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ABSTRACT

Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems, such as relatively
ideal speed conditions and sample conditions. In engineering practice, the rotational speed of the machine is
often transient and time-varying, which makes the sample annotation increasingly expensive. Meanwhile, the
number of samples collected from different health states is often unbalanced. To deal with the above challenges, a
complementary-label (CL) adversarial domain adaptation fault diagnosis network (CLADAN) is proposed under
time-varying rotational speed and weakly-supervised conditions. In the weakly supervised learning condition,
machine prior information is used for sample annotation via cost-friendly complementary label learning. A diag-
nostic model learning strategy with discretized category probabilities is designed to avoid multi-peak distribution of
prediction results. In adversarial training process, we developed virtual adversarial regularization (VAR) strategy,
which further enhances the robustness of the model by adding adversarial perturbations in the target domain.
Comparative experiments on two case studies validated the superior performance of the proposed method.
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1 Introduction

In recent years, condition monitoring has been extensively applied to anticipate and detect
machinery failures. While the majority of current research in mechanical fault diagnosis predominantly
assumes the constant speed, advanced methods have been proposed to mine fault features under
time-varying speed conditions, including order tracking [1], stochastic resonance [2], and sparse
representation [3], etc. However, these methods still rely on high quality information such as shaft
speed, and the analysis process is extremely complicated and prone to problems such as signal
distortion. Deep learning (DL) methods can automatically process condition monitoring data and
feedback diagnosis results with limited prior knowledge or human intervention. With its powerful
data nonlinear fitting capability, DL excels in a wide range of fault diagnosis benchmark tasks.
Recently DL-based research has endeavored to mitigate the impact of time-varying rotational speeds.
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For example, Han et al. proposed the L1/2 regularized sparse filtering (L1/2-SF) model for fault
diagnosis under large speed fluctuation [4]. Huang et al. introduced a compensation technique to
address nuisance information effects and therefore improve the robustness of the model under time-
varying speed and variable load conditions [5]. Despite these advancements, the learning process still
falls under the category of supervised learning, which may not align with real industrial production
characterized by weakly-supervised conditions, such as sample imbalance, limited labeled data, and
sample insufficiency. Therefore, it is necessary to explore fault diagnosis techniques that accommodate
both variable speeds and weakly supervised conditions. In this context, Yan et al. proposed a
novel semi-supervised fault diagnosis method termed label propagation strategy and dynamic graph
attention network (LPS-DGAT) [6].

Additionally, another common assumption in existing studies is the consistency in the distribution
of training data and test data, which deviates from actual industrial conditions [7]. To eliminate the neg-
ative impact of data distribution discrepancy on the accuracy of DL models, considerable attention has
been directed towards domain adaptation (DA) [8]. Particularly, unsupervised DA(UDA) approach is
able to transfer strongly relevant knowledge from source domains with abundant labeled samples to
target domains with lacking labels [9]. Improving the generalization of models under non-ideal data
conditions is typical of the UDA problem, which industrial site is currently facing. UDA methods can
be roughly categorized as Discrepancy-based DA and Adversarial-based DA. Discrepancy-based DA
[10, 11] seeks aligned subspaces the source and target domains, which feature representation invariant
(i.e., reduces the distribution discrepancy between different data domains in a specific distance space).
However, the Discrepancy-based DA approach which is computationally intensive, requiring sufficient
data from both the source and target domains. Inspired by generative adversarial networks [12],
the way of Adversarial-based DA [13–15] becomes an alternative. Adversarial-based DA can learn
the metric loss function between domains implicitly and automatically, without explicitly entering
a specific functional form. Qin et al. proposed a parameter sharing adversarial domain adaptation
network (PSADAN), solving the task of unlabeled or less-labeled target domain fault classification
[16]. Dong et al. expanded cross-domain fault diagnosis framework with weakly-supervised condi-
tional constraints, designing a dynamic domain adaptation model [17]. Quite a number of worthwhile
highlights are reflected in the above study. However, grounded in the perspective of engineering, an
irreconcilable contradiction persists: Non-ideal data conditions and the model’s high standards for
data quality. In the context of Big Data, the cost of collecting massive labeled dataset remains high even
for source domains. In most cases, there may be only a few labeled data for each operating condition,
and the remaining unlabeled data need to be analogized and inferred. Hence, reducing the cost of data
annotation needs to be focused on.

