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ABSTRACT

Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images
from one or more low-resolution inputs. Super-resolution is of paramount importance in the context of remote
sensing, satellite, aerial, security and surveillance imaging. Super-resolution remote sensing imagery is essential for
surveillance and security purposes, enabling authorities to monitor remote or sensitive areas with greater clarity.
This study introduces a single-image super-resolution approach for remote sensing images, utilizing deep shearlet
residual learning in the shearlet transform domain, and incorporating the Enhanced Deep Super-Resolution
network (EDSR). Unlike conventional approaches that estimate residuals between high and low-resolution images,
the proposed approach calculates the shearlet coefficients for the desired high-resolution image using the provided
low-resolution image instead of estimating a residual image between the high- and low-resolution image. The
shearlet transform is chosen for its excellent sparse approximation capabilities. Initially, remote sensing images are
transformed into the shearlet domain, which divides the input image into low and high frequencies. The shearlet
coefficients are fed into the EDSR network. The high-resolution image is subsequently reconstructed using the
inverse shearlet transform. The incorporation of the EDSR network enhances training stability, leading to improved
generated images. The experimental results from the Deep Shearlet Residual Learning approach demonstrate
its superior performance in remote sensing image recovery, effectively restoring both global topology and local
edge detail information, thereby enhancing image quality. Compared to other networks, our proposed approach
outperforms the state-of-the-art in terms of image quality, achieving an average peak signal-to-noise ratio of 35
and a structural similarity index measure of approximately 0.9.
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1 Introduction

Super-resolution (SR) refers to the process of generating high-resolution (HR) videos or images
from one or more low-resolution (LR) inputs. This is accomplished through advanced algorithms that
effectively fill in missing details and enhance overall image quality. SR can improve the resolution of
images captured by lower-quality cameras, resulting in sharper and more detailed visuals.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.043873
https://www.techscience.com/doi/10.32604/cmc.2023.043873
mailto:israa.ismail@ci.suez.edu.eg


3194 CMC, 2024, vol.79, no.2

SR is divided into single-image SR (SISR) and multi-image SR. SISR techniques involve utilizing a
single LR image as the input. However, numerous LR images are used in multi-image SR algorithms to
produce an HR output. This offers an economical and practical solution to updating native hardware,
such as camera sensors, across various applications, including satellite imaging [1], aerial imaging [2],
security and surveillance imaging [3], and medical imaging [4]. The scientific community has recently
concentrated its efforts on studying SR.

Single-image SR (SISR) is a fundamental problem that involves estimating an HR image from a
single LR image [5]. Recovering missing high-frequency (HF) details is crucial for SISR [6]. The quest
for HR images containing HF information highlights the importance of these specific details.

Today’s main SR techniques are interpolation-based, reconstruction-based, and learning-based.
Interpolation-based approaches [5,6], while widening the range of the image, may produce oscillating
and zigzagging images that are too smooth. Reconstruction-based approaches’ [7,8] representation
and performance rely on the prior information used with the HR image. The reconstruction quality
may deteriorate rapidly if the given input image is too small, or the amplification factor is too large.

The learning-based method [9–11] is more effective than earlier methods because it learns the
mapping relationship between the HR and LR images. Convolutional Neural Networks (CNNs)
[12–17] and Generative Adversarial Networks (GANs) [18–20] are two types of neural networks. They
have superior representational and learning capacities and outperform standard learning approaches.

Deep neural networks, particularly deep CNNs, are used today and have proven highly effective
in SR tasks. A key advantage of using deep CNNs for SR is their ability to learn complex, non-
linear mappings between LR and HR images, capturing subtle details and textures that simpler models
may overlook. Furthermore, CNNs can be trained with large datasets, enhancing their generalization
performance on new, unseen data–a crucial aspect in SR tasks where the aim is to produce high-quality
images absent from the training data. CNNs have significantly advanced the state-of-the-art in SR and
facilitated the development of high-performance systems for various applications [21].

An example based SISR approach for remote sensing images was proposed. It calculates the
shearlet coefficients for the desired HR image using the provided LR image instead of estimating a
residual image between the high and LR images. To achieve exceptional performance, a convolutional
neural network called the Enhanced Deep Super-Resolution (EDSR) [22] network is utilized. This
study’s contributions lie in developing an innovative SR approach tailored to the needs of remote
sensing imagery. By combining deep shearlet residual learning with the EDSR network, it achieves
remarkable improvements in image quality, making it a valuable asset for applications such as
surveillance, security, and remote area monitoring.

The present paper provides the following contributions:

1. Combining deep shearlet residual learning with the EDSR network.
2. The experimental outcomes demonstrate that the proposed ST residual learning approach

performs better than conventional methods regarding peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) metrics.

