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ABSTRACT

A new era of data access and management has begun with the use of cloud computing in the healthcare industry.
Despite the efficiency and scalability that the cloud provides, the security of private patient data is still a major
concern. Encryption, network security, and adherence to data protection laws are key to ensuring the confidentiality
and integrity of healthcare data in the cloud. The computational overhead of encryption technologies could lead
to delays in data access and processing rates. To address these challenges, we introduced the Enhanced Parallel
Multi-Key Encryption Algorithm (EPM-KEA), aiming to bolster healthcare data security and facilitate the secure
storage of critical patient records in the cloud. The data was gathered from two categories Authorization for
Hospital Admission (AIH) and Authorization for High Complexity Operations. We use Z-score normalization for
preprocessing. The primary goal of implementing encryption techniques is to secure and store massive amounts
of data on the cloud. It is feasible that cloud storage alternatives for protecting healthcare data will become more
widely available if security issues can be successfully fixed. As a result of our analysis using specific parameters
including Execution time (42%), Encryption time (45%), Decryption time (40%), Security level (97%), and Energy
consumption (53%), the system demonstrated favorable performance when compared to the traditional method.
This suggests that by addressing these security concerns, there is the potential for broader accessibility to cloud
storage solutions for safeguarding healthcare data.
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1 Introduction

The management, storage, and accessibility of health information has undergone a revolutionary
change in today’s networked world as a result of the confluence of medical care and technologies. The
cloud computing and healthcare sector, which is known for its extremely sensitive and private patient
records, has seen a significant upheaval [1]. The benefits of cloud computing include its scalability,
accessibility, and convenience, as well as its reduced processing expenses. Healthcare is using this
emerging model to streamline activities, improve patient care, and increase overall effectiveness as

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.046265
https://www.techscience.com/doi/10.32604/cmc.2024.046265
mailto:skkim9226@gmail.com
mailto:salil.bharany@gmail.com


3398 CMC, 2024, vol.79, no.2

cloud computing quickly grows its influence across many sectors [2]. A major milestone has been
reached with the smooth transition from traditional systems to digital ones, including Electronic
Health Records (EHRs), Electronic Medical Records (EMRs), Personal Health Records (PHRs), and
Electronic Health Data (EHD) [3]. These digital archives contain a wealth of vital patient information,
including health history, statistics, prescription pasts, immunization position, and more. Particularly
cloud-based services are proven to be essential for managing medical records. They provide a safe
and expandable platform for storing data, enabling access from anywhere and facilitating the entry,
retrieval, and management of crucial health information for authorized healthcare workers, clients,
and caregivers [4]. However, the electronic frontier comes with its own set of particular difficulties.
Given the importance of patient data, security, and privacy are top priorities in the healthcare
industry. Security risks loom large as data moves to the cloud. A detailed investigation of wireless
network security is required since attacks on healthcare information are an unfortunate reality. Despite
the evident advantages of cloud-based computing, remote storage’s susceptibility to data breaches
continues to be a major worry. A few instances of the hidden dangers are ransom threats, distributed
denial-of-service (DDoS) attacks, and malware attacks [5].

To protect healthcare data on the cloud, stronger security protocols and cutting-edge encryption
technologies are becoming more common [6]. Data security is a top goal, along with enhancing
the efficiency, economy, and long-term viability of information processing. The investigation reveals
the crucial role played by these cutting-edge technologies as we delve into the world of cloud-based
healthcare data security, paving the way for a strong and secure healthcare ecosystem in the digital era.
Adopting cutting-edge technologies for cloud security paves the way for future developments while
also addressing current flaws. The use of artificial intelligence (AI) and machine learning (ML) in
security measures has gained popularity as a proactive response to changing cybersecurity threats. By
enabling healthcare systems to identify and stop potential security breaches in real time, these cutting-
edge technologies provide proactive protection against new threats. Healthcare firms may strengthen
their defenses, proactively discover weaknesses, and quickly respond to any security-related incidents
by utilizing powered Artificial intelligence (AI) security solutions [7]. Sensitive patient data must be
protected using an integrated approach in the ever-changing cloud healthcare data security ecosystem.
The demand for robust security systems is increasing as cyber-attacks and data breaches become more
complex. The dedication to data privacy and integrity is demonstrated by the use of strict protocols
and encryption techniques, such as the Enhanced Parallel Multi-Key Encryption Algorithm (EPM-
KEA). Healthcare providers can reduce the risks of illegal access and data exploitation by adding
strong encryption measures, assuring the security and validity of medical information stored in the
cloud [8].

