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ABSTRACT

Utilizing granular computing to enhance artificial neural network architecture, a new type of network emerges—the
granular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability to
process both numerical and granular data, leading to improved interpretability. This paper proposes a novel design
method for constructing GNNs, drawing inspiration from existing interval-valued neural networks built upon
NNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzy
numbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizes
a uniform distribution of information granularity to granulate connections with unknown parameters, resulting
in independent GNN structures. To quantify the granularity output of the network, the product of two common
performance indices is adopted: The coverage of numerical data and the specificity of information granules.
Optimizing this combined performance index helps determine the optimal parameters for the network. Finally,
the paper presents the complete model construction and validates its feasibility through experiments on datasets
from the UCI Machine Learning Repository. The results demonstrate the proposed algorithm’s effectiveness and
promising performance.

KEYWORDS
Granular neural network; granular connection; interval analysis; triangular fuzzy numbers; particle swarm
optimization (PSO)

1 Introduction

Artificial neural networks (ANNs) possess numerical nodes (their connections), enabling nonlin-
ear mapping of numerical data. These networks are also known as numerical neural networks (NNNs).
Neural networks with granular connections, capable of nonlinear mapping of nonnumerical (granular)
data, represent an extensive application of neural networks. This novel category is termed granular
neural networks (GNNs, with granular connections) [1–4]. When processing numerical data, these
networks produce granular outputs. GNNs offer distinct advantages over numerical counterparts.
Their granular output aligns more closely with reality, aiding in quantifying the network’s output
quality. For instance, in prediction tasks, the output is a comprehensive, granular prediction rather than
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a mere numerical result. Additionally, incorporating information granularity into these new models
enhances the interpretability of the outputs (granular data) without compromising model accuracy.

Various types of information granularity, such as fuzzy sets, rough sets, fuzzy rough sets, and
interval sets, are applicable in granular connections. A GNN with interval connections was proposed
in [5]. The researchers also developed an optimization algorithm for this network. The study in [6]
trained neural networks using granulated (interval) data, employing interval optimization algorithms
like the generalized bisection method to determine optimal network weights and biases. The research
presented in [7] focused on data-driven training algorithms for interval arithmetic vector quantization,
applicable both during training and runtime.

Interval value, due to its straightforward processing and capability to represent uncertainty, is
a commonly used form of information granularity. In 2013, Song and Pedrycz introduced a GNN
with interval-valued connections [8]. Differing from prior methods, they initially trained an NNN
with training data. Next, they integrated an information granularity level into the network to convert
the nodes of the numerical network into interval values. Two key performance metrics, coverage and
specificity, are employed to evaluate the algorithm. Optimizing these metrics yields the best network
parameters for constructing the network.

This paper aims to develop a novel GNN related to the interval-valued network previously
described. However, it differs because it is not based on an NNN but is an independent structure.
Bypassing the initial phase, we directly assign an information granularity level to the weights and
biases of the neural network (with undetermined parameters), forming a GNN (with undetermined
parameters). We define the product of two indicators: Coverage of numerical data and specificity of
information granules as objective functions (performance index). Upon inputting training data into
the network, we derive a performance index function dependent on the network parameters. These
parameters are then determined by optimizing (using particle swarm optimization (PSO) [9–12]) the
objective function, thus constructing the new algorithm [13,14]. GNNs, as an enhancement of the
original concept, have broad application potential.

We revisit the earlier GNN model based on an NNN. In the initial development phase, the
network’s weights are derived from an NNN. By optimizing the objective function, the information
granularity level is obtained from these weights. This approach, however, may not yield optimal
network parameters. The model proposed in this paper circumvents this limitation, enabling the
derivation of all parameters by maximizing the combination of the two performance metrics. These
parameters are inherently optimized for the specified performance indicators.

Information granules can be formalized in different ways. Triangular fuzzy numbers, often used
in granular computing due to their ability to express uncertainty, are suitable for constructing GNNs
with triangular fuzzy number-valued connections.

In this paper, the GNN based on an NNN is designated as Version #1, while the GNN independent
of an NNN is termed Version #2. The distinctions between these two approaches are summarized in
Table 1. This paper diverges from existing interval-valued neural networks (IVNNs) by developing a
method not reliant on an NNN. It introduces triangular fuzzy numbers as network weights. The use
of information granules is recognized as a valuable tool in network design, with their optimization
contributing to improved network structures. The performance indicator discussed combines the
coverage of numerical data and the specificity of information granules, enhancing network quality. The
integration of coverage and specificity establishes a robust optimization framework for the network.
Fundamentally, introducing this new network model expands the practices of the original networks,
presenting theoretically and practically viable algorithms.



CMC, 2024, vol.79, no.1 625

Table 1: Comparison of two design methods of constructing GNNs

Version Information granule Construction on a basis of a
numerical neural network?

Performance index

Version #1 Interval value. Yes The coverage of numerical
data,
the specificity of
information granules.

Version #2 Interval value,
Triangular fuzzy
number.

No The product of the
coverage of numerical data
and the specificity of
information granules.

The structure of this paper is as follows: Section 2 offers a literature review. In Section 3, we
initially outline the operational rules for interval and triangular fuzzy numbers. Subsequently, we
describe the structure of a granular (interval-valued) neural network based on an NNN, along with two
performance indicators for evaluating the output and optimal allocation of information granularity.
Section 4 combines these two performance indicators into a singular metric. Here, we detail a novel
method for developing a GNN, culminating in adopting triangular fuzzy numbers as the form of
information granularity. Section 5 briefly introduces PSO, utilized in our experiments. Section 6
presents experimental studies. As previously mentioned, in this paper, an interval-valued (triangular
fuzzy number) neural network represents a specific type of GNN. Therefore, when referring to a neural
network as interval-valued (triangular fuzzy number), these two terms are used interchangeably.