2 Related Work

The first deep CNN for image SR was trained by Dong et al. [21]. The authors utilized an SR
convolutional neural network (SRCNN) consisting of three layers, where the CNN was trained to
map LR images to HR images in an end-to-end manner. The Super-Resolution Residual Network
(SRResNet) [20] is a deep learning architecture to elevate SISR by enhancing image resolution while
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preserving photo-realism. In contrast to traditional SR methods, which have frequently grappled with
the challenge of producing visually coherent and realistic results in addition to sharper images, the
authors have introduced an innovative framework. This novel paradigm leverages the capabilities of
GANs to usher in a transformative era of achieving photo-realistic SISR.

The residual net has demonstrated an excellent ability to shorten training times and accelerate
convergence rates. Considering this notion, a Very Deep Convolutional Network for Super-Resolution
(VDSR), a 20-layer CNN architecture that used adaptive gradient clipping and residual learning to
lessen the difficulty of training, was proposed by Kim et al. [23]. The goal of estimating an HR image
was shifted to estimating a residual image between the HR and LR images. This approach enhanced
performance by integrating residual learning into the image SR process.

Zhang et al. [24,25] proposed two powerful SR techniques, namely the Residual Dense Network
(RDN) and Residual Channel-Attention Network (RCAN), which employ Residual Dense Blocks
(RDBs) and Residual Channel-Attention Blocks (RCABs), respectively. These networks have demon-
strated superior performance over other existing state-of-the-art SR techniques for natural images.

Muhammad et al. [26] proposed an Inception ResNet for magnetic resonance imaging (MRI)
images, called IRMRIS, which comprises two ResNet and Inception blocks with end-to-end con-
nections, subsequently accompanied by the PReLU non-linear activation function. They utilized a
deconvolution layer for learning the upsampling filters. The reconstructed output is then upscaled
via a deconvolution layer to produce the final high-resolution MRI image. Experimental results show
sharper and cleaner texture details.

The Deep Residual Squeeze and Excitation Network (DRSEN) was proposed by Gu et al. [27] to
enhance the representation of deep networks. The authors employed a residual squeeze and excitation
block (RSEB), which incorporates a local feature fusion module to utilize the features of both the input
and the block. The squeeze and excitation module is leveraged to dynamically modify channel-wise
feature responses by modelling the dependencies between channels, thereby enhancing the network’s
capabilities. Additionally, it utilizes a global residual path approach, removing repetitive convolutional
layers to minimize the parameters and computation needed.

Wang et al. [28] used symmetric local fusion blocks within a convolutional neural network (SR-
SLFB). This approach enhances the reconstruction of high-frequency information. By incorporating
local fusion within the residual block, it mitigates the issue of inadequate high-frequency feature
extraction and enhances the accuracy of reconstructing remote sensing images with deep networks.
To optimize global feature utilization and reduce network complexity, a residual method is employed,
establishing symmetric jump connections between the local fusion blocks to ensure their mutual
symmetry.

Some studies have attempted to enhance performance by combining CNNs and sparse transform-
domain representations. According to Guo et al. [14], the first image SR technique utilized the wavelet
domain. The authors constructed a deep wavelet super-resolution (DWSR) network to capture HR
images by calculating the “missing details” of the wavelet coefficients in the LR image. To produce
high-quality HR images with fewer artifacts, they employed a deep CNN in the transform domain and
incorporated additional structural information in the wavelet domain throughout the reconstruction
process. Huang et al. [16] developed a revolutionary deep-CNN Network and wavelet-integrated
Identity Preserving Adversarial (WIPA) to reconstruct facial images. The remarkable aspect of this
architecture is the eventual halving of the residual module depth to adjust for the high computational
load brought on by feature size duplication after the transposed convolutional layer (ConvTr layers).
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A novel SR network for medical images was proposed by Sang et al. [29] in the non-subsampled
contourlet transform (NSCT) domain and is known as the granular multiscale network (GMSN).

Hsu et al. [30] proposed a novel architecture for Structure Scale Preservation (SSP), which enables
the integration and learning of structure preservation subnetworks on every level. They also introduced
innovative Low-to-High-Frequency Information Transmission (L2HIT) and Detail Enhancement
(DE) mechanisms, using Structure Scale Fusion (SSF) in combination with inverse Wavelet Transform
(WT). This approach preserves low-frequency structures while reconstructing high-frequency details,
enhancing detail fidelity and preventing structural distortion. Experimental results show that the
wavelet pyramid recurrent structure preserving attention network (WRSANet), outperforms other
methods, particularly in preserving context structure and texture details.

