CEN can all recover
network coverage, but the SIDR is difficult to achieve. The TAGAT can recover network coverage
faster compared to the CM-MGCM and the CEN, thereby achieving resilient network coverage.
In Fig. 12b, the average and median resilience of the network with the TAGAT are stronger than
other algorithms. With the length of time slot increases, TAGAT has better performance than other
algorithms.

4.3 Ablation Study

Furthermore, to explicitly illustrate the contributions of the above improvements in perfor-
mance enhancement, we perform the ablation study by creating different TAGAT variants, replacing
one model component each time while keeping the rest unchanged, i.e., No-LossCoefficient, No-
SructureImportance, and No-TemporalAggregationGraph.
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Figure 11: The results and comparisons between network resilience with different algorithms.
(a) The network coverage performance changes with time when the number of destructed drones is 15;
(b) The network coverage performance changes with time when the number of destructed drones is
75; (c) The network coverage performance changes with time when the number of destructed drones is
135; (d) The network resilience under different numbers of destructed drones with different algorithms

Figure 12: The results of coverage with different algorithms under a certain case of three destructions.
(a) The network coverage performance vs. time steps under a certain case of three destructions; (b)
The distribution of network resilience with different algorithms in different time slots
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In Fig. 13, the ablation study on network connectivity and network coverage is shown. We note
that TAGAT is superior to all TAGAT variants without the above improvements, for both the network
connectivity and network coverage, which shows that the above improvements help improve the
ability to recover connectivity and coverage. The results indicate that all our improvement points
help to improve the performances after various numbers of destructions, among which the temporal
aggregation graph contributes the most, and the loss coefficient contributes the least, as the results
demonstrate the worst ability to recover connectivity and coverage when TAGAT without the temporal
aggregation graph unit.

Figure 13: The results of the ablation study. (a) Ablation results in the network connectivity; (b)
Ablation results in the network coverage

5 Conclusions

In this paper, we studied the connectivity and coverage recovery problem of FANET with
changing nodes and edges under destructions. Specifically, we proposed a recovery model considering
both the coverage and the connectivity based on engineering resilience. Then, we incorporated a
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temporal aggregation graph generating method into GAT. Simulation results showed that the proposed
algorithms can facilitate rapid recovery of the connectivity and coverage more effectively compared
to the existing algorithms. In addition, by the ablation study, we quantify the contributions of
each different improvement, indicating the temporal aggregation graph contributes the most to the
performance of the rapid recovery.

In this study, the network we focused on is homogeneous, i.e., each drone plays the same role
and shares the same power limit in the network. However, the scenarios of heterogeneous units jointly
executing various missions began to appear in reality recently. In the future, we may extend our work
to the heterogeneous FANET.
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