2 Literature Review

ANNs [1–3] exhibit several limitations in information processing. Firstly, the complexity of ANNs
increases rapidly with the growth in data dimensionality. Secondly, ANNs struggle to handle non-
numeric data, such as qualitative descriptors like “higher,” “small,” or “around 35 degrees.” Thirdly,
the “black box” nature of these networks hinders their interpretability. Granular computing, an
approach that addresses complex information, involves dividing information into segments according
to specific rules, thereby simplifying computations. These segments, known as information granules
(e.g., groups, fuzzy numbers, intervals, and classes) [15], enable granular computing to handle non-
numeric data. Original data are processed using numeric calculations, while granular data utilize
granular computing mechanisms. This method allows for solving problems hierarchically [16–18].
Information granules can enhance the explainability of neural networks and address the challenges
of ANNs. An ANN incorporating granular computing to improve existing models is termed a GNN.
Examples include neural networks with granular structures and those capable of processing granular
data without such structures [1,4].

The initial concept of GNN, combining fuzzy sets with neural networks, emerged in the 1970s
[19]. The term “granular neural network” was formally introduced in 2001 by Pedrycz et al. [4]. Since
then, GNN research has garnered significant interest, as evidenced in Table 2. Studies on GNNs can
be categorized into:
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• Type of neural network: Various neural network models, such as radial basis function neural
networks [20,21], feedforward neural networks [7,22], multilayer feedforward neural networks
[23,24], and functional link ANNs [25], are employed in GNN development.

• Information granules: Granular computing, a paradigm of information processing [8,9], uses
granules comprising elements with similar attributes. Various formal frameworks, including
fuzzy sets [20,26,27], rough sets [22,28,29], fuzzy rough sets [30], and interval sets [7], can form
these granules, leading to diverse GNN types like fuzzy neural networks, rough neural networks,
and IVNNs.

• Granulation of input data: Literature generally divides this aspect into two scenarios. In one,
the input data are already at a granular level, requiring no further granulation. Conversely,
numerical data are converted into forms like interval data or fuzzy numbers, sometimes
employing clustering methods for division into several parts.

• Connection: Traditional neural networks use numerical weights to represent their connections.
In contrast, GNNs may employ nonnumerical weights, known as granular connections [5].
This distinction prompts researchers to explore modifications to traditional training methods,
adapting them to GNNs’ unique structures. When GNNs receive numerical input data, they can
produce nonnumerical outputs. Furthermore, GNNs can process nonnumerical input data in
more complex scenarios. Some studies are investigating the use of primitive neural networks for
processing nonnumerical data [31], maintaining the network’s original structure in such cases.

• Training and testing. While traditional neural networks process numeric input during training
and testing phases, GNNs with granular connections are trained on numerical data and tested
on granular data. Additionally, the degree of data integration influences the granularity level;
lower integration corresponds to finer granularity and higher integration results in coarser
granularity. Notably, networks designed for low-granularity data may sometimes handle high-
granularity data. This means the neural networks possess a low-granularity structure but can
process high-granularity inputs during testing. A more frequent scenario involves inputting low-
granularity data into a network designed for low-granularity processing.

Table 2: Brief review of GNNs

Type of neural network Radial basis function neural network, feedforward neural network,
multilayer feedforward neural network, functional link artificial
neural network

Information granules Fuzzy sets, rough sets, fuzzy rough sets, interval sets
Granulation of input data Numerical data, granular data
Connection Numerical connections, granular connections
Training and testing Type 1: Training (numerical data) and testing (numerical data),

Type 2: Training (numerical data) and testing (granular data),
Type 3: Training (granular data) and test (numerical data), Type 4:
Training (granular data) and testing (granular data)

Numerous GNN models have been developed to address specific challenges. For instance, in [32],
researchers devised a nonlinear granularity mapping model with adaptive tuning factors to counteract
unknown nonlinearity. In [33], a novel dynamic integration method was introduced to construct
reliable prediction intervals for granular data streams, incorporating a new interval value learning
algorithm applicable to fuzzy neural networks. In [34], a fuzzy-informed network was developed
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specifically for magnetic resonance imaging (MRI) image segmentation, utilizing fuzzy logic to encode
input data. Additionally, a method using adaptive granular networks was designed for enhanced
accuracy in sludge bulking detection [35]. This approach effectively creates an error compensation
model. Furthermore, several GNNs incorporate local models, resulting in what are referred to as crisp
neural networks [36,37]. These developments illustrate the versatility and adaptability of GNNs in
various applications, ranging from image processing to environmental monitoring.

3 Two-Stage Design Process: Granularity Expansion of NNN

In this section, we initially present operations involving intervals and triangular fuzzy numbers.
Subsequently, in Section 3.3, we delve into the existing IVNNs.