Dharejo et al. [31] utilized the 1st instance of a multi-attention GAN alongside a WT method for
enhancing the resolution of medical images. The WT separates the LR image into multiple frequency
bands, while the GAN incorporates multi-attention and upsampling blocks to make predictions
about high-frequency components. The authors utilized GANs to develop a perceptual loss function
that more effectively super-resolves LR features, resulting in enhanced perceptual quality of the
resulting images with increased accuracy and richer texture information. Wang et al. [32] proposed
the shearlet transform (ST) to the deep medical super-resolution network (DMSRN), which combines
local residual learning with global residual learning. This was designed to increase the depth of the
network without raising any parameters. To predict residual images, Geng et al. [33] introduced a deep
shearlet residual learning network (DSRLN) based on the ST, which gives the best possible sparse
approximation. By adopting a dual-path and data weighting strategy during the training process, a
deep 20-layer CNN is employed to learn the target residual image. Evaluations on general natural and
remote sensing datasets demonstrated improved quality of the regenerated images. Table 1 summarizes
the related work for the SISR with the convolutional neural network.

Table 1: Summary of the related work

Reference Technique Dataset

Dong et al. [21] SRCNN: Mapping LR images to HR
images in an end-to-end manner

91-image dataset
and ImageNet dataset

Kim et al. [23] VDSR: Estimating a residual image
between the HR and LR images

Set5, Set14, B100 and Urban100
datasets

Zhang et al. [24] Residual Dense Blocks (RDBs) Natural images
Zhang et al. [25] Residual Channel-Attention Blocks

(RCABs)
Natural images

Muhammad
et al. [26]

IRMRIS: Two ResNet and inception
blocks and deconvolution layer

MRI image

Gu et al. [27] DRSEN: Residual squeeze and
excitation block (RSEB)

UC Merced and NWPU-RESISC45
remote sensing datasets

Guo et al. [14] DWSR: Wavelet coefficients Set5, Set14, B100 and Urban100
datasets

Huang et al. [16] Wavelet-Integrated Identity Preserving
Adversarial

Facial images

(Continued)
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Table 1 (continued)

Reference Technique Dataset

Wang et al. [28] SR-SLFB: symmetric local fusion
blocks. By incorporating local fusion
into the residual block.

UC Merced and NWPU-RESISC45
remote sensing datasets

Sang et al. [29] GMSN: Non-subsampled contourlet
transform (NSCT)

Medical images

Hsu et al. [30] WRSANet: Structure Scale Fusion
(SSF) in combination with inverse
Wavelet Transform

ImageNet dataset

Dharejo et al. [31] Multi-attention Generative
Adversarial Network (GAN) is being
utilized alongside a wavelet transform.

Medical image

Wang et al. [32] DMSRN: Combines local residual
learning with global residual learning
in shearlet transform

Medical images

Geng et al. [33] DSRLN: Deep shearlet residual
learning network

General natural image datasets and
NWPU-RESISC45 datasets

The previously proposed techniques focused on the image space domain for SR, but those
approaches can result in fuzzy images with lost textural features. The advantages of employing
the transform domain for SR to improve SR outcomes are investigated, specifically capturing
additional structural features in images to eliminate artifacts. While wavelets effectively represent one-
dimensional signals, they struggle with high-dimensional signals. Using the Curvelet and contourlet
transformations allows for the exploitation of the anisotropy of curved surfaces along edges. How-
ever, Curvelet lacks a geometric multi-resolution representation, and Contourlet is computationally
expensive. To address these limitations and achieve outstanding performance, ST was applied [34].

3 Background
3.1 Background on the Shearlet Transform

The ST [34] is a framework that offers optimal sparse approximations [35]. By utilizing filter banks,
it operates effectively and can represent images across multiple-scale frequency bands. Furthermore,
in image SR, where HF details are essential, image representations at different frequencies showcase
various features. By enhancing some frequencies and suppressing others, it is simple to design a spatial
filter selective for extracting features in frequency domains. Thus, the shearlet-based technique boasts
a greater feature extraction ability and offers remarkable performance [36].

One advantage of the ST is its well-localized properties in the frequency and time domains.
These properties prove valuable for capturing an image’s structural information. Thus, the edge and
structural information within the HR-estimated image can be preserved by employing SR in the ST
domain [32,33].
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3.1.1 Shearlet Transform

The ST is defined in terms of band-limited generators. The frequency domain of the shearlets is
shown as cones and tiling in Fig. 1. The Fourier domain is partitioned into four cones by the ST, which
eliminates a square at the center to isolate the low-frequency region.

Figure 1: The way the shearlet’s frequency tiling is organized. (a) Support for shearlets ϕj,k,c in the
frequency domain, which is divided into tiles with a trapezoidal form. (b) The centered rectangle R
and the cones D0 and D1 in the frequency domain

The two-dimensional ST is defined as

ϕj,k,c = |det detL| j
2 ϕ

(
MkLjX − c

)
(1)

where the scale, direction, and cone parameters, are j, k, and c, respectively. Satisfy j, k ∈ Z, c ∈ Z2.ϕ ∈
l2(R2). The |det detL|= 1, L and M are 2 × 2 invertible matrices. L and M are controlling the scale and
orientation of the ST, respectively.