In this paper, we propose a novel CL adversarial domain adaptation network (CLADAN) model
to address the above-mentioned non-ideal conditions. The idea of CL was first applied to cross-domain
fault diagnosis research, and we improved it. The model copes with both weakly supervised learning
conditions and time-varying speed conditions, which are deemed to be tricky in the past. In addition, a
regularization strategy is proposed to further improve the robustness of the model adversarial training
process. More excitingly, the CL learning process can add true-labeled data for self-correction and
updating of the model. The main contributions are summarized as follows:

(1) A less costly sample annotation method for domain adaptation is proposed. CL learning,
integrated with adversarial domain adaptation method, is able to alleviate the effects of domain
shift and labeled sample insufficiency in the source domain. As a cost-friendly auxiliary dataset, CL
annotations improve the performance and accuracy of the prediction model.
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(2) We propose a method of discretizing category probabilities to enable classifiers to make highly
confident decisions.

(3) By adding perturbations to the samples involved in the adversarial learning, CLADAN forced
domain discriminators to learn domain-invariant features independent of rotational speeds.

The remainder of the paper is organized as follows: Section 2 describes the proposed method.
Experiments are carried out for validation and analysis in Section 3. Conclusions are drawn in
Section 4.

2 Method Overview
2.1 Complementary-Label Learning

In the field of fault diagnosis, the success of UDA remains highly dependent on the scale of
the true-labeled source data. Owing to the cost of acquiring massive true-labeled source data being
incredibly high, UDA alone is hard to adapt to the weakly-supervised industrial scenarios. Fortunately,
while determining the correct label from the many fault label candidates is laborious, choosing one
of wrong label (i.e., CL) is more available, such as annotating “outer race fault” as “not normal”,
especially when faced with a large number of fault candidates. The CL corresponding to the true label
is presented in Fig. 1. Obviously, CL that only specifies the incorrect class of samples is less informative
than the true label [18]. However, it is practically difficult to accomplish unbiased estimation for
all samples. Industrial sites often only collect ambiguous information when performing fault data
annotation. At this point the true label no longer appears reliable, while the CL feedbacks information
that is already available precisely. With the same cost control, we can procure more CL data than the
true-label data. In contrast to traditional pseudo-label learning, the CL learning annotation process
incorporates priori information in the field, including worker experience and maintenance manuals.
This improves the authenticity and reliability of the description of CL.

Figure 1: True labels vs. CL

Below we formulate CL learning. Let X ⊂ R
d denote feature (input) space. Y : = {y1, y2, . . . , yk}

be a label (output) space, where yk is the one-hot vector for label k from label space L = {1, 2, . . . , k}.
When true labels exist, we usually assume that each example (x, y) ∈ X × Y , where x denotes an
instance and y is the true label corresponding to x, is independently sampled from an unknown data
distribution with joint probability density P (x, y). The training goal of a machine learning classifier
f : X → R

k can be represented as minimizing the follow risk:

R (f ) = Ep(x,y) [L (f (x), y)] (1)

where Ep(x,y) [·] denotes the expectation and L : Rk ×Y → R+ represents a multi-class classification loss
function. Suppose that the CL sample is denoted as

{(
xi, yi

)}n

i=1
, where yi ∈ Y is a CL of the instance xi

and
(
xi, yi

)
is independently sampled from P (x, y). Since CL cannot utilize multi-class classification
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loss as a validation criterion as true label does, the unbiased risk estimation method in Eq. (1) needs
to be re-assumed on P (x, y). In previous studies [18, 19], P (x, y) is defined as:

P (x, y) = 1
k − 1

∑
y�=y

p (x, y) (2)

Finally, a more versatile unbiased risk estimator [19] that is defined as:

R (f ) = LFree (f (x), y)

=
k∑

y=1

L (f (x), y) − (k − 1)L (f (x), y) (3)

According to [19], we used simultaneous optimization training utilizing a maximum operator and
a gradient ascent strategy to avoid possible overfitting problems caused by − (k − 1) L (f (x), y).