3.1 Interval Operations

We consider several interval-valued variables, such as A = [a1, a2] and B = [b1, b2], and outline
their operations as follows [38]:

Addition:

A + B = [a1 + b1, a2 + b2] (1)

Subtraction:

A − B = [a1 − b2, a2 − b1] (2)

Multiplication:

A ∗ B = [min (a1b1, a1b2, a2b1, a2b2) , max (a1b1, a1b2, a2b1, a2b2)] (3)

when a1 ≥ 0, b1 ≥ 0,

A ∗ B = [a1b1, a2b2] (4)

Division (except for cases where the divisor includes 0):

1
A

=
[

1
a2

,
1
a1

]
(5)

B
A

= B ∗ 1
A

= [b1, b2] ∗
[

1
a2

,
1
a1

]
(6)

In addition to interval operations, we also address the mapping (function) of intervals, particularly
focusing on operations for nondecreasing mappings.

f (A) = f ([a1, a2]) = [f (a1), f (a2)] (7)

For nonincreasing mapping, we obtain:

f (A) = f ([a1, a2]) = [f (a2) , f (a1)] (8)

3.2 Triangular Fuzzy Number

For the sake of space efficiency, we introduce only those parts [39] that are relevant to this paper.
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Let Ã be a convex fuzzy set on the real number set R, if it has such a membership function:

μÃ (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < a
x − a
b − a

a < x < b
x − c
b − c

b < x < c

0 x > c

(9)

Ã is a triangular fuzzy number, where μÃ (x) : R → [0, 1], a ≤ b ≤ c. If a=b=c, Ã is a real number.

Given triangular fuzzy numbers Ã = (a, b, c) and B̃ = (d, e, f ) their ∂−cut sets are expressed as
Ã = {[(b − a) ∂ + a, (b − c) ∂ + c]}, B̃ = {[(e − d) ∂ + d, (e − f ) ∂ + f ]}, which are intervals. Hence,
they obey the operation rules applicable to interval operations, implying they can be manipulated like
interval values.

3.3 Existing IVNNs

Initially, we construct NNNs in a supervised manner, utilizing a set of input-output pairs (xk,
targetk), where k = 1, 2, . . . , N. These networks feature a classic MLP (multilayer perceptron) structure
[40], representing a fundamental topology for feedforward neural networks. This paper employs
the Levenberg-Marquardt BP (back propagation) learning method [41] as the learning mechanism.
Through the learning process, a collection of weights is determined. Succinctly, the network is
represented as (N(x; W )), with (W) denoting the network’s weights, where each weight is represented by
(w_i). The subsequent phase involves the granulation of weights. Specifically, an interval is constructed
around each (w_i), with the interval’s size (or length) determined by a parameter representing an
information granularity level. Fig. 1 illustrates the structure of a GNN [7], evolved from a classic
feedforward neural network. It consists of three layers: An input layer, where data features are inputted
as a vector x = [x1, x2, . . . , xn]

T ; a hidden layer, containing n1 neurons; and an output layer with only one
neuron. In an NNN, the weights connecting the input layer to the hidden layer are typically denoted by
Wji, and those connecting the hidden layer to the output layer by Wj. Each connection includes a bias
Bj. For the GNN, both the connection weights and biases are substituted with intervals Wji = [

w−
ji , w+

ji

]
,

Wj = [
w−

j , w+
j

]
, and Bj = [

b−
j , b+

j

]
. Consequently, when numeric data is inputted into this network, the

output is an interval Y = [y−, y+].

After constructing the NNN, it is necessary to convert the network nodes into interval values. The
procedures are detailed below. In the hidden layer of an NNN, the following is observed:

oj = f1

(
zj

)
, zj =

n∑
i=1

wji ∗ xi + bj, j = 1, 2, . . . , n1, i = 1, 2, . . . , n

f1

(
zj

) = 1
1 + e−zj

(10)

For the output layer of the network, we obtain:

y = f2 (z) , z =
n1∑

j=1

wj ∗ oj + b, f2 (z) = z (11)

where wji denotes the weight from the input layer to the hidden layer, bj denotes the bias from the
input layer to the hidden layer, b denotes the bias from the hidden layer to the output layer, wj denotes
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the weight from the hidden layer to the output layer, f 1 and f 2 represent the activation functions of
the neuron from the input layer to the hidden layer and from the hidden layer to the output layer,
respectively. oj denotes the output of a hidden layer, and y denotes the output of the network.

Figure 1: Architecture of a GNN

The subsequent section discusses the granulation of connections. The network is assigned an
information granularity level ε, and connections are substituted with interval values. The weights wji, wj

and biases bj are replaced by the interval generalizations:

w− = w − ε− |w|
w+ = w + ε+ |w|
b−

j = bj − ε−
∣∣bj

∣∣
b+

j = bj + ε+
∣∣bj

∣∣
(12)

Herein, we adopt a uniform allocation of information granularity to construct interval connec-
tions (granular connections) centered on the initial weights and biases. The intervals are symmetrically
distributed around the original numeric value of each connection, implying that ε− = ε+ = ε/2. By
substituting ε− = ε+ = ε/2 into the above equations, we obtain:

w− = w − ε− |w| = w − ε/2 ∗ |w| = max (w (1 − ε/2) , w (1 + ε/2))

w+ = w + ε+ |w| = w + ε/2 ∗ |w| = max (w (1 − ε/2) , w (1 + ε/2))

b−
j = bj − ε−

∣∣bj

∣∣ = bj − ε/2 ∗ ∣∣bj

∣∣ = min
(
bj (1 − ε/2) , bj (1 + ε/2)

)
b+

j = bj + ε+
∣∣bj

∣∣ = bj + ε/2 ∗ ∣∣bj

∣∣ = max
(
bj (1 − ε/2) , bj (1 + ε/2)

)
(13)

w− = min (w (1 − ε/2) , w (1 + ε/2))

w+ = max (w (1 − ε/2) , w (1 + ε/2))

b−
j = min

(
bj (1 − ε/2) , bj (1 + ε/2)

)
b+

j = max
(
bj (1 − ε/2) , bj (1 + ε/2)

)
(14)

where ε is within the range of (0,1].
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Substituting Eq. (14) into Eqs. (10) and (11) and replacing connections with interval values, we
arrive at the following operations.