Let L and M meet the condition:

L = L0 = [4 0 0 2] , M = M0 = [1 1 0 1] (2)

Or can be

L = L0 = [2 0 0 4] , M = M0 = [1 0 1 1] (3)

Then, the ST functions can be written as:

ϕ0
j,k,c (X) = 2

3
2 jϕ0

(
Mk

0 Lj
0x − c

)
(4)

ϕ1
j,k,c (X) = 2

3
2 jϕ1

(
Mk

1 Lj
1x − c

)
(5)

where j ≥ 0, −2j ≤ k ≤ 2j − 1, c ∈ Z2 for any ε = (ε1, ε2) ∈ R2, ε1 �= 0, The fundamental function is
stated as

ϕ(0) (ε) = ϕ̂(0) (ε1, ε2) = ϕ̂1 (ε1) ϕ̂2

(
ε2

ε1

)
(6)

ϕ(1) (ε) = ϕ̂(1) (ε1, ε2) = ϕ̂1 (ε2) ϕ̂2

(
ε1

ε2

)
(7)

where the Fourier transform of ϕ is indicated by ϕ̂. As shown in Fig. 1b, the ST was revised to
incorporate constraints compatible with the regions outlined by the horizontal cone:
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D0 =
{
(ε1, ε2) ∈ R2 : |ε1| ≥ 1,

∣∣∣∣ε1

ε2

∣∣∣∣ ≥ 1
}

(8)

the vertical cone as:

D1 =
{
(ε1, ε2) ∈ R2 : |ε2| ≥ 1,

∣∣∣∣ε1

ε2

∣∣∣∣ ≤ 1
}

(9)

and the centered rectangle as

R = {
(ε1, ε2) ∈ R2 : ‖ (ε1, ε2) ‖∞ ≤ 1

}
(10)

3.2 The Enhanced Deep Super-Resolution (EDSR) Learning Network

The EDSR [22] network is an SISR architecture that has achieved top-of-the-line performance
on SR benchmarks. The EDSR architecture comprises a series of convolutional layers with residual
connections. Similar to ResNet [37], the network takes the LR image as an input and produces the HR
image as an output. The residual connections allow the network to learn the residual mapping between
the LR and HR images. Consequently, the training procedure gains stability, and the quality of the
produced images is improved. Unlike ResNet, EDSR takes out the network’s batch normalization
layers (this technique normalizes the inputs of each network layer to have a zero mean and unit
variance). It is recommended to remove batch normalization layers since they normalize features and
remove network range flexibility. As batch normalization layers utilize matching memory allocation to
the preceding convolutional layers, GPU memory utilization is effectively reduced. The GPU memory
usage is correspondingly lowered. Without the batch normalization layer, the EDSR can train using
40% less GPU memory usage [22].

Incorporating more parameters is a straightforward approach to enhancing the efficiency of a
neural network model. The efficacy of a convolutional neural network can be amplified by introducing
extra filters or layering additional layers. In a general CNN architecture, the number of layers (depth)
is represented by B, the number of feature channels (width) by F, and the parameters amount to
approximately O(BF2). Consequently, given limited computational resources, increasing F rather than
B can optimize the model’s capacity while roughly maintaining O(BF) memory utilization [22].

However, exceeding a specific threshold for the number of feature maps would cause the training
process to become numerically unstable. By using residual scaling (this technique scales the residual
connections by a learnable parameter before adding them back to the output of each convolutional
layer. This helps control the residual signal’s magnitude and prevent it from dominating the network
output.) [38] with a factor of 0.1, EDSR was able to overcome this problem. After the final convolution
layers, each residual block has constant scaling layers. These modules significantly stabilize the training
process when several filters are used.

Using the residual blocks in Fig. 2b to build the EDSR model, the structure of SRResNet [20] as
presented in Fig. 2a is simther to the EDSR model. EDSR excludes ReLU activation layers outside
the residual blocks. Setting B = 32 and F = 256 with a scaling factor of 0.1 and loss function Mean
Absolute Error (MAE) but without the batch normalization layers, the single-scale model EDSR was
constructed. The model architecture is depicted in Fig. 3. Using the pre-trained x2 network to initialize
the model parameters while training the EDSR for upsampling factors x3 and x4. This pre-training
method speeds up training and enhances performance.
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Figure 2: Residual block comparison for (a) SRResNet residual block (b) Enhanced deep super-
resolution residual block

Figure 3: The enhanced deep super-resolution network’s architecture

4 The Proposed ST Residual Learning Approach

The SISR task aims to reconstruct an HR image from a single LR one. Let Y be the HR image and
X be the LR. The objective of deep learning techniques in image SR is to learn a mapping function that
can learn from a training set of LR images and generate their HR counterparts, denoted by {(Xi, Yi)}N

i=1

where the HR image is Yi and the corresponding LR image is Xi.