The scientific community has paid close attention to the developing field of cloud computing,
mainly because of its potential to reduce computing costs and improve operational effectiveness. The
spread of cloud services in this context has become more noticeable and offers a range of advantages
to different industries. However, the healthcare industry poses special difficulties, notably concerning
the security of private patient information. As the healthcare sector increasingly uses digital solutions
for data storage and administration, it is more important than ever to protect the security and privacy
of patient records. Despite the many benefits of cloud-based systems, a key barrier that may prevent
the timely processing and access of vital patient data is the computational cost associated with the use
of cryptographic algorithms [9]. The use of strong encryption algorithms has become a crucial tactic to
reduce the dangers related to the security of data. The objective is to strengthen the security of medical
information preserved in the cloud by adding sophisticated encryption techniques, hence lowering
the likelihood of illegal access and possible breaches. However given the ongoing risk of assaults
on sophisticated systems, such as cloud computing facilities, a complete strategy must be developed
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to tackle any possible vulnerability, especially those relating to wireless network security [10]. The
creation of the Enhanced Parallel Multi-Key Encryption Algorithm (EPM-KEA) is an important
advance in the effort to strengthen cloud data privacy in healthcare settings as a consequence of these
difficulties. By increasing data security and availability, this ground-breaking method aims to raise the
overall dependability and integrity of healthcare data kept in cloud environments. The construction
of a more accessible and safe healthcare data ecosystem that ensures the privacy and safety of medical
information in a cloud environment remains the primary objective of this investigation as it progresses.

This study identified a technique to improve cloud data privacy as the Enhanced Parallel Multi-
Key Encryption Algorithm (EPM-KEA). This research used cryptographic algorithms to collect AIH
data for efficient healthcare data security and privacy on the cloud. In this study, Z-score normalization
is used as part of the preprocessing method to ensure the confidentiality and integrity of cloud-stored
healthcare records. This research proposes an Enhanced Parallel Multi-Key Encryption Algorithm
(EPM-KEA) to protect data in the cloud. Resolving security issues could make cloud storage an
accessible option for safeguarding healthcare data. This outlook points to the potential benefits of
addressing security concerns. By presenting observable proof of its effectiveness, this enhances the
practical implementation of the proposed solution. The goal of the Enhanced Parallel Multi-Key
Encryption Algorithm (EPM-KEA) is to improve the security of healthcare data and make it easier
to store important patient information securely on cloud servers.

The remaining article is structured as follows: Part 2 presents the related works. The suggested
EPM-KEA form is examined in Part 2. Results and analysis are presented in Part 3. The conclusion
and probable developments are covered in Part 4.