For the hidden layer:

oj = [
o−

j , o+
j

] = [
f1

(
z−

j

)
, f1

(
z+

j

)]

z−
j =

n∑
i=1

(
min

(
w−

ji xi, w+
ji xi

) + b−
j

)

z+
j =

n∑
i=1

(
max

(
w−

ji xi, w+
ji xi

) + b+
j

)
, j = 1, 2, . . . , n1 (15)

For the output layer:

Y = [y−, y+] = [
f2

(
z−)

, f2

(
z+)]

z− =
n∑

i=1

(
min

(
w−

j o−
i , w+

j o−
i , w−

j o+
i , w+

j o+
i

) + b−
j

)

z+ =
n∑

i=1

(
max

(
w−

j o−
i , w+

j o−
i , w−

j o+
i , w+

j o+
i

) + b+
j

)
, j = 1, 2, . . . , n1 (16)

Since the network’s output is an interval, two performance indices are defined for evaluation
purposes. The first is coverage, an index that indicates how many actual output intervals can ‘cover’
the expected output. The second is specificity, an index reflecting the average length of the output
interval.

For any data (xk, targetk), where k = 1, 2, · · · , n, in a dataset, when the network’s input is xk, the

network produces an interval result Yk =
[
y−

k
, y+

k

]
. The quality of the results is evaluated in terms of

coverage and specificity. The measures are defined as follows:

Coverage: For any data (xk, targetk) and the output of the network Y k, if targetk ∈ Y k, then Y k

‘covers’ targetk. Coverage quantifies the ratio of the number of data points covered to the total data
amount.

Q1 (ε) = 1
N

N∑
k=1

incl (targetk, Yk) (17)

where

incl (targetk, Yk) =
{

1 if targetk ∈ [
y−

k , y+
k

]
0, otherwise

(18)

Specificity: It quantifies the average length of output intervals:

Q2 = 1
N

N∑
k=1

max
(

0, 1 − |y+
k − y−

k |
range

)
(19)

where the range = |targetmax-targetmin|.
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To summarize the discussion, the process can be delineated as follows:

Phase 1: Utilize the provided data to derive a new neural network employing numeric data and
the backpropagation method.

Phase 2: Assign an information granularity level ε to the NNN constructed in the first phase,
converting the numerical connection into an information granularity connection (interval value).

Phase 3: Optimize the objective function to identify the best parameters using PSO.

Phase 4: Construct the IVNN using the weights from the original NNN and the optimized
information granularity level ε.

4 Single-Phase Design of GNN

Specificity (Q2) calculates the average length of output intervals, and coverage (Q1) assesses
how many actual output intervals can ‘cover’ the expected output. These performance indices
articulate and quantify information granularity in distinct manners. Based on the definitions of these
performance indices, superior values indicate enhanced network performance. To thoroughly compare
two methodologies for constructing a GNN, the product of the two performance indices of coverage
and specificity is considered the objective function for the network. This novel performance index aptly
balances the two indices. Consequently, the optimal values for the network parameters are determined
by maximizing this new objective function, enhancing the network’s adaptability.

V (ε) = Q1 (ε) ∗ Q2 (ε) (20)

where ε is a non-negative value, with εmax denoting the maximum allowable value of ε.

Considering the range of values of ε, a global performance index is formulated as:

S (W) =
∫ 1

0

V (ε) dε (21)

For ε within the range of (0,1], where the level of information granules is within the unit interval,
W represents the weights and biases of the network. In practical applications, integration is substituted
with summation.

Given the nature of the performance index, it is clear that optimization cannot be limited to
gradient-based methods. Therefore, PSO is considered for the optimization challenges presented [9,10].

As previously mentioned, the weights derived from the numeric neural network in phase 1, along
with the ε that provides the best coverage and specificity for these weights, are not necessarily the
optimal parameters for achieving high coverage and specificity. Consequently, a different strategy is
adopted to develop a GNN. This approach involves combining the first and second phases of the
earlier algorithm. In essence, instead of calculating the weights beforehand, the objective function V
is optimized directly to simultaneously determine all parameters.
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With this approach, the construction of the connections is also modified:

w− = min
(

w
1

1 + ε
, w (1 + ε)

)

w+ = max
(

w
1

1 + ε
, w (1 + ε)

)

b−
j = min

(
bj

1
1 + ε

, bj (1 + ε)

)

b+
j = max

(
bj

1
1 + ε

, bj (1 + ε)

)
(22)

Triangular fuzzy numbers, which express uncertainty effectively, are frequently utilized as infor-
mation granules in granular computing. Their cut sets can be converted into a series of intervals,
allowing the use of interval values in the construction and performance evaluation of a GNN.

Regardless of the type of information granule—whether interval values or triangular fuzzy
numbers—the steps for constructing these two variations of GNNs remain consistent. The GNN
derived from an NNN is designated as Version #1, whereas the GNN developed independently of
an NNN is referred to as Version #2. The methods for constructing a GNN are concisely outlined.
Figs. 2 and 3 illustrate the algorithmic flow of each version.