Given that Xi = I (D (Yi)), the down-sampling operator is denoted by D (·) and the interpolation
operator is denoted by I (·), with the same scale factor. Here, bi-cubic interpolation is used. The
objective of deep learning is learning the mapping function F(θ) with parameters θ from {(Xi, Yi)}N

i=1.
It inputs X = I (D (Y)), the bi-cubic interpolated image and outputs Ŷ = F(X ; θ) as an estimated HR
image.

A relative learning approach was introduced to CNN image SR, which improved performance
by changing the challenge of estimating the HR image to predicting a residual image R = Y − X
among the HR and LR images. The CNN residual learning method [39] was introduced to tackle
the degradation performance issue, where training accuracy declines as the network depth increases.
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In residual learning-based image SR approaches, the loss function is typically the mean squared error
(MSE) which is between Ri which is the predicted residual image and R̂i which is the estimated residual
image.

Ls (θ) = 1
N

N∑
i=1

∥∥R̂i − (Yi − Xi)
∥∥2

F
(11)

It can be calculated R̂i = F(Xi; θ) by a neural network predefined parameter θ .

The MSE loss function is not always the optimal choice. When the error exceeds 1, the MSE
squares the error, making it more sensitive. The Mean Absolute Error (MAE) serves as the secondary
loss function. Due to the constant derivative of the MAE loss function, it oscillates around its stable
value during the latter phase of training with a constant learning rate, leading to reduced convergence
accuracy. Consequently, the network was trained by using the MAE loss function, which is stated as

LA(θ) = 1
N

N∑
i=1

∥∥R̂i − (Yi − Xi)
∥∥

1
(12)

An SISR approach was proposed based on providing an LR image for estimating the shearlet
coefficients of the desired HR image. Combined with a single-scale SR architecture called the EDSR
[22]. For improving SISR performance in remote sensing images, a residual neural network based
on the ST is proposed. The ST is chosen for its excellent sparse approximation. Initially, images are
transformed into the shearlet domain, and their coefficients are fed into the EDSR network. The
HR image is subsequently reconstructed using the inverse ST. The experimental results demonstrate
outstanding image recovery performance, successfully restoring global topology and local edge detail
information. This improvement can be attributed to the ST and EDSR model combination.

The proposed ST residual learning approach is depicted in Fig. 4. The ST residual learning
approach comprises an ST unit, an EDSR network, and an inverse ST unit. The ST unit decomposes
the bicubic interpolated input LR image to an LF sub-band and four HF sub-bands. The resulting
shearlet coefficients are applied to the EDSR network, and then, to reconstruct the final HR image, a
2D inverse ST is used.

Figure 4: Block diagram for the proposed shearlet residual learning approach

4.1 Implementation of the ST

In the frequency domain, the shearlet filter is denoted by ϕ̂j,k,c, and the overall number of scales for
the ST is j (the scale parameter). For each scale j in every cone, the shearing parameter, k, runs from
−2dj to 2dj . where dj is the parameter for the shearing level determined by the vector for the shearing
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level of size J, dj = (d1, d2,..., dj). Concerning the cone parameters c = 0, 1, and 2, while the horizontal
shearlet filters are defined with c = 1 and the vertical ones with c = 2, the LF shearlet filter is indexed by
c = 0. Keep in mind that the filters ϕ̂j,k,1, and ϕ̂j,k,2, are nearly identical when k = 2dj . Therefore, at each
scale j, the shearlet filters’ boundary in the vertical cones are eliminated to enhance both consistency
and effectiveness. As a result, rj = 2

(
2.2dj + 1

) − 2 = 2dj+1 can be used to compute the number of
shearlet filters generated at each scale j, and R = 1 + ∑J

j=1 rj can be used to calculate the redundancy
of the specified ST. For a 2D image X and the generated shearlet filter consisting of R filters with
frequency responses ϕ̂j,k,c, the shearlet coefficients SHj,k,c(X) of dimensions a × b related to ϕ̂j,k,c are
obtained by convolving the spatial domain representation of the shearlet filter SHj,k,c with the input
image X. It is calculated through element-wise multiplication in the frequency domain, using the fast
Fourier transform (FFT) and its inverse (IFFT). The result, SH(X), is a 3D tensor with dimensions
a × b × R, containing all the shearlet coefficients SHj,k,c(X) corresponding to the shearet filter bank
ϕ̂j,k,c for each (j, k, c).

The shearing parameters are set to dj = (0, 0), and the scale parameter is set to j = 2. With this
configuration, the associated shearlets total R = 9, the LF path’s channel cL = 1, and the HF path’s
channel cH = 8.