2.2 Virtual Adversarial Regularization

With low computational cost and diminished label dependence, Virtual Adversarial Training can
measure local smoothness for given P (x, y) of data. The output distribution of each input data point is
trained to be isotropic smoothing by smoothing the model selectively in the most anisotropic direction
[20]. In contrast to transfer learning in the uniform speed condition, the time-varying speed condition
leads to a domain-shift process that is also time-varying. Weak changes in external factors, such as
rotational speed over time, constantly change the domain distribution of the data. To enhance the
generalization ability of domain adversarial training under different speed conditions, identifying the
direction of the perturbation that maximally affects the model output distribution is crucial.

Armed with this idea, we propose a regularization strategy for improving the robustness of the
diagnostic model under the interference of speed fluctuations. The essence of adversarial domain
adaptation is to find an adversarial direction radv, making it easier for the domain classifier to make a
judgment error. However, radv is vulnerable to weak changes in Gf (xi) (e.g., the random effects of speed
fluctuations on P (x |y)). Finally, VAR loss is given as:

LVAR

(
θ ; θ̂ , x, ε

)
= D

(
P

(
· | x; θ̂

)
||P (· | x + radv (x, ε); θ)

)

= −
k∑

K=1

P
(

K | x; θ̂
)

log P (K | x + radv (x, ε); θ) + C (4)

where

radv (x, ε) = arg max
r;‖r‖2≤ε

D
(

P
(
· | x; θ̂

)
‖P

(
· | x + r; θ̂

))
(5)

ε > 0 is a tuning parameter and ε = 2.5 in line with [21]. D is a function that measure distribution
discrepancy and C is a constant.

2.3 Complementary-Label Adversarial Domain Adaptation Fault Diagnosis Network

We assume a learning scenario with limited labeled source data, relatively more complementary-
label source data, and sufficient unlabeled data in the target domain. Let Ds = {Xs, Ys} = {(

xi
s, yi

s

)}ns

i=1
,

Ds = {
X s, Y s

} = {(
xi

s, yi
s

)}ns

i=1
and Dt = {Xt} = {(

xi
t

)}nt

i=1
represent the labeled source domain, the CL

source domain, and the target domain, respectively, where source input Xs ∈ X s, source true label
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Ys ∈ Y , source CL Y s ∈ Y , target input Xt ∈ X t, and unknown target true label Yt ∈ Y . P (Xs, Ys)

and P (Xt, Yt) are the joint distribution of source and target domains, where P (Xs, Ys) �= P (Xt, Yt)

and Pc∈Y
(
Y s = c|Ys = c

) = 0. Gf , Gy and Gd represent shared feature extractor, classifier, and domain
discriminator, respectively. Ld indicates domain discrimination loss, and Ly indicates source domain
classification loss. The purpose of CLADAN is to train a classifier Gy : X → Y with Ds, Ds, and
Dt such that Gy accurately identifies unlabeled data from Dt in case of insufficient true-labeled data
from Ds. Fig. 2 presents an overview of our methodology. During the dataset construction phase,
raw vibration acceleration signals are collected from one or more sensors. Equipment operation
is accompanied by time-varying speed fluctuations, which causes abrupt changes in the amplitude
and characteristic frequency of the signal. Moreover, noise further exacerbates the modulation of
the original signal such that traditional signal processing methods failed. In order to better retain
and correlate the information contained in the different sensor signals, cycle-overlapping sampling
techniques are applied to all channels simultaneously. Annotated source domain Ds and unsupervised
target domain Dt are obtained. However, without considering the label balancing issue, the extant
UDA approach requires the source domain to contain at least 20% true-labeled data [22]. In this study,
Ds satisfies two conditions: (1) {ns}normal ≥ 2 × {ns}fault (2) ns ≤ (ns + ns)/5. The proposed pre-condition
aligns more closely with real industrial scenarios. The second step is to design parallel-channel feature
extraction shared by Ds and Dt. In the third step, based on adversarial domain adaptation and VAR,
cross-domain fault diagnosis is achieved under time-varying speed conditions. Taken together, the
operating conditions of the proposed cross- domain fault diagnosis method are based on (1) sample
imbalance (2) weakly supervised scenarios due to few true-labeled data (3) speed fluctuation. These
conditions are common and concurrent in engineering.