Figure 2: Flow of the construction of Version #1
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Figure 3: Flow of the construction of Version #2

Procedure for the construction of Version #1.

Procedure for the construction of Version #2.

Phase 1: For a neural network with undetermined parameters, establish an information granularity
level ε, converting the network’s connections into information granularity connections (interval values
or triangular fuzzy numbers).

Phase 2: Input the provided data into the network and derive the objective function V , which
depends on the network parameters. Optimize this objective function to identify the optimal network
parameters.

Phase 3: Utilize the optimized parameters to establish the information granular connections
of the network (using interval values or triangular fuzzy numbers), thereby constructing the GNN.
Consequently, a granular network is developed.

5 PSO

In the optimization of neural networks, PSO was employed as an optimizer. A concise summary
of its algorithm flow is provided below. Recognizing the distinct advantages inherent in various
algorithms, integrating these methodologies has emerged as a significant focus of research aimed at
overcoming the limitations of individual approaches. Prominent algorithms for hybrid computation
have included the ant colony algorithm, genetic algorithm, and simulated annealing, among others.
PSO emerged as a robust optimization algorithm capable of working with nonconvex models, logical
models, complex simulation models, black box models, and even real experiments for optimization
calculations. In PSO, each particle represented a potential solution consisting of a vector of optimized
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levels of information granularity, weights, and biases. The problem-solving intelligence was realized
through simple behaviors and information exchanges among particles and particle swarms. The
procedure was as follows:

Phase 1: Initialization involved setting the maximum number of iterations, the number of
independent variables in the objective function, the maximum velocity of particles, and their location
information across the entire search space. The speed and location were randomly initialized within
the speed interval and search space, respectively. The population size of the particle swarm was also
established.

Phase 2: Individual extremum and global optimum. A fitness function was defined. The individual
extremum referred to the optimal solution found by each particle, while the global optimum was
determined from the best solutions identified by all particles. This global optimum was then compared
with historical optima, and the best was selected as the current historical optimal solution.

Phase 3: The velocity and position were updated according to:

vd
i = w ∗ vd

i + c1 ∗ r1

(
pbestd

i − xd
i

) + c2 ∗ r2

(
gbestd

i − xd
i

)
xd

i = xd
i + vd

i

(23)

where w denotes the inertia factor influencing the convergence of the swarm, c1 and c2 are the learning
factors for adjusting the maximum learning phase size, i denotes the first particle, and d denotes the
dimensionality of the particle. r1 and r2 are two random numbers in the range [0,1] (for different particle
sizes, the values of r1and r2vary), pbestd

i denotes the position where the particle achieves its highest
(lowest) fitness, and gbestd

i denotes the position where the entire system achieves its highest (lowest)
fitness.

6 Experimental Studies

Multiple datasets were utilized, and a series of experiments were conducted to compare the
performance of the newly proposed GNN in this study with existing GNNs. All datasets, including
synthetic and benchmark datasets, were sourced from the UCI Machine Learning Repository (http://
archive.ics.uci.edu/datasets). To evaluate the performance of numeric neural networks, the root mean
squared error (RMSE) was employed as the indicator. A 10-fold cross-validation was introduced to
generate the training and testing datasets.

In this study, both IVNNs and triangular fuzzy number neural networks shared the same network
structure; the only difference lay in the information granules of the network nodes. These neural
networks had only one hidden layer and a single output node. A series of experiments were also
conducted to examine the relationship between network performance and the number of nodes in the
hidden layer. The NNN was trained using the standard Levenberg-Marquardt minimization method,
with the number of generations set to 1000. Before initiating the network, data preprocessing was
performed to ensure that different dimensions of multidimensional data played the same role. The
initial weights for all networks were set between [−1, 1]. The activation function for the input layer
was sigmoid, while that for the hidden layer was linear.

A method described in previous sections was employed to construct a new network to test its
performance, utilizing 10-fold cross-validation for data processing. Following the methodology in [42],
the parameters of PSO were initialized with the number of generations set to 100, w to 0.7, c1 to 2,
and c2 to 2. Adjusting different initial parameters did not yield any significant change in network
performance, leading to the adoption of these parameters for all networks. The training time was also

http://archive.ics.uci.edu/datasets
http://archive.ics.uci.edu/datasets


CMC, 2024, vol.79, no.1 635

documented due to significant differences in training costs when using different information granules
to construct the network.

Table 3 presents the datasets used in this study, all of which are regression.

Table 3: Datasets

Data sets Number of instances Number of attributes (features)

y = 0.8. ∗ sin(x1/4). ∗ sin(x2/2) 600 2
Servo 167 4
AirfoilSelfNoise 1503 5
Housing 506 13
Fertility 100 9
Bodyfat 252 14
Automobile 205 25
Auto MPG 398 7
Note: The dataset ‘y = 0.8 ∗ sin(x1/4) ∗ sin(x2/2)’, used as regression benchmark data [33], features x1 in the range [0,10]
and x2 in the range [−5, 5].

6.1 Synthetic Data

These two-dimensional synthetic data, derived from the regression benchmark dataset [43], are
modeled by the following nonlinear function f (x1, x2):

f (x1, x2) = 0.8 ∗ sin (x1/4) . ∗ sin (x2/2) + z (24)

where z is obtained from the Gaussian normal distribution N (0, 0.2). A total of 600 sets of random
data, adhering to a uniform distribution, were generated. The visualization of these 600 datasets is
depicted in Fig. 4.