2 Related Works

Studies using cloud computing and distributed ledgers to facilitate data sharing are discussed
below. The authors of this study [11] propose a blockchain-based system for exchanging electronic
health records that is both secure and respects patients’ right to privacy. Once granted permission
from the data owner, a requesting party may use a keyword search on the data provider’s end to “find
the relevant EHRs on the EHR consortium blockchain and then retrieve the re-encrypted cipher text
from a cloud server.” The technique achieves its data security goals, maintaining privacy and access
control primarily via searchable encryption and conditional proxy re-encryption. This research [12]
examines the risks to data protection solutions, privacy, and mitigation strategies specific to edge cloud
computing. First, they briefly introduce edge computing, discussing its origins, definition, architecture,
and numerous critical use cases. Then, the solutions based on cryptography developed to address data
privacy and security concerns are outlined. This work [13] employs differential privacy to deal with
the problem of learning detriment caused by noise injection into the user’s data. It proposed a public
cloud auditing method for smart cities that is both lightweight and privacy-preserving and does not
depend on bilinear pairings. To guarantee the security and confidentiality of storage in the cloud and
processing. A study [14] offered a novel anti-spoof multispectral biometric cloud-based identification
technique. The answer was provided by using a multispectral palm print as a typical biometric feature
between the two primary stages of the method, which are the offline registration process and the
online verification procedure. It was the first to encrypt multispectral palm print characteristics and
utilize them for protecting user privacy in the cloud. This study [15] introduces PPO-MACS, an
outsourced multi-authority access control mechanism that is both effective and privacy-friendly. All
user characteristics are changed to be anonymous and authenticable to achieve privacy maintenance.
In addition, we propose verified outsourced decryption to reduce the computational burden on the
end user. Protecting user anonymity when providing keys is a primary concern, thus the authors
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develop a novel ABE system in this study [16]. The authors suggest a new system in which neither the
attribute auditing center (AAC) nor the key generating center (KGC) can discover the user’s attributes
or secret key. This would greatly benefit many situations involving personal privacy, including the
industrial big data scenario. They present a lightweight, private, and bilinear-pair-free public cloud
auditing approach for smart cities [17]. To begin, the suggested approach does not need users to link
devices and instead has a third-party auditor provide authentication metadata set on their behalf.
Data privacy is safeguarded against both external auditors and cloud service providers. This new
technique also lends itself to batch auditing in a multi-user setting. All public keys, revocation lists, etc.,
are maintained on a blockchain in this approach [18], utilizing the blockchain to conduct consistent
identity authentication. The system management server generates the system settings and distributes
the private keys to the COVID-19 healthcare providers and end users. The CEMRs are stored in
the cloud, and the CSP creates the mediate decryption variables through policy correspondence [19],
proposes an equation for decrypting cloud data, and provides a formula to perform the first and
second encryption in a CRT-based lockable storage approach. Users can access the secure cloud data
stored in cloud-based databases on a cloud server by including a new formula during the group key
generation procedure. A study [20] proposed a method for privacy-protected data sharing for cloud-
enhanced IoT that can be easily adapted to different situations. IoT users may now send encrypted
messages to one another using identity-based encryption using the FPDS scheme. Finally, the IoT
user may produce a delegation credential by specifying a granular access policy and then transmit that
credential to the cloud to have all the encrypted data that comply with the access policy transformed
into new ciphertexts understandable by the recipient. Security against attacks such as eavesdropping,
masquerade, replay, and man-in-the-middle is ensured in the proposed [21] protocol. According to
the results of the performance investigation, the ERFC cloud-based encryption method has lower
communication and computation complexity than the currently used protocols. In this study [22], the
authors focus on fixing three major flaws in the RCoM system. The article [23] introduced a model
based on Genetic Algorithm (GA) to address data quality and privacy difficulties. A cryptographic
method is used with GA to generate the keys for encryption and decryption to protect the privacy and
quality of cloud data. Analysis of experimental findings demonstrates that the suggested approach
protects user data privacy and integrity from unauthorized parties. This article [24] provides a safe and
practical blueprint for detecting the confidentiality of data stored in cloud computing environments.
Paper [25] evaluated encryption methods to protect or cloud-store enormous data. This project aims
to improve cloud security by combining homographic and blowfish encryption. The results are based
on the file’s encryption, decryption times, and a mix of the homographic and blowfish algorithms. This
work will be helpful in the future to improve cloud computing security. Paper [26] suggested a scenario
in which the shape of individual presynaptic densities and the effectiveness of neurotransmitter release
are regulated by ELP3-dependent acetylating of Bruch pilot at synapses. They resulted in improved
neurotransmitter release and enhanced vesicle tethering. Paper [27] analyzed several current research
on the Data Encryption Standard (DES) and Advanced Encryption Standard (AES) encryption
Methodologies. AES is quicker than DES regarding encryption time, but DES is faster than AES on
small files. Our testing of both methods with files of varying sizes indicates that neither is significantly
superior to the other regarding decryption. The findings show that AES is an excellent effectiveness,
speed, and usability encryption algorithm. Paper [28] proposed a safe and private electronic health
records exchange platform based on the blockchain. More than that, they prove the security of the
suggested protocol through a comprehensive security analysis, proving that our scheme provides the
desired level of protection. Paper [29] proposed a Blockchain-based IoT-DT system that is safe and
energy-efficient. This study could be further extended by concentrating on ordinary key creation
models in the cryptography phase, data analytics models, and regular data mining techniques to handle
significant data volumes. Paper [30] proposed a cloud-based system for enhancing data security. In the
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future, complicated data operations will be possible due to recent technical advancements in static
data, including data addition, update, and deletion.