Figure 2: Overview of the proposed methodology
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The input channel of the first convolutional kernel is configured on the number of sensor channels
and the kernel size is [1 ∗ 20]. In this way, transformed convolution kernel is approximated as a 1D
filter that can be employed to multiple channels training. The Batchnorm2D, Max-Pooling2D and
activation function ReLU used later are not described in detail. The feature extractor Gf is shared by
Ds, Ds and Dt, which requires a pre-set number of sensors Nsen. For input sample xs and xt, Gf with
parameter θf is used for extraction of features xK

sf from Kth class source CL data, xK
sf from Kth class

source true-labeled data and xtf from target data. The parallel-channel feature extraction process can
be formulated as:

xK
sf , xK

sf = Gf

(
xK

s , xK
s , Nsen|θf

) → f

xtf = Gf

(
xt, Nsen|θf

) → f (6)

Next, we input xsf into Gy to compute the classification loss:

Lclass = L
(
Gy

(
xi

s

)
, y

) = − log
exp

(
Gy

(
xi

s

))
k∑

i=1

exp
(
Gy

(
xi

s

)) (7)

According to Eq. (3), the complementary label loss can be formulated as:

LCL

(
Gf ◦ Gy

(
xK

s

)
, yK

) =
k∑

K=1
y�=y

πK

ns,K

L
(
Gy

(
xK

sf

)
, yK

) − (k − 1)
πK

ns,K

L
(
Gy

(
xK

sf

)
, yK

)
(8)

LCL

(
Gf ◦ Gy (xs), y

) =
k∑

K=1
y�=y

LCL

(
Gf ◦ Gy

(
xK

s

)
, yK

)
(9)

where loss LCL is symmetric and satisfies triangle inequality such as loss L2 = 1
2

‖y − y‖2
2, and we use

the cross-entropy loss. The superscript K of all the elements represents their affiliation to the Kth class.
πK is the proportion of the Kth CL samples.

CLADAN training process can be summarized as Fig. 3. For the cross-domain fault diagnosis
problem, we combine conditional adversarial domain adaptation network [14] (CDAN) with CL
learning. CDAN incorporates multi-linear conditioning that improving classification performance
and entropy conditioning that ensuring transfer ability, respectively. In this study, CDAN will be
applied to adversarial domain adaptation process. The optimization objective of CDAN is described
as follows:

L
(
θf , θy, θd

) = 1
ns

∑
xi∈Xs

Ly

(
Gy

(
Gf (xi)

)) − λ

ns + nt

∑
xi∈Xs∪Xt

Ld

(
Gd

(
T

[
Gf (xi),

∼
y
])

, di

)
(10)

where θf , θy and θd are the parameters of Gf , Gy and Gd. λ is a hyperparameter to tradeoff the
two objectives Ly and Ld. ỹ denotes the conditional probability distribution of classifier Gy output
for adversarial adaptation. T [·] denotes the outer product mapping function from the multilinear
condition. It successfully implements the joint modeling of multimodal features and conditional
distributions ỹ. However, Gd with only the output features from Gf as input is hard to ensure sufficient
similarity between domains even if Gd converges completely. CDAN uses the output features of Gf with
the predicted outer product of Gy (i.e., the predicted probability distribution of Softmax) as the input
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features of Gd. Gd that is trained utilizing the joint features constructed by the mapping function T
has demonstrated strong domain discrimination. Since Gy predictions of true-labeled source data are
discrete and distinguishable, CDAN accurately identifies unlabeled samples in Dt by Ds. But in the CL
classification mode, the predicted probability of each class (i.e., Gy

(
xi

s

)
in Eq. (9)) is relatively close [23].