Figure 4: Two dimensional nonlinear function ‘y = 0.8 ∗ sin(x1/4) ∗ sin(x2/2)’ used in the experiment

We consider an MLP with only one hidden layer of size h. Training is conducted using a standard
BP algorithm. The performance of the NNN, as a function of h, is illustrated in Fig. 5; the size of
h varies from 2 to 10. An optimal value of h is determined when the performance index reaches
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its minimum value. According to Fig. 5, the optimal h is 8. Subsequently, a new network featuring
granular connections is constructed by selecting its ε value within the range (0, 1] for Version #1 and
in the range (0, 10] for Version #2.

Figure 5: RMSE vs. h (number of neurons in hidden layer): Training data (red line) and testing data
(black line)

Fig. 6 illustrates the variations in the objective functions V , Q1, and Q2 when ε is within the range
(0,1]. Notably, irrespective of whether the information granule is an interval value or a triangular fuzzy
number, the change tendency of these objective functions remains the same when the construction
approach (Version #1 or Version #2) of the network is consistent.

(a) IVNN for Version #1 (b) IVNN for Version #2

Figure 6: (Continued)
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(c) Triangular fuzzy number-valued neural
network for Version #1

(d) Triangular fuzzy number-valued
neural network for Version #2

Figure 6: Q1, Q2, and V vs. ε (ε is in (0, 1]); solid line—training data; dotted line—testing data

For a GNN of Version #1, the optimal number of neurons in the hidden layer is determined to
be 8. However, as shown in Table 4, for the same dataset in the Version #2 neural network, whether
interval or triangular fuzzy number-valued, h is found to be 4. According to Table 5, the performance
indices V and S for Version #2, both for interval-valued and triangular fuzzy number-valued neural
networks, are significantly better than those for the IVNN of Version #1. This aligns with prior
analyses. Additionally, the IVNN of Version #2 demonstrates superior performance across all indices.

Table 4: Results of Version #2 using the dataset ‘y = 0.8 ∗ sin(x1/4) ∗ sin(x2/2)’; it compares V , Q1,
Q2, and S vs. h, with the information granularity being either an interval value or a triangular fuzzy
number

Data sets h 2 3 4 5 6 7 8 9 10
V Interval value 0.7338 0.7252 0.7345 0.6871 0.6996 0.6740 0.6470 0.6375 0.6373

Triangle fuzzy number 0.7076 0.7128 0.7156 0.7084 0.6646 0.6750 0.6736 0.6394 0.6557
Q1 Interval value 0.9590 0.9631 0.9504 0.9376 0.9557 0.9499 0.9431 0.9567 0.9601

Triangle fuzzy number 0.9453 0.9472 0.9491 0.9563 0.9645 0.9492 0.9663 0.9388 0.9452
Q2 Interval value 0.7665 0.7547 0.7723 0.7339 0.7323 0.7102 0.6883 0.6676 0.6646

Triangle fuzzy number 0.7498 0.7536 0.7538 0.7389 0.6897 0.7106 0.6971 0.6825 0.6953
V of training
set

Interval value 0.7628 0.7587 0.7570 0.7112 0.7161 0.7002 0.6744 0.6653 0.6645
Triangle fuzzy number 0.7212 0.7379 0.7289 0.7242 0.6849 0.6936 0.6870 0.6589 0.6723

S Interval value 0.1867 0.3933 0.3542 0.4620 0.3366 0.3580 0.3465 0.4132 0.3736
Triangle fuzzy number 0.2372 0.2106 0.2483 0.3076 0.3349 0.3139 0.4017 0.3147 0.3263

For Version #1, the V (for both training and testing sets) and S indices obtained by the
triangular fuzzy number-valued network are slightly better than those from the interval-valued
network. Conversely, for Version #2, the IVNNs outperform the triangular fuzzy number-valued
networks in terms of V and S. The experimental results from this dataset do not conclusively determine
whether the performance of IVNNs surpasses that of triangular fuzzy number neural networks with
identical network structures, whether Version #1 or Version #2, or the reverse.
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Table 5: Results of for the dataset ‘y = 0.8 ∗ sin(x1/4) ∗ sin(x2/2)’; V , Q1, Q2, and S for training
and testing data, with the granularity again described in terms of interval values or triangular fuzzy
numbers

Data Information granule Version V Q1 Q2 S
y = 0.8. ∗ sin
(x1/4). ∗ sin (x2/2)

Interval value Version #1 0.5311/0.5188 0.9252/0.9161 0.5740/0.5663 0.2981/0.2878
Version #2 0.7570/0.7345 0.9807/0.9504 0.7719/0.7723 0.3879/0.3524

Triangular fuzzy number Version #1 0.5425/0.5197 0.9691/0.9570 0.5598/0.5430 0.3756/0.3645
Version #2 0.7289/0.7156 0.9735/0.9491 0.7487/0.7538 2658/0.2483

Furthermore, no regular pattern was observed in how the performance indices V and S change
with variations in the number of nodes in the hidden layer. This suggests that the new GNNs proposed
in this paper are feasible and perform better. To further validate these findings, experiments will be
conducted on the seven datasets listed on the left side of Table 3 in the following section.