The study [31] provided a thorough examination of blockchain’s potential medical uses, focusing
mainly on the in vitro fertilization (IVF) industry. The study [32] introduced the Internet of Things
(IoT) concept, described its architecture, and revealed the risks and vulnerabilities of using IoT in
medical settings. They also proposed a method for shielding sensitive health information in an IoT
environment. The article [33] presented a potential blockchain-based healthcare delivery architecture.
They proposed utilizing Ethereum smart contracts to decentralize healthcare administration and
create a secure telemedicine infrastructure for patient data. Based on the existing data storage
architecture, they created a multi-server search method in the research [34] provided to collaboratively
carry out diagnostic institution location, medical data search, and even cross-domain data search.
The study [35] provided a BPVSE, a unique, dynamic, and verifiable SE approach for cloud-assisted
EHR. Some advantages of BPVSE over the current system are listed below. To begin, BPVSE utilizes
blockchain and a hash-proof chain to publicly verify cloud-provided search results without needing a
trusted third party. Study [36] provided new error-detection techniques that were effectively integrated
into the NTT accelerator design and can identify all momentary and persistent problems. They
identify the errors in such structures after recalculating and deciphering the parameters using two
methodologies, namely negate and exchanging. Their techniques demonstrate good error containment
for the stuck-at-failure scenario with simulations. Additionally, they put the schemes into practice
using field-programmed gate arrays (FPGA) and made sure that both efficiency and execution
metrics were reached with a tolerable amount of overhead. A study [37] addressed the problem at
the Rochester Institute of Technology, they offered an efficient integration plan for research and
education. Furthermore, through case studies involving side-channel analysis attacks, they described
the outcomes of greater than a year-long application of the suggested technique at a graduate level.

Study [38] implemented in effect HW design for the Gaussian sampler and the ModFalcon
authentication method. Both the SABER and Falcon variations of these techniques have been
implemented on a former Xilinx field-programmable gate array (FPGA) family, and their efficiency
and error coverage were evaluated. The proposed schemes have relatively low costs, and high detection
of faults rates, and were therefore suitable for high efficiency and small-footprint HW executions of
restricted possibilities. The deployment of assaults for 2022 winners of the NIST cryptography after
the quantum competition was the focus of the study [39], which focuses on future-focused, developing
safety concerns in the period after quantum. As a result, the ideas, knowledge, and debates can be
used as a first measure in the direction of examining new requirements for programs spanning from
the deeply entrenched technologies to the metaverse and Web 3.0. Rapid developments in quantum
technology have created enormous prospects for scientific and technical advancement, but they also
pose a serious threat to current security measures because it is thought that sophisticated quantum
computers can defeat all established public-key cryptography techniques. Study [40] investigated
two broad terms depending on artificial intelligence and the k-anonymity theory of privacy in the
background, describing states of rising unpredictability by changing the quantity of entropy of a
certain collection of attributes. Three more options were also looked at selecting the feature with the
fewest different values, selecting the characteristic with the least entropy, and selecting the feature with
the most entropy.

3 Proposed Methodology

To increase cloud data security, this study offers an Enhanced Parallel Multi-Key Encryption
Algorithm (EPM-KEA) that uses encryption. Z-score normalization is used for preprocessing. The
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EPM-KEA is a security method that increases data privacy retained in cloud computing environments.
It is also known as EPM-KEA. Encryption is what is needed to have this done successfully. Fig. 1
demonstrates the flow of the optimized F-function with two S-boxes, one input switch out of two S-
boxes, and the outputs may be merged or swapped. The result is XOR-ed with a master encryption
key sub-key.

Figure 1: Optimized F-function with two S-boxes
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This technique must be repeated for safe encryption numerous times, with each iteration affecting
the next. The key-dependent dispersion of the XOR with sub-keys and the non-linearity and confusion
of the S-boxes make the technique cryptanalysis-proof. From input transformation via S-box lookup
tables through mixing and critical scheduling, the encryption method precisely monitors every step.
Adopting encryption techniques primarily aims to protect or cloud-store large amounts of data. Fig. 2
illustrates the suggested methods of this study.

