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ABSTRACT

Recently, much interest has been given to multi-granulation rough sets (MGRS), and various types of MGRS models
have been developed from different viewpoints. In this paper, we introduce two techniques for the classification
of MGRS. Firstly, we generate multi-topologies from multi-relations defined in the universe. Hence, a novel
approximation space is established by leveraging the underlying topological structure. The characteristics of the
newly proposed approximation space are discussed. We introduce an algorithm for the reduction of multi-relations.
Secondly, a new approach for the classification of MGRS based on neighborhood concepts is introduced. Finally, a
real-life application from medical records is introduced via our approach to the classification of MGRS.
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1 Introduction

According to the very rapid growth of data and the high incidence of Internet broadcasting,
it has become a seriously urgent issue to extract useful information to make decisions. To do this
accurately, quickly, and cost less, researchers need to work together in this field to unify their
research framework. Many researchers have solved some of the problems of data sharing without a
general conceptual framework governing their techniques. Some of them have used old mathematical
techniques; some have used modern statistical methods; and others have developed hybrid methods
between mathematics, statistics, and computer science.

In 1982, Pawlak defined the seminal theory of rough sets [1], which can be recognized as a
pioneering mathematical framework designed to address the challenges posed by uncertainty, incom-
pleteness, and imprecision within the realm of knowledge representation. Pawlak’s conceptualization
delineates an approximation structure, denoted as AS = (�, R), where � represents a universal set
and R denotes an equivalence relation imposed upon �. The equivalence classes that arise within �
are commonly referred to as the knowledge base. The lower approximation of a subset A of � is the
union of all equivalence classes wholly included in A, while the upper approximation is established
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as the intersection of all equivalence classes that intersect A in a non-trivial manner. Consequently,
a rough set is elegantly expressed as a dual entity, comprising both the lower approximation and
the upper approximation of set A, each a precise set in its own right. Recognizing the limitations
of equivalence relations in the context of various applications in the real world, Pawlak’s classical
rough set theory necessitated a process of generalization. This generalization endeavor unfolds on
two fronts: Firstly, it involves the substitution of the equivalence relation with alternative relations
such as tolerance relations [2,3], similarity relations [4], characteristic relations [5,6], and arbitrary
binary relations [7]. Second, it involves replacing the partition caused by the equivalence relation
with a covering mechanism. This makes it easier to approximate any subset of the universe [8]. These
versatile frameworks fall under the rubric of granular computing, representing mathematical models
that offer innovative solutions to a diverse array of challenges spanning data mining, machine learning,
pattern recognition, and cognitive science. Nonetheless, certain challenges persist, necessitating further
extensions.

In 2006, Qian et al. [9] defined the concept of multi-granular computing as a paradigm that
advocates the utilization of rough sets not in isolation, but as an ensemble of relations acting upon
the same universal set. This novel approach, known as multi-granular computing, supersedes the
utilization of a single relation typically employed within a single granular setting, as elucidated in
references [9–11]. Within the realm of mathematics, one of the most pivotal branches is topology,
which serves as an indispensable tool for representing intricate relationships between objects or
features, particularly when dealing with complex relational structures. Pawlak astutely emphasized
the profound interconnection between topology and rough set theory, underlining the conviction that
the topological space of rough sets constitutes a fundamental cornerstone within this domain. The
convenience of this relationship has led researchers to undertake a comprehensive investigation into its
features and practical uses and its real-world applications (see [12–14]). In 2013, Qian et al. investigated
a new theory on MGRS from the topological point of view by inducing n-topological structures on
the universe set � from n-equivalence relations on �. They studied the multi-granulation topological
rough structure and its topological properties (see [15]). This study focuses on enhancing the accuracy
measure of rough sets by containment neighbourhoods, specifically in the context of a medical
application. Additionally, the study aims to compare two different types of rough approximations that
are based on neighbourhoods, for new applications at the same research point (see [16–20]). Topology
has many applications in life problems [21–25].