Fig. 7 provides an intuitive comparison of the performance of the four GNNs. The vertical lines in
the figures indicate the network outputs (intervals, triangular fuzzy numbers), with a shorter average
length correlating with a better Specificity index. Outputs that cover the theoretical outputs are marked
with a slash across the vertical lines, indicating that more lines crossed by a slash signify a better
Coverage index.

(a) IVNN for Version #1 (b) IVNN for Version #2

Figure 7: (Continued)
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(c) Triangular fuzzy number-valued
neural network for Version #1

(d) Triangular fuzzy number-valued
neural network for Version #2

Figure 7: Dataset ‘y = 0.8 ∗ sin(x1/4) ∗ sin(x2/2)’; x-axis—target output; y-axis—actual output (interval
value/triangular fuzzy number value)

Fig. 8 presents the evolution of the fitness functions across 100 generations. Notably, the triangular
fuzzy number-valued neural network for Version #2 exhibits the quickest convergence, achieving this
within the initial twenty generations.

Figure 8: (Continued)
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Figure 8: Fitness function of PSO in 100 generations

6.2 Publicly Available Data from the Machine Learning Repository

The performances of the constructed networks, functioning as variables of h, are illustrated in
Fig. 9, where the size of h varies from 2 to 10. In version #1, irrespective of the GNN’s utilization
of interval values or triangular fuzzy numbers, h is assigned values of 2, 10, 10, 10, 2, 2, and 3
for the datasets Servo, Airfoil Self Noise, Housing, Fertility, Bodyfat, Automobile, and Auto MPG,
respectively.

(a) Servo dataset (b) AirfoilSelfNoise dataset

(c) Housing dataset (d) Fertility dataset

Figure 9: (Continued)



CMC, 2024, vol.79, no.1 641

(g) Auto MPG dataset

(e) Bodyfat dataset (f) Automobile dataset

Figure 9: RMSE vs. h (number of neurons in hidden layer): Interval-valued/triangular fuzzy number-
valued neural network (Version #1); training data (red line) and testing data (black line)

The index V , obtained by the constructed neural networks for Version #2 and quantified with
respect to the number of neurons in the hidden layer, is displayed in Figs. 10 and 11. For the datasets
Servo, Airfoil Self Noise, Housing, Fertility, Bodyfat, Automobile, and Auto MPG, the optimal h
values for the interval-valued network are 3, 5, 8, 2, 5, 3, and 2, respectively, and for the triangular
fuzzy number network, they are 3, 6, 2, 2, 10, 2, and 3, respectively. Consistent with the preceding
section, there is no evidence to suggest that the performance index systematically varies as the number
of neurons in the hidden layer changes.

The determination of the value of h is achieved by minimizing the performance index. Subse-
quently, with the determined value of h, a network is constructed by selecting the value of ε within the
range (0,1] for Version #1 and (0,10] for Version #2.
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(a) Servo dataset (b) AirfoilSelfNoise dataset

(c) Housing dataset (d) Fertility dataset

(e) Bodyfat dataset (f) Automobile dataset

Figure 10: (Continued)
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(g) Auto MPG dataset

Figure 10: V vs. h (number of neurons in hidden layer): IVNN (Version #2)

(a) Servo dataset (b) AirfoilSelfNoise dataset

(c) Housing dataset (d) Fertility dataset

Figure 11: (Continued)
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(g) Auto MPG dataset

(e) Bodyfat dataset (f) Automobile dataset

Figure 11: V vs. h (number of neurons in hidden layer): Triangular fuzzy number-valued neural network
(Version #2)

The dataset ‘y = 0.8 ∗ sin(x1/4) ∗ sin(x2/2)’ has its experimental results previously discussed
and visually represented in Fig. 12. The results of other data sets are all in Tables 6–12. Like earlier
experiments, it can be concluded that for both training and testing sets, the indices V and S achieved
by both interval-valued and triangular fuzzy number-valued neural networks for Version #2 surpass
those obtained by the IVNN for Version #1. There is, however, no clear evidence to suggest a consistent
superiority in performance between the interval-valued and triangular fuzzy number-valued neural
networks when the network structure remains unchanged (whether for Version #1 or Version #2).

Nevertheless, other results indicate variable performances for indexes S and V . The IVNN for
Version #2 shows the best performance for index V , while the triangular fuzzy number-valued neural
network for Version #2 presents the second-best outcomes, except for the dataset ‘Servo’. Notably, the
best values of S are predominantly achieved by the IVNNs for Version #2 and the triangular fuzzy
number-valued neural networks for Version #1. For all datasets, the IVNNs for Version #1 did not
attain the optimal S values.
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Figure 12: Plot of coverage, specificity, V , and S; solid line indicates training data; dotted line indicates
testing data. Method 1 employs an IVNN for Version #1, Method 2 utilizes an IVNN for Version #2,
Method 3 uses a triangular fuzzy number-valued neural network for Version #1, and Method 4 applies
a triangular fuzzy number-valued neural network for Version #2

Table 6: Results for the servo dataset, including V , Q1, Q2, and S for both training and testing data.
Information granularity is presented as interval values/triangular fuzzy numbers

Information
granule

Version V Q1 Q2 S

Interval value Version #1 0.5604/0.4957 0.8739/0.8246 0.6413/0.5990 0.4152/0.3572
Version #2 0.6299/0.5909 0.8953/0.8701 0.7036/0.6818 0.4316/0.3972

Triangular
fuzzy number

Version #1 0.4203/0.3427 0.6045/0.5599 0.7000/0.6191 0.4203/0.3427
Version #2 0.6223/0.5883 0.8814/0.8590 0.7060/0.6832 0.3567/0.2830