Figure 2: Suggested techniques of this study

3.1 Dataset Collection

The databases ‘Authorization for Hospital Admission (AIH)’ and Authorization for High Com-
plexity Operations provide the two categories of healthcare information that constitute the source
dataset used in this study: Hospitalization and high-complexity procedures. When a healthcare facility
creates a request for hospitalization, a record is made in the AIH database. Its purpose is to verify the
admission data, and the diagnosis is typically communicated. Therefore, although a general sense
of the cost is known, hospitalization is not instantly priced. On the other hand, providers input
information into the APAC database to register authorized high-complexity processes for billing.
“While AIH records are stored in a unified file structure”, events reported in the APAC database are
categorized into six categories and stored in the appropriate database files. These categories comprise
bariatric surgery, chemotherapy, medication, nephrology, radiotherapy, and miscellaneous outpatient.
Public healthcare providers electronically transmit AIH and APAC files to DATASUS [41].

3.2 Preprocessing Using Z-Score Normalization

Pre-processing is the fundamental stage of data preparation, which includes organizing, sterilizing,
and changing raw data to improve its quality and fit for machine learning or analysis. Z-score
normalization, also known as zero-mean normalization, is achieved by taking the mean and standard
deviation for each feature in the training set and dividing them by the number of components in the
training data set. The mean and standard deviation for each attribute is calculated. There is a generic
formula that specifies the transformation that must be made:
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ZZ = dd − μμ

σσ
(1)

where d denotes the original value, or average, and the standard deviation is μμ and σσ , respectively.
Before any training can occur, the data set is utilized\using the Z-score technique. Keeping each
feature’s standard deviation and mean after exercise is crucial since these values may be used as weights
in the system’s design. We obtain pre-processed data as a result of preprocessing.

3.3 Data Authentication

The process of confirming the integrity and source of data to ensure reliability and accuracy
is known as data authentication. It requires checking that the data has not been changed. Cloud
authentication, which is supplied by cloud-based services, enables approved users to securely access
data stored in the cloud across networks in healthcare data. The public cloud provides round-the-clock
protection for the data that pertains to health coverage. In equipment failures, a power outage, or a
data breach, healthcare practitioners can retrieve data straightforwardly and expediently, causing the
most minor disturbance to patient care.

3.3.1 Encryption Framework Using the Enhanced Parallel Multi-Key Encryption Algorithm

The preprocessed data is now encrypted using the Enhanced Parallel Multi-Key Encryption
algorithm. To protect medical data, encryption employs a combination of mathematical algorithms
and a password or “key” that may be used to decode the data. The EPM-KEA algorithm is used to
encrypt data, hence rendering the original data unreadable. For example, this procedure may transform
a standard text into an encrypted message. The 448-bit key length of fine-tuned chaotic blowfish makes
it a 64-bit block. The network has 16 Feistel nodes. The encryption key length determines algorithm
security. EPM-KEA has the P-array and two 32-bit S-boxes. Each process has three parts. They are
“box construction,” “encryption,” and “decryption.”

3.3.2 Description of Epm-Kea Algorithm

• Sub-Key Generation (P-Array): The P-array has been utilized with a fixed string and Fig. 3
displays the blowfish encryption.

There are a total of 18 32-bit sub-key values in this set. Divide the critical series into 18 groups of
32 bits per each. First, the first 32-bit key (LL1) is XORed with the first P-array (OO1)value, then the
second 32-bit key (LL2)with the third (LL3) value, and so on for up to 18 rounds. There are eighteen
32-bit key values for each of the eighteen 32-bit P-array values; therefore, they are XORed together.
EPM-KEA is used to encrypt all zero-length strings. There are a total of 18 rounds in this procedure.
A P-array is used to hold the sub-key values after that depicted in Fig. 3.

• S-Box Preparation

The four S-boxes need to have a connection made between them. There are 256 entries in each
S-box. These values for the S-box have been encrypted with blowfish. After that, the values of the first
and second S-boxes are merged, and the values of the third and fourth S-boxes are joined together.
Two new S-box values are generated from the original four S-box values.
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Figure 3: Blowfish encryption

• Data Encryption

The F-function is utilized, and there are 16 rounds of data encryption. Every match assists with
a key-dependent variation and a key and data-dependent replacement of the previous round’s results.
At the end of each game, the right half will affect the left half, while the subkeys will affect the primary
keys. Fig. 4 showcases the Blowfish algorithm. The structure being referred to here is identical to the
design of EPM-KEA.