4.2 Implementation of EDSR

In the construction of the single-scale EDSR model, ReLU activation layers are omitted except
within the residual blocks. The model was built with specific parameters: depth is set to B = 32, feature
channels are F = 256, a scaling factor of 0.1, and the Mean Absolute Error (MAE) as the loss function.
Notably, batch normalization layers were not included in this model. The architecture of the EDSR
entails a series of meticulously designed components. First, the input is preprocessed by normalizing
it, which involves subtracting the RGB mean, ensuring that the model works effectively with the given
data. Following this, a Conv2d layer is employed with 64 filters and a kernel size of 3, enhancing the
feature extraction process. The heart of the model lies in its ResBlocks, where 8 ResBlocks are utilized
in this specific implementation. Each ResBlock consists of a Conv2d layer followed by an addition
operation that combines the output of the ResBlock and the original input, enabling the model to
learn residual features that enhance image SR. Finally, an upsampling step is carried out, achieved by
using a combination of Conv2d and pixel shuffle operations, which helps increase the spatial resolution
of the image. This comprehensive architecture ensures that EDSR can effectively upscale LR images
to produce high-quality, super-resolved outputs.

During the model training, the ADAM optimizer [13] is utilized, with the parameters β1 =
0.9, β2 = 0.999, and ε = 10−8, while 16 was chosen as the minibatch size. The initial learning rate
is established to be 10−4 at the beginning and reduced by half every 2 ∗ 105 minibatch updates. The
model was trained for 300 K iterations.

The training LR images for both datasets are divided into 48 × 48-pixel patches with the
corresponding HR patches without overlapping. Each training image is rotated by 90 degrees, 180
degrees, and 270 degrees and then horizontally inverted to augment the training set. The model by
factor x2 is built from the beginning to the end. Then, this x2 model is used as a pre-trained network
for different scales (x3 and x4) once it converges.

5 Experimental Results

Remote sensing images are employed in this section to evaluate the proposed ST residual learning
approach. The experimental setup is provided first, followed by information on data preparation
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and parameter adjustments. The enhancement in performance provided by the proposed ST residual
learning approach is demonstrated. It is then compared to state-of-the-art SISR approaches. The
proposed approach was implemented with the PyTorch framework and trained on an NVIDIA Tesla
K80. ShearLab in the MATLAB (R2017b) environment was used to implement the ST and inverse
transform.

5.1 Dataset

5.1.1 NWPURESISC45 Dataset

The NWPURESISC45 dataset [40] was invented by Northwestern Polytechnical University
(NWPU). The benchmark for classifying remote sensing images is the dataset RESISC. This dataset
comprises 31,500 images, with 700 images per class for 45 classes. HR images are 256 × 256 pixels,
where the spatial resolution ranges from 30 to 0.2 meters per pixel. Each class received 700 randomly
selected images, 550 of which were utilized for training and 150 for testing. Furthermore, each
training image undergoes rotations of 90 degrees, 180 degrees, and 270 degrees, respectively. They
are horizontally inverted after the rotations to expand the training set further.

5.1.2 The UCMerced Dataset

The UCMerced dataset [41] is widely recognized as one of the most commonly used datasets for
processing remotely sensed data. It comprises 2100 images depicting various land surfaces on Earth.
The dataset encompasses 21 different categories of low-light land use images involving agricultural
areas (AGI), baseball diamonds (BD), beaches (BE), airplanes (APL), chaparral (CP), buildings
(BU), forests (FO), golf courses (GC), freeways (FW), dense residential areas (DR), harbors (HA),
intersections (IS), mobile-home parks (MHP), medium residential areas (MR), rivers (RI), overpasses
(OP), runways (RW), storage tanks, sparse residential areas, parking lots (PL), and tennis courts (TC).
Each classification consists of hundreds of 256 × 256 pixel images, and the spatial resolution in the red,
green and blue (RGB) color space is 0.3 meters per pixel. These images were initially captured from
aerial orthoimagery obtained from the United States Geological Survey (USGS) National Map. For
each class, 90 images are used for training and the remaining images are used for testing. Moreover,
each training image is subjected to rotations of 90 degrees, 180 degrees, and 270 degrees, respectively.
After these rotations, horizontal flipping is applied to augment the training dataset further.

5.2 Evaluation Metric

The commonly used PSNR and SSIM are employed to perform quantitative assessments on the
reconstructed images described by the following equations [42]:

PSNR(Y , Ŷ) = 20log10

⎛
⎜⎜⎝ Y√

MSE
(

Y , Ŷ
)
⎞
⎟⎟⎠ (13)

SSIM
(

Y , Ŷ
)

= (2μYμŶ + c1) (2σYŶ + c2)(
μ2

Y + μ2
Ŷ

+ c1

) (
σ 2

Y + σ 2
Ŷ

+ c2

) (14)

where the HR ground-truth image is denoted by Y and Ŷ is the resulting HR image. The image’s

maximum pixel value is max (Y), and MSE
(

Y , Ŷ
)

= 1
ab

‖Y − Ŷ‖2
F .
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The average of Y is denoted by μY , while the average of Ŷ is denoted by μŶ , the variance of Y is
denoted by σ 2

Y , while the variance of Ŷ is denoted by σ 2
Ŷ
, the covariance of Y and Ŷ is denoted by σYŶ .