Table 7: Results for the AirfoilSelfNoise dataset, including V , Q1, Q2, and S for training and testing
data. Information granularity is provided as an interval

Information
granule

Version V Q1 Q2 S

Interval value Version #1 0.3367/0.3055 0.9693/0.9213 0.3474/0.3320 0.3127/0.2785
Version #2 0.5397/0.5225 0.8518/0.8421 0.6336/0.6256 0.2451/0.2000

Triangular
fuzzy number

Version #1 0.3712/0.3545 0.6652/0.6547 0.5580/0.5458 0.3372/0.2840
Version #2 0.4625/0.4511 0.8254/0.8118 0.56030.5558 0.2758/0.2249
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Table 8: Results for the housing dataset, including V , Q1, Q2, and S for training and testing data. The
granularity of information is expressed as interval values/triangular fuzzy numbers

Information granule Version V Q1 Q2 S

Interval value Version #1 0.3726/0.3282 0.5431/0.4973 0.6861/0.6600 0.2384/0.2038
Version #2 0.5976/0.5425 0.9036/0.8772 0.6614/0.6167 0.3582/0.2841

Triangular fuzzy
number

Version #1 0.4029/0.3451 0.5825/0.5215 0.6917/0.6617 0.3178/0.2650
Version #2 0.4782/0.4462 0.7748/0.7311 0.6172/0.5948 0.2752/0.2192

Table 9: Results for the fertility dataset, including V , Q1, Q2, and S for training and testing data.
Information granularity is described as interval values/triangular fuzzy numbers

Information granule Version V Q1 Q2 S

Interval value Version #1 0.5247/0.2613 0.6815/0.4550 0.7699/0.5800 0.2983/0.2402
Version #2 0.7231/0.6297 0.8162/0.7488 0.8859/0.8414 0.3530/0.3200

Triangular fuzzy
number

Version #1 0.5563/0.3206 0.8451/0.7852 0.6583/0.4598 0.3947/0.3423
Version #2 0.6765/0.6024 0.8352/0.7875 0.8100/0.7666 0.3167/0.2631

Table 10: Results for the bodyfat dataset, including V , Q1, Q2, and S for training and testing data.
The information granularity is indicated as interval values/triangular fuzzy numbers

Information granule Version V Q1 Q2 S

Interval value Version #1 0.4778/0.3375 0.8152/0.6523 0.5861/0.5201 0.1624/0.1427
Version #2 0.6893/0.6255 0.8551/0.8015 0.8061/0.7780 0.2764/0.2306

Triangular fuzzy
number

Version #1 0.5001/0.3969 0.7663/0.6700 0.6526/0.5924 0.2149/0.1728
Version #2 0.6762/0.6207 0.9132/0.8625 0.7405/0.7204 0.3049/0.2532

Table 11: Results for the automobile dataset, including V , Q1, Q2, and S for training and testing data.
Information granularity is noted as interval values/triangular fuzzy numbers

Information granule Version V Q1 Q2 S

Interval value Version #1 0.2857/0.1957 0.5119/0.3902 0.5581/0.5014 0.2114/0.1740
Version #2 0.6660/0.6304 0.9291/0.9059 0.7168/0.7345 0.3346/0.2965

Triangular fuzzy
number

Version #1 0.3327/0.2776 0.6260/0.5854 0.5315/0.4742 0.1694/0.1460
Version #2 0.6452/0.5625 0.9137/0.8728 0.7061/0.6505 0.2671/0.2335
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Table 12: Results for the auto MPG dataset, including V , Q1, Q2, and S for training and testing data.
Information granularity is specified as interval values/triangular fuzzy numbers

Information granule Version V Q1 Q2 S

Interval value Version #1 0.4509/0.3283 0.8548/0.7911 0.5275/0.4149 0.2814/0.2579
Version #2 0.6349/0.6066 0.9073/0.8725 0.6998/0.6891 0.3489/0.3355

Triangular fuzzy
number

Version #1 0.4757/0.3443 0.7151/0.6076 0.6652/0.5666 0.3415/0.3021
Version #2 0.5465/0.5261 0.8713/0.8590 0.6272/0.6184 0.2868/0.2669

7 Conclusions and Further Work

The broad application of deep learning technology has sparked significant interest in the structural
design of neural networks. GNNs offer a novel perspective for network structure design and can handle
various data types. These networks, characterized by their granular connections, output granular data,
thus providing a novel method for achieving higher-level abstract results. The role of information
granularity is crucial in the design process of neural networks.

This paper introduces several new granular networks, building upon an established GNN. The
work is summarized as follows: Firstly, it integrates two performance indices into a new one to serve
as the network’s performance index. Secondly, it optimizes the network directly to construct GNNs,
moving away from NNNs. Thirdly, it explores the construction of connections using triangular fuzzy
numbers. A series of experiments with synthetic and real data demonstrate that the new design scheme
is viable and attains favorable performance indices.

Due to their simplicity, interval values and triangular fuzzy numbers are employed as the
information granularity for granular connections. Exploring other forms of information granularity
could offer alternatives for the network’s granularity structure. Moreover, GNNs are not restricted to
a single network architecture; multilayer perceptrons could also be considered. However, substituting
numerical connections in the original neural network with granular connections increases the number
of network parameters, complicating network optimization. Gradient-based methods may offer a
promising solution.
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