Multi-source information fusion based on rough set theory involves integrating information from
multiple sources using rough set theory. Rough set theory is used to handle inexact and uncertain
information. It has been applied in various domains, such as parallel computing, neural network
modeling, and information entropy. The combination of several rough set models and the use of
rough set theory to measure uncertainty in an information system are some of the key aspects
discussed in the literature. Zhang et al. [26,27] have presented an application of rough set theory
for multi-source information fusion. The approach involves integrating heterogeneous data from
multiple sources. Rough set theory is considered an efficient tool for dealing with uncertainty in
the context of information fusion. They lay the foundation for integrating rough sets into decision
support systems, emphasising data fusion techniques. It explores how rough set theory can effectively
handle uncertainty in multi-source information, providing a comprehensive review of decision support
applications. Focusing on the integration of rough sets and intelligent systems, it provides insights into
the synergies between rough set theory and intelligent systems, offering applications in knowledge
representation and decision-making. They provide a comprehensive overview of the role of rough set
theory in data fusion. It systematically categorises and analyses existing approaches, shedding light
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on the strengths and challenges of employing rough sets for integrating information from multiple
sources. They focused on practical applications; it explores how rough set theory can be effectively
applied in multi-source information fusion scenarios. It discusses real-world examples and showcases
the utility of rough sets in handling uncertainties arising from different information sources.

Rough set theory has found practical application in the domain of decision support systems,
specifically within the context of data fusion. This theoretical framework proves to be a proficient
tool for effectively managing information characterized by imprecision and uncertainty. Numerous
scholarly inquiries have delved into the utilization of rough set theory within decision support systems,
with a particular emphasis on information fusion scenarios. Notably, Han et al. [28] created an
evaluation method based on rough set theory for figuring out what happens when data is missing
in decision fusion. Furthermore, academic literature extensively explores the application of rough
set theory in knowledge acquisition pertaining to incomplete information systems, showcasing its
relevance in constructing decision support models [29–31]. Recognized for its efficacy, rough set theory
is deemed instrumental in amalgamating disparate data from diverse sources, concurrently offering a
means to quantify uncertainty in the information fusion process [32].

Huang et al. [33] stood as a pivotal contribution in the domain of rough set theory, specifically
exploring the integration of multi-granulation and fuzzy sets for applications in feature selection.
It enriches the theoretical foundations of rough set theory by integrating concepts from multi-
granulation and fuzzy sets. The novel framework introduced opens avenues for more expressive
and adaptable modelling of uncertainty in real-world datasets. Secondly, the application of these
concepts to feature selection showcases the practical utility of the proposed methodology. This not
only enhances the understanding of data representation but also provides a valuable tool for data
scientists and practitioners.

Chen et al. [34,35] introduced a novel variable precision multigranulation rough set model that
extends traditional rough set theory by accommodating variable precision granules. The authors
delve into the mathematical foundations of this model, elucidating the principles governing the
variable precision within granules. The study also explores the practical implications of this model,
particularly in the realm of attribute reduction, demonstrating its effectiveness in handling uncertainty
and imprecision in real-world datasets.

The multi-granularization decision-theoretic rough set (MG-DTRS) helps with cost-sensitive
decision-making in multi-view and multi-level situations. One shortcoming of the MG-DTRS model
is the use of subjectively assigned probability parameters (α and β) to compute three areas. Adaptive
MG-DTRS (AMG-DTRS) is introduced in this study to overcome this issue. The suggested AMG-
DTRS model uses a compensation coefficient ζ to provide adaptability in acquiring probabilistic
thresholds. The research also examines three mean AMG-DTRS models, providing a new perspective
on multi-granulation information fusion. The following analysis compares the proposed AMG-
DTRS model to existing MGRS models, highlighting its advantages and generalizations. The paper
also shows that the proposed framework may explicitly derive several existing MGRS models from
(MG-DTRS), MGRS, and VP-MGRS models. These discoveries strengthen granular computing’s
information fusion framework [36].

This work presents a novel approach that combines topology and rough set theory to address
the challenge of exchanging multi-source, variable, and large-scale data in a more efficient manner.
Additionally, we engage in the development of algorithms that are derived from the extraction of
knowledge from the aforementioned data. The structure of this work is as follows: Sections 2 provides
an exposition of the essential concepts and features of generic topology, along with an introduction
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to certain notions pertaining to information systems. In Sections 3, we present two methodologies
for generalised multi-granulation, which can be classified into two distinct groups. The initial strategy
involves the establishment of a novel approximation space with the objective of reducing the boundary
region. Conversely, the second approach employs the notion of minimal neighbourhoods. In Sections 4
of our study, we utilise our findings to address the issue of attribute reduction in medical information
systems. The conclusion and potential avenues for future research are outlined in Sections 5

2 Preliminaries

We provide the basic definitions and results on topological structures and rough sets. In classical
rough set theory, the approximation structure is defined as (�, R) where � is non-empty finite set and
R is an equivalence relation on �.