Finally, to stabilize the division with a small denominator, two small constants, c1 and c2 are used.

5.3 Remote Sensing Image Experiment Results

The average PSNRs and SSIMs for the NWPU-RESISC45 and UCMerced testing datasets are
displayed in Table 2, with up-sampling factors of 2, 3, and 4, respectively. that displays the evaluation
measure of the final 256 ∗ 256-pixel HR images. It was observed that the range of PSNR readings lies
within a reasonable range. This shows that the rebuilt image’s quality has improved. Furthermore, the
SSIM is close to one, indicating that the reconstructed and original images (before downsampling) are
structurally identical.

Table 2: PSNR and SSIM average for the ST residual learning proposed approach (with factors 2, 3
and 4) from both the NWPU-RESISC45 and UCMerced datasets

Dataset Image name Scale x2 Scale x3 Scale x4

PSNR SSIM PSNR SSIM PSNR SSIM

bridge_087 38.40028 0.966555 36.90214 0.910254 34.28065 0.863258
harbor_502 37.00666 0.960577 35.66985 0.901726 33.33011 0.852547

NWPU- island_259 36.86489 0.921054 34.93025 0.893025 32.63987 0.813258
RESISC45 rectangular_farmland 35.50617 0.891893 33.80154 0.888145 31.45879 0.790214

airplane_610 34.58909 0.863646 32.30987 0.830214 30.98635 0.772365

mediumresidential66 34.02074 0.966886 33.68425 0.863148 31.36287 0.824872
tenniscourt28 35.05164 0.924449 32.99358 0.797298 30.85274 0.772973

UCMerced beach55 34.87851 0.888295 32.83698 0.822259 30.20125 0.813027
river15 33.53899 0.935680 31.62588 0.866631 29.36587 0.823681
runway69 35.77436 0.930313 33.25693 0.899635 31.60258 0.842587

The proposed ST residual learning approach achieves high PSNR and SSIM scores in both
datasets, demonstrating its robustness and ability to consistently produce high-quality results across
various scales (x2, x3 and x4). In the case of the NWPU-RESISC45 dataset, the resulting HR images
exhibited PSNR scores within the range of 38.4 to 32.8, and SSIM scores between 0.966 and 0.702.
Similarly, for the UC Merced dataset, the PSNR values ranged from 37.6 to 31.2, and the SSIM scores
ranged from 0.959 to 0.697.

Finally, the proposed ST residual learning approach produced a satisfying outcome. This implies
that the proposed ST residual learning approach generates an HR image. The enhanced results
were achieved by combining the ST and EDSR models. The EDSR model reduces memory usage
by approximately 40% during training compared to SRResNet and benefits from utilizing a pre-
trained network by scale x2 for the x3 and x4 scale models, which enables faster training convergence
than starting from random initialization. Additionally, the ST boasts superior sparse representation
capabilities.

5.4 Visualization Results

Fig. 5 depicts four samples chosen for visualization the original images (256 ∗ 256), LR images
128 ∗ 128 (Bicubic down-sampling) and resulting HR images (256 ∗ 256) from the employed datasets
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regarding PSNR and SSIM. As a result, the proposed ST residual learning approach demonstrates
superior performance, showcasing enhanced image recovery with the successful restoration of global
topology and local edge detail information. This improvement is attributed to the ST and EDSR model
combination.

Original bridge_087 (256*256) Bicubic LR bridge_087 (128*128)
HR  bridge_087 (512*512), PSNR = 

38.40028, SSIM = 0.966555

Original harbor_502 (256*256) Bicubic LR harbor_502 (128*128)
HR bridge_087 (512*512), PSNR = 

37.00666, SSIM = 0.960577

Original tennis_court_578 (256*256) Bicubic LR tennis_court_578 (128*128)
HR tennis_court_578 (512*512), PSNR = 

33.46190, SSIM = 0.94417

Original beach55 (256*256) Bicubic LR beach55 (128*128)
HR beach55 (512*512), PSNR = 34.87851, 

SSIM = 0.888295

Original river15 (256*256) Bicubic LR river15 (128*128) HR river15 (512*512), PSNR = 33.53899, 
SSIM = 0.935680

Figure 5: Example LR and subsequent HR images using the proposed ST residual learning approach
in terms of PSNR and SSIM from both datasets NWPU-RESISC45 and UCMerced
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6 Ablation Study

The proposed ST residual learning approach integrates the ST with the EDSR network, which
delivers superior performance and advanced image restoration, it excels at preserving the global
topology and intricate details of local edges. Integrating the ST and EDSR models is responsible for
the remarkable improvement achieved.