This indicates that the function T [·] in Eq. (10) does not capture well the general representation of the
multimodal structure of the data inDs, while ỹDs cannot be directly used as a conditional probability for
the CDAN input. In order to find the probability distribution in the CL classification prediction Gy

(
xi

s

)
for which the classifier has a significant propensity, we introduce a method of discretizing category
probabilities to improving Eq. (10):

ỹ =

⎡
⎢⎢⎢⎣

Gy

1
l

1

k∑
j=1

f
1
l

j

, . . . ,
Gy

1
l

k

k∑
j=1

f
1
l

j

⎤
⎥⎥⎥⎦

T

(11)

where
[
Gy1 . . . Gyk

]
denotes the predicted output (between 0 to 1) of the classifier Gy. As 1/l → 0,

the predicted probability distribution of Softmax will approach a “one-hot” distribution. The output
distribution of the diagnostic model contains only one distinct category probability peak. In addition,
we add the proposed VAR loss in Eq. (4). preds is the concatenation of Gy

(
xi

s

)
and Gy

(
xi

s

)
. The

Adversarial domain adaptation objective function LADA for CLADAN eventually expressed as:

LADA

(
Gf , Gy, Gd, D̃s, Dt

)
=

∑
x∈Ds

ωs (x) log (Gd (g (x)))∑
x∈Ds

ωs (x)
+

∑
x∈Ds

ωs (x) log (Gd (g (x)))∑
x∈Ds

ωs (x)

+
∑

x∈Dt
ωt (x) log (1 − Gd (g (x + radv)))∑

x∈Dt
ωs (x)

(12)

where D̃s is Ds or Ds, ωs, ωs, ωt are 1 + e−H(ỹ) and g (x) is equivalent to T
[
Gf (xi), ỹ

]
in Eq. (10).

The goal of regularization is to balance the inevitable gap between the training diagnostic rate and
the test diagnostic rate by introducing additional information. In brief, we first initialize a random
perturbation obeying a Gaussian distribution according to Dt. radv is constantly re-estimated by
minimizing the distance of the output distribution before and after adding perturbations to Dt. It
is worth mentioning that we only choose to add perturbations in the target domain. To some extent,
the CL data can be regarded as an auxiliary noise and continuing to add perturbations to the CL
dataset in the source domain will likely result in excessive interference with the learning process of the
source domain classifier. CL data input may not require much perturbation compared to true-labeled
data. Ultimately, our optimization objective function can be expressed as:

min
θf ,θy

[
αLCL

(
θf , θy,Ds

) + (1 − α)Lclass

(
θf , θy,Ds

)
−λ

[
LADA

(
θf , θy, θd,Ds,Dt

) + LADA

(
θf , θy, θd,Ds,Dt

)]
]

(13)

min
θd

[
LADA

(
θf , θy, θd,Ds,Dt

) + LADA

(
θf , θy, θd,Ds,Dt

)]
(14)
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Figure 3: Architectures and training process of CLADAN

3 Experimental Verification

In this study, part of the hyperparameters were uniformly set: (1) batch size = 16 (2) epoch = 100,
start epoch = 5 (3) optimizer is SGD + momentum, weight decay = 0.0005 (4) ε = 2 (5) α is determined
by the number of source domain true-label samples. (6) γ1 = 1e − 4, γ2 = 5e − 3(7) The length of the
signals is 5000. The process of building the dataset in the experiment is shown in Fig. 4. Previous
studies have proposed multiple domain adaptation methods with superior performance, including
Joint Adaptation Networks (JAN) [10], Deep Subdomain Adaptation Network (DSAN) [11], Domain
Adversarial Neural Networks (DANN) [13], Conditional Adversarial Domain Adaptation (CDAN)
[14], and Maximum Density Divergence (MDD) [15]. DSAN is a discrepancy-based DA approach
with better DA performance than CDAN due to capturing fine-grained subdomain characteristics.
CDAN, which lacks VAR, can be seen as one of the ablation comparison experiments for CLADAN.
The essence of MDD is to maximize intra-class density loss during DANN training, while ensuring
domain confusion and domain alignment. In the following subsections, we use these methods for
comparison with CLADAN, with all related parameters remaining consistent.