Figure 4: F-function

The significance of the irreversible function F in generating the optimal avalanche effect for a
Feistel network cannot be emphasized enough. The F-function, which comprises four S-boxes, takes a
32-bit input divided into four 8-bit inputs. These four eight-bit values are combined using the addition
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modulo technique before being subjected to the XOR operation. Fig. 4 provides a visual representation
of the F-function.

• Modified F-Function

The only new addition in this release is the inclusion of S-boxes in the F-function.

The Feistel structure of the Blowfish algorithm remains unchanged, but the design of the F-
function has been altered. In the Blowfish algorithm, the F-function consists of four S-boxes, whereas
the EPM-KEA utilizes only two S-boxes. Fig. 5 provides a visual representation of the modified F-
function.

Figure 5: F-function of EPM-KEA

The following sequential steps depict how the EPM-KEA works:

• A fixed string was used to initialize the P-array and four S-boxes in the correct sequence.
• Prepare the subkeys by encrypting the key and P-array.
• Use the F-function with four S-boxes to encrypt the S-box values.
• Make two 32-bit halves of the 64-bit input data (left and right). YYLL and YYYY designate

the left and right halves, respectively. This is done by XO Ring the 32-bit left half of the ZZZZ
with the sub key 001. The ZZZZ is entered into the F-function.

• A pair of S-boxes composes the F-function. Splitting data into two 16-bit halves, each half is
sent to one of the S boxes in the F-function.

1. The 1st and 2nd 16-bit S-boxes are now included.

2. XO Ring the 32-bit resulting bit.

3. The following is the optimized F-function: Two 16-bit halves of UUUU are created: a and b,
respectively.

FF (UUZZ) = FF (dd, cccc) = (TT1♁TT2). HHHHHHHH"♁"iiiiXXOOYY

• F(YL) is YR with XO Red.
• When you swap values between the ZK and R values, the right half (ZZUU) is replaced by the

left half, and the right half replaces the other half.
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• The ZZUU and ZZZZ are XO Red with 0017 and 0018 after the seventeenth round, but the
right and left halves are not switched.

• Finally, exclusive OR is used to combine ZZZZ and ZZUU.

Pseudo code: Optimized F-function with two S-boxes
YYLL Should be split into two 16-bit quarters, cc and dd.

FF(ZZUU) = (TT0, cc ∧ TT1, cc) (2)

1) Pseudo code of encryption
Split the 64-bit input data into two 32-bit parts: ZZZZ and ZZUU.

ffffHH ii = 0 ttff 16
ZZZZ IsXORed with ZZUU

Find FF(YYLL)

FF (ZZZZ) iiii XXOOYYHHdd wwiitth LLUU
Swap ZZZZ aaaadd ZZUU

SSwwaaSS ZZZZ aaaadd ZZUU
ZZUU iiii XXOOYY wwiitth OO [16]

ZZZZ iiii XXOOYYHHdd wwiitth OO [17]
FFiiaaaaFFFFFF, ccffcccciiaaHH ZZZZ aaaadd ZZUU

2) Pseudo code of decryption
Split the 64-bit input data into two 32-bit halves: ZZZZaaaaddZZUU

ffffHH jj = 17 ttff 1
AAZZ iiii XXOOYYHHdd wwiitth OO [ii]

FFiiaadd FF (ZZZZ)

FF (ZZZZ) iiii XXOOYYHHdd wwiitth ZZUU
SSwwaaSS ZZZZ aaaadd ZZUU
SSwwaaSS ZZZZ aaaadd ZZQ

ZZUU IISS XXOOYYHHdd wwiitth OO [1]
ZZUU iiii XXOOYYHHdd wwiitth OO [0]

CCffcccciiaaHH ZZZZ aaaadd ZZUU

3) Data stored in the cloud

To leverage users’ idle hard drive space worldwide, data is stored in a distributed network, com-
monly referred to as the cloud. However, for those seeking an alternative to traditional cloud storage,
a decentralized infrastructure can offer potential solutions to some of the challenges associated with
centralized storage. This approach securely transfers the encrypted data to the cloud for storage.