To validate the effectiveness of the proposed approach, a comparison was made between the
proposed approach and the EDSR network. EDSR serves as a benchmark for SR tasks. As mentioned
in Table 3, the proposed approach shows improved PSNR and SSIM measurements over the EDSR
network, and the notable improvement achieved can be credited to integrating the ST and EDSR
models.

Table 3: Average PSNR and SSIM for scales x2, x3, and x4 for EDSR and the proposed ST residual
learning approach

PSNR/SSIM Scale EDSR Proposed

PSNR ×2 30.655 32.596
SSIM ×2 0.906 0.959
PSNR ×3 27.187 31.723
SSIM ×3 0.811 0.901
PSNR ×4 26.023 30.102
SSIM ×4 0.729 0.793

7 Comparative Analysis Using Cutting-Edge Technology

Table 4 demonstrates the average PSNR and SSIM experimental outcomes for the benchmark
networks, Bicubic, SRResNet [20], EDSR [22], DSRLN [33], DRSEN [27] and SR-SLFB [28] for
scales of 2, 3, and 4 on the remote sensing images.

Table 4: Average PSNR (dB) and SSIM for scales x2, x3, and x4 for cutting-edge SR techniques
NWPU-RESISC45 and UCMerced

Dataset PSNR/SSIM Scale Bicubic SRRes
Net [20]

EDSR
[22]

DSRLN
[33]

DRSEN
[27]

SR-SLFB
[28]

Proposed

NWPU-
RESISC45

PSNR ×2 28.985 29.932 30.655 31.365 34.400 34.50 34.596
SSIM ×2 0.891 0.899 0.906 0.922 0.938 0.913 0.959
PSNR ×3 24.114 26.632 27.187 30.333 30.471 30.48 31.723
SSIM ×3 0.702 0.815 0.811 0.863 0.863 0.837 0.901
PSNR ×4 22.752 24.932 26.023 28.364 28.543 28.54 30.102
SSIM ×4 0.6542 0.7256 0.729 0.769 0.784 0.771 0.793

UCMerced

PSNR ×2 28.889 29.758 30.524 31.111 34.092 34.77 34.487
SSIM ×2 0.883 0.862 0.894 0.899 0.915 0.929 0.929
PSNR ×3 23.826 25.778 27.025 30.190 29.989 30.74 31.625
SSIM ×3 0.751 0.857 0.769 0.8114 0.861 0.843 0.888
PSNR ×4 22.917 24.789 25.933 28.259 28.297 28.36 30.051
SSIM ×4 0.663 0.784 0.705 0.749 0.768 0.7423 0.779
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The PSNR and SSIM average objective criteria values from the NWPU-RESISC45 and
UCMerced datasets are evaluated. Below are the results obtained for the HR images: PSNR = 32.596
and SSIM = 0.959 for x2, PSNR = 31.723 and SSIM = 0.901 for x3, and PSNR = 30.102 and SSIM
= 0.793 for x4. The reported analysis and outcomes reveal that the proposed ST residual learning
approach outperformed other networks and improved reasonably. It extended the input LR images
from 128 ∗ 128 to 256 ∗ 256 HR images. This demonstrates that the ST residual learning approach
can produce an SR image while restoring the global topology and local edge detail information.
The improved outcomes were obtained by combining the ST and EDSR models. Compared to
SRResNet, the EDSR model uses approximately 40% less memory during training and benefits from
utilizing a pre-trained network for x2 scaling for the x3 and x4 scale models, allowing for faster
training convergence than beginning from random initialization. The ST also has superior sparse
representation capabilities.

8 Conclusion

This research explicitly uses the NWPU-RESISC45 and UCMerced testing datasets to propose
a residual neural network based on the ST for boosting SISR performance in remote sensing
images. The ST is chosen for its excellent sparse approximation. Initially, images are transformed
into the shearlet domain, and their coefficients are fed into the EDSR network. The HR image is
subsequently reconstructed using the inverse ST. Experimental results indicate that our proposed
ST residual learning approach offers higher performance and superior image recovery, successfully
preserving global topology and local edge detail information. The ST and EDSR model combination
is responsible for this improvement. Regarding image quality, comparative analyses reveal that our
methodology outperforms current state-of-the-art methods, with an average value for PSNR of 35
and an SSIM average of 0.9.

As part of our future plans, utilizing an enhanced multiscale SR network (MDSR) that offers the
benefits of reduced model size and faster training time while effectively handling SR at multiple scales.
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