Figure 4: Dataset construction process
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3.1 Ottawa Bearing Data

Ottawa bearing data [24] was obtained from a single sensor under time-varying speed conditions.
Two ER16K ball bearings are installed, and one of them is used for bearing fault simulation
experiments. The health conditions of the bearing include (1) healthy, (2) faulty with an inner race
defect, (3) faulty with an outer race defect, (4) faulty with a ball defect, and (5) faulty with combined
defects on the inner race, the outer race and a ball (Serial number Corresponding to sample labels 0–4).

All these data are sampled at 200 kHz and the sampling duration is 10 s. The Ottawa dataset
contains four variable speed conditions: (i) Increasing speed (IS); (ii) Decreasing speed (DS); (iii)
Increasing then decreasing speed (ID); (iv) Decreasing then increasing speed (DI).

Each variable speed condition has data files for three different speed fluctuation intervals. Details
are shown in Table 1. Therefore, we construct 12 data domains Ot

(
n|3

n=0

) (
m|2

m=0

)
for experimental

validation between different domains, where n denotes variable speed condition (i–iv) and m denotes
three different speed fluctuation intervals. We sampled the raw data in overlap with a step size of 500,
retaining 3000 normal samples and 1500 randomly selected fault samples. Random selection of fault
samples can further satisfy the sample imbalance condition.

Table 1: Tasks descriptions of Ottawa dataset

Fault pattern Healthy (H) Inner race
defect (I)

Outer race
defect (O)

Ball defect
(B)

Combined
defects (C)

Fault label 0 1 2 3 4

Fault diagnosis
tasks

IS
T1 HA1, IA1, OA1, BA1, CA1
T2 HA2, IA2, OA2, BA2, CA2
T3 HA3, IA3, OA3, BA3, CA3

DS
T4 HB1, IB1, OB1, BB1, CB1
T5 HB2, IB2, OB2, BB2, CB2
T6 HB3, IB3, OB3, BB3, CB3

ID
T7 HC1, IC1, OC1, BC1, CC1
T8 HC2, IC2, OC2, BC2, CC2
T9 HC3, IC3, OC3, BC3, CC3

DI
T10 HD1, ID1, OD1, BD1, CD1
T11 HD2, ID2, OD2, BD2, CD2
T12 HD3, ID3, OD3, BD3, CD3

CLADAN training process in task T7_T12 (source = T7, target = T12) is shown in Fig. 5, where
CL0, CL400, and CL800 indicate that 0, 400 and 800 true-labeled samples are input to the algorithm
model, respectively. The rest of the training samples were labeled by CL, i.e., the proportion of true-
labeled samples was set to 0, 10%, and 20%, respectively. After 100 epochs of training, the accuracy
fluctuations of CLADAN in the source and target domains are shown in Fig. 5. As true-labeled
samples increase, the fluctuation ranges of classifier accuracy decreases. When the proportion of real
samples is low, maintaining model accuracy becomes challenging at a steady state. This phenomenon
indicates that the adversarial learning process is not stable enough due to insufficient true-labeled
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samples. Besides, CLADAN still maintains some performance with a final convergence accuracy of
60% when true-labeled samples are not available. Fig. 6 visualizes the output distribution for the
unlabeled samples in the target domain.