4 Result and Discussion

This work presents an Enhanced Parallel Multi-Key Encryption Algorithm (EPM-KEA) that
utilizes encryption to enhance cloud data security. The primary objective of adopting encryption
methods is to secure and store large quantities of data on the cloud. Once security concerns are
addressed, future cloud storage solutions for safeguarding healthcare data will likely be available.
To compare our proposed methods with existing approaches such as Blockchain [42], IoT [43],
Lamport Merkle Digital Signature (LMDS) [44], and secure Lightweight Authentication Scheme
(SLAS) [45], an analysis is conducted. The parameters employed in this research include “encryption
time, decryption time, execution time, security level, and energy consumption”.
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4.1 Encryption Time

The amount of time it takes a cryptography algorithm to transform a plain text into a cipher text
is known as the encryption time of that algorithm. Table 1 and Fig. 6 represent the encryption time.

Table 1: Findings of existing and proposed methodologies for encryption time

Methods Encryption time (s)

Blockchain [42] 55
IoT [43] 74
LMDS [44] 59
SLAS [45] 45
EPM-KEA [Proposed]

Figure 6: Encryption time

The total amount of encrypted plaintext (in bytes) divided by the encryption duration is how any
encryption process’ time is calculated (in ms). It shows how long the encryption technique took to
build a CT from plain text. It is the difference between the beginning and finishing timings of the
encryption, and also is written as

AA(aadd) = HH′
aa(dd)

− ff ′
gg(dd)

(3)

where HH′
aa(dd)

−ff ′
gg(dd)

indicates the beginning and finish of the encryption process. Blockchain achieves
55 s, IoT achieves 74 s, LMDS achieves 59 s, SLAS achieves 45 s, and the proposed method EPM-KEA
with 45 s.

4.2 Decryption Time

The process of decryption involves the restoration of plaintext from the received cipher text.
Decryption is the term used to describe the process of returning encrypted data to its original state.
Reverse encryption is a widely used practice. Since decryption necessitates a secret key or password, it
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decodes encrypted content, allowing only authorized users to access it. The timing of the decryption
is shown in Table 2 and Fig. 7.

Table 2: Values of decryption time

Methods Decryption time (s)

Blockchain [42] 75
IoT [43] 58
LMDS [44] 55
SLAS [45] 60
EPM-KEA [Proposed] 40

Figure 7: Decryption time

The decryption time refers to the duration required for the decryption method to produce plain
text equivalent to the cipher text. It is simply the difference between the starting and ending timings
of the decryption process and is expressed as such.

TT(ttdd) = HH"
aa(dd) − "gg(dd) (4)

where HH"
aa(dd) − "gg(dd) denotes decryption starting time and decryption ending time. The decryption

time for blockchain was estimated at 75 s. IoT was assessed using a 58-s decryption time. A 55-s
decryption time for LMDS was used for evaluation. SLAS was evaluated using a 68-s decryption time.

The decryption time of 40 s was used to assess the proposed technique EPM-KEA. Comparing
the suggested EPM-KEA technology to current methods like blockchain, IoT, LMDS, and SLAS, it
took less time to decrypt data.

4.3 Execution Time

The duration the system carries out a task, encompassing the time spent on runtime or system
functions on behalf of the study, is known as the execution time or CPU time. The implementation
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determines the specific method employed to measure execution time. When calculating the full
completion time of a task, the duration of runtime or network activities performed by the program is
considered. The approach used to estimate the implementation determines the execution time. Table 3
and Fig. 8 illustrate the period of execution.

Table 3: Evaluation of execution time

Methods Execution time (s)

Blockchain [42] 96
IoT [43] 89
LMDS [44] 83
SLAS [45] 73
EPM-KEA [Proposed] 42

Figure 8: Execution time

The execution time for blockchain was estimated at 96 s, while IoT was evaluated with an 89-s
execution time. LMDS was assessed using an 83-s execution time, and SLAS was considered with a
73-s execution time. The proposed technique, EPM-KEA, was evaluated with an execution time of
42 s. Comparing the suggested EPM-KEA technology to current methods such as blockchain, IoT,
LMDS, and SLAS, it exhibited a shorter execution time for data processing.

4.4 Security Level

The term “security level” denotes the degree to which minimally adequate protective security
measures must always be maintained for a specific duration, primarily due to the heightened risk of a
security event. Table 4 and Fig. 9 illustrate the representation of the security level.
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Table 4: Values of security level

Methods Security level (%)

Blockchain [42] 39
IoT [43] 54
LMDS [44] 75
SLAS [45] 90
EPM-KEA [Proposed] 97

Figure 9: Security level

Cloud storage places significant importance on ensuring security. The compromised data is
assessed by dividing it with the entirety of the original text to ascertain its value. The security level
is expressed as follows:

GG(gggg) = gg′
(zzzz)

gg"
qqqq

(5)

where GG(ggg) denotes the security analysis, the hacked data HH ′
(zztt) is and the number of the original

text is HH "
(qqdd)

.

The compromised data is assessed by dividing it with the entirety of the original text to ascertain
its value. The security level is expressed as follows:

GG(gggg) = gg′
(zzzz)

gg"
qqqq

(6)

where GG(ggg) denotes the security analysis, the hacked data HH ′
(zztt) is and the number of the original

text is HH "
(qqdd)

.
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The coexistence of consumer firms’ data within the same network poses a fundamental challenge
to data security in cloud computing. The proposed approaches exhibit a higher level of protection,
whereas the existing methods demonstrate a lower level of security.

When comparing the suggested EPM-KEA technology with current methods such as blockchain,
IoT, LMDS, and SLAS, it is observed that the execution time for data processing is reduced.
Blockchain achieves a security level of 39%, IoT achieves 54%, LMDS achieves 75%, SLAS achieves
90%, and the proposed method, EPM-KEA, achieves 97%.

4.5 Energy Consumption

Energy consumption encompasses all the energy required to carry out activities, create something,
or occupy a structure. In data encryption, energy consumption refers to the amount of electricity or
fuel used. Table 5 and Fig. 10 illustrate energy usage. Blockchain was estimated to have an energy
usage of 81%.

Table 5: Energy consumption

Methods Energy consumption (%)

Blockchain [42] 81
IoT [43] 62
LMDS [44] 92
SLAS [45] 73
EPM-KEA [Proposed] 53

Figure 10: Energy consumption

IoT demonstrated an energy usage of 62%. LMDS accounted for 92% of energy usage during the
evaluation. SLAS exhibited an energy usage of 73%. The suggested approach, EPM-KEA, was tested
with a 53% energy usage. In comparison to current methods, the recommended approach consumes
less energy.
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When comparing the existing techniques with the suggested ones, blockchain, IoT, LMDS, and
SLAS demonstrate remarkable efficiency.

4.6 Discussion

Data stored on the blockchain cannot be altered once created, which is one of the technology’s
significant advantages and drawbacks. The economic and logistics sectors derive benefits from
this phenomenon. Immutability necessitates a uniform distribution of network nodes, which is
unattainable without it. Should a single organization exercise control over more than 50 percent of a
blockchain network’s nodes, the network faces a potential risk [42]. Additionally, numerous lightweight
authentication techniques currently in use exhibit various security flaws, particularly the absence of
forward secrecy [43]. By leveraging blockchain technology, computational costs can be reduced while
maintaining a higher level of security [44]. IoT devices’ limited storage and processing power pose
challenges in implementing complex cryptographic processes [45]. To address these issues, this research
introduces a novel cloud-based encryption method, the Enhanced Parallel Multi-Key Encryption
Algorithm (EPM-KEA). The primary motivation behind encryption techniques is to safeguard and
store vast amounts of data in the cloud.

5 Conclusion

In conclusion, the rapid development of cloud computing, driven by its potential for cost
reductions, has emphasized the rising relevance of cloud services in various industries, with healthcare
data security emerging as a critical issue. The processing cost of encryption techniques might be a
barrier when dealing with time-sensitive medical data. Using robust encryption techniques, such as
EPM-KE, is a heartening step in the right direction, especially when protecting data stored in the
cloud, which poses specific issues. Safeguarding Patients’ Confidential Health Information Online,
Cryptographic algorithms implement it to ensure the confidentiality and integrity of transmitted
data. To ensure the security of patient data stored in the cloud, irreversible hash values. However,
owing to the security holes in today’s technologies, a thorough examination of wireless network
security is necessary. Compared to traditional techniques, the system performed well, indicating
that resolving these security issues might lead to more widely accessible cloud storage alternatives
for preserving healthcare data. This research shows how important it is to strengthen data security
measures as the cloud computing sector grows. Further development and expansion of the EPM-KEA
encryption protocol will be necessary to strengthen cloud-based healthcare data security. Integration
with emerging technologies like homomorphism encryption, constant threat monitoring, and dynamic
key management will all improve resilience.
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