Figure 5: CLADAN training process in task T7_T12 (a) source (b) target

Figure 6: Visualization of target domain features in task T7_T12

The full comparative results of the experiment are shown in Fig. 7, and accuracy values are
derived from the average accuracy of the last 10 epochs of the training process. By analysis, the
performance of discrepancy-based DA is significantly weaker than that of adversarial-based DA under
weakly-supervised conditions. CL contain limited information content such that domain confusion
methods based on distance metrics are hard to blur the boundary sufficiently between the source
and target domains. Adversarial-based DA reinforces the mutually exclusive role of complementary
labels by deceiving domain discriminators. In addition, the performance of domain adaptation is
further enhanced by assigning different weight coefficients to different weakly supervised samples by
entropy conditions in CLADAN and CDAN. During the adversarial process, MDD executes domain
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alignment from the feature space rather than the original data space, realizing the learning of domain
invariant features. It was found that while MDD also mitigates the disturbance of time-varying speed
fluctuations, it leads to delayed convergence of the training process. In Fig. 7b, CLADAN consistently
demonstrates excellent diagnostic capability in target domain under different data conditions. The
accuracy of CLADAN is still not high enough in the absence of sufficient true-labeled samples due
to the model cannot be trained sufficiently by CL samples with insufficient information. Based on
the above results a reasonable hypothesis can be made that when the sample length increased or the
number of sensor channels increased, the information content per unit time corresponding to CL will
be expanded.

Figure 7: Accuracy comparisons in Ottawa (a) radar diagram in CL400. (b) Task T7_T12

3.2 HFXZ-I Wind Power System Simulation Experimental Platform

The development of wind power systems is in line with the current international trend of “reducing
carbon emissions, achieving carbon neutrality”. The HFXZ-I in Fig. 8 is currently a simulation
experiment platform for common wind power transmission systems. The relevant basic parameters are
shown in Table 2. We obtained 11 channels and 4 channels of raw data on the planetary gearbox and
helical gearbox, respectively, where two three-axis acceleration sensors were installed on the planetary
gearbox to obtain the dynamic response in different vibration directions. All these data are sampled
at 10.24 kHz and the sampling duration is 60 s. The gearbox health status details and task details
are shown in Table 2. We set four variable speed conditions: (i) Decreasing speed 50–0 Hz, 0.5 HP
(ii) Increasing speed 0–50 Hz, 0.5 HP (iii) Decreasing speed 50–0 Hz, 1 HP (iv) Increasing speed
0–50 Hz, 1HP. The data step size of overlapping sampling is 500. We obtained four data domains,
each containing 2000 normal samples and 1000 faulty samples. We have fewer samples compared to
Ottawa bearing experiments, but each sample has more abundant information due to the additional
monitoring channels.
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Figure 8: HFXZ-I wind gearbox experiment platform

Table 2: Tasks descriptions of HFXZ-I dataset

Fault pattern Healthy (H) Combined
fault (C)

Inner race
defect (I)

Gear wear
(W)

Gear crack
(K)

Gear
pitting (P)

Fault label 0 1 2 3 4 5

Load A = 0.5 Hp, B = 1 Hp

Fault diagnosis tasks
Speed 0–50 Hz

T1 HA1, CA1, IA1, WA1, KA1, PA1
T2 HB1, CB1, IB1, WB1, KB1, PB1

Speed 50–0 Hz
T3 HA2, CA2, IA2, WA2, KA2, PA2
T4 HB2, CB2, IB2, WB2, KB2, PB2

CLADAN training process in task T2_T1 (source = T2, target = T1) is shown in Fig. 9, where
CL0, CL200, CL400 indicate that 0, 200 and 400 true-labeled samples are input to the algorithm
model, respectively. The proportion of true-labeled samples in the source domain still satisfies the
dataset construction condition. Meanwhile, some of the fault types being set, such as gear wear, have
much weaker signal feedback due to the minor degree of the fault, meaning that the learning process of
the model is more difficult. After 100 epochs of training, the accuracy fluctuations of CLADAN in the
source and target domains are shown in Fig. 9. It can be found that when the proportion of true-labeled
samples reaches 10% (i.e., CL200), the training accuracy of the source domain is already close to CL400
(20% true-labeled samples). Compared with Ottawa bearing experiments, the target domain’s overall
accuracy also has a significant improvement, while the accuracy fluctuation tends to moderate. This
suggests that as the amount of information in true-labeled data increases, CL learning performs better
and CLADAN is more stable. Fig. 10 visualizes the output distribution for the unlabeled samples
from HFXZ-I dataset in the task T2_T1 target domain. It can be intuitively seen that the inter-class
distance in the target domain is amplified and the intra-class distance is reduced. This suggests that CL
learning that fuse multiple sources of information are able to retain a greater amount of information,
guiding CLADAN to better identify unlabeled fault samples under weakly supervised conditions.
All fault diagnosis comparison experiments are shown in Fig. 11. The model performance improves
significantly at CL200.
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Figure 9: CLADAN training process in task T2_T1 (a) source (b) target

Figure 10: Visualization of target domain features in task T2_T1

Figure 11: Accuracy comparisons in HFXZ-I (a) radar diagram in CL200. (b) Task T2_T1
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3.3 VAR Ablation Study and Parameter Optimization

In this subsection, we conduct ablation experiments to show the contribution of the different
components in CLADAN. In particular, it is necessary to further verify the immunity of the VAR
to speed fluctuations. Since VAR is implicit in the training process, it is thus difficult to interpret its
suppression of time-varying speed intuitively from a signal perspective. However, external conditions,
such as time-varying rotational speeds, can lead to reduced generalization of cross- domain diagnostic
models, while it is undoubtedly true that adding local perturbations to adversarial training can enhance
model generalization. Therefore, we reasonably believe that VAR will improve the robustness of the
model and thus suppress the time-varying speed disturbance implicitly. DANN and CDAN can be
considered as two sets of ablation experiments. Based on the gearbox experimental data CL400, we
consider following baselines: (1) DANN: Train CLADAN without conditioning and VAR, namely
train domain discriminator Gd only based on the output features of Gf , VAR and the predicted outer
product of Gy do not participate in training. (2) CDAN: Train CLADAN without VAR. (3) WO/D:
Train CLADAN without the discretizing category probabilities in Eq. (11). The results of the ablation
experiment are shown on the left in Fig. 12. It can be found that adding conditional distributions on
the input side captures the multimodal structures of distributions with cross-covariance dependency
between the features and classes, improving transfer learning performance significantly. Comparing
CLADAN with WO/D was able to demonstrate that discretizing category probabilities has a positive
effect on domain adversarial training for the CL dataset. Discretizing category probabilities can
sharpen the representation of conditional probabilities when CL is used as an input to the conditional
distribution. While CLADAN’s performance is not guaranteed to be optimal at all times during
transfer tasks, its overall fault diagnosis performance is still superior. In addition, we perform an
optimization search for the key parameters in Eq. (13) with results in Fig. 12 right. It can be observed
that CLADAN performs best for α = 0.3 and λ = 1.2.

Figure 12: Results of ablation study and parameter optimization

Current DA-based fault diagnosis techniques often require high-quality and sufficient source-
domain labeled data. However, a large number of data samples with pending labels in the industrial
field are is unavailable for direct training, resulting in the underutilization of these feature-rich data
resources. Hence, the CL-based weakly supervised learning approach can be employed to assign
fuzzy conceptual labels to these data samples. Meanwhile, CL differs from traditional pseudo-labeling
methods in that its annotation process leverages a priori knowledge, yet its annotation cost is less
than that of labeling real samples. The efficacy of DA relies not on labels but on generalizing the
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generalized feature extraction patterns by capturing the underlying structure of the training data.
Thus, in domain-adversarial training, injecting random perturbations into the target domain can
also substantially improve the robustness of the cross-domain fault diagnosis model, leading to better
learning of domain-invariant features under time-varying rotational speed conditions and implicitly
removing the interference of fault-irrelevant components in the data content.

4 Conclusions

In this paper, CLADAN is developed for typical non-ideal scenarios of industrial sites. We
integrate time-varying rotational speed conditions and weakly supervised learning conditions into
cross-domain fault diagnosis, and use budget-friendly complementary labels to annotate unlabeled
data in the source domain. In experiments, we establish a series of demanding conditions and complex
faults to simulate industrial scenarios and we obtain accurate diagnostic results with CLADAN.
The subsequent steps will delve into domain adaptation techniques for multiple CLs of the same
sample, enhancing the learning performance of CL0, (3) Alternative solutions for time-varying speed
conditions.
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