Definition 2.1. [1]. Let (�, R) be a classical approximation structure. The lower and upper
approximations of a given set Y ⊆ � are defined as follows:

RY = {y : [y]R ⊆ Y}, RY = {y : [y]R ∩ Y �= φ}, where [y]R is the equivalence class of y ∈ � with
respect to the equivalence relation R. The accuracy measure of the approximation is denoted by

αR (Y) = cardRY

cardRY

Lemma 2.2. The boundary region of Y is given by RY −RY, RY is called the positive region while� − RY is called the negative region.

Definition 2.3. [37]. Let (�, τ) be a topological structure, then the τ -closure of a subset A1 ⊆ � is
defined as follows: cl (A1)τ = ∩{F ⊆ � : A1 ⊆ F and F ∈ τ c}.

Definition 2.4. [37]. Let (�, τ) be a topological structure, then the τ -interior of a subset A1 ⊆ � is
defined as follows: int (A1)τ = ∪{G ⊆ � : G ⊆ A1 and G ∈ τ }.

Pawlak pointed out in [1] that lower approximations correspond to interiors and upper approxi-
mations correspond to closures. This idea has prompted the researchers to study the theory of rough
sets from a topological point of view to know more about rough sets.

Definition 2.5. [37]. If � is a finite universe and R is a binary relation on �, then we define the
right neighborhood of x ∈ � as follows: RN (x) = {y : xRy}.

Definition 2.6. [38]. Let � be a non-empty set. A basis for a topology on � is a collection β of
subsets of � such that:

1. For every x ∈ �, there is at least one basis element B containing x.
2. If x belongs to the intersection of two basis elements B1 and B2, then there is a basis element

B3 containing x such that B3 ⊆ B1 ∩ B2.

Definition 2.7. [37]. Let τ be a topology on a finite set �, with base β, then the rough membership

function is μτ

X = |{∩Bx} ∩ X |
|{∩Bx}| , x ∈ � where Bx is any member of β containing x.

Theorem 2.8. [38]. Let (�, τ) be a topological space, A ⊆ � then x ∈ cl (A)τ if and only if G∩A �= φ,
∀G ∈ τ and x ∈ G.
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The idea of multi-granulation is based on using multi-relation instead of a single relation to obtain
a better approximation. Thus, we start by giving the definition of multi-granular rough sets based on
equivalence relations.

Definition 2.9. [15]. Let (�, τ1) , (�, τ2) , . . . , (�, τn) be n topological structures induced by equiva-
lence relations R1, R2, . . . , Rn, respectively, and X ⊆ �. Then, we define mint and mcl operators of X
with respect to, where � = {τ1, τ2, . . . , τn}, respectively, as follows:

mint (X) = ∪ {A ∈ τi| ∨ (A ⊆ X) , i ≤ n}
mcl (X) = ∪ {A ∈ τi| ∧ (A ∩ X �= ∅) , i ≤ n}

3 MGRS Based on Topological Structure

In this section, we introduce a new theory on MGRS from the point of view of topological
structures. We generate topological structures from arbitrary relations suitable for real life problems
in other branches like artificial intelligence, knowledge discovery, machine learning and data mining.
Also, we propose that it might be considered an extension or generalization of the Pawlak rough
set framework, and we introduce a new algorithmic method for the reduction of attributes in the
information (decision) system.

Theorem 3.1. Let R be a binary relation on the nonempty set �. ∀p ∈ �, ∃RN (p) ⊆ �, the family
τ = {X ⊆ � : ∀p ∈ X , RN (p) ⊆ X} forms a topology on �.

Proof.

Obviously ∅, U belong to τ ;

Suppose that {Xi : i ∈ N} is a family of sets in τ , p ∈ ∪i∈I Xi. Then ∃Xi0, p ∈ Xi0, i0 ∈ N. Hence,
RN (p) ⊆ Xi0 which leads to RN (p) ⊆ ∪i∈N Xi. Thus ∪i∈N Xi ∈ τ ;

Let X1, X2 ∈ τ , p ∈ X1∩X2. Then, p ∈ X1 and p ∈ X2 which leads to RN (p) ⊆ X1 and RN (p) ⊆ X2.
Therefore, RN (p) ⊆ X1 ∩ X2 and X1 ∩ X2 ∈ τ ;

The following example illustrates Theorem 3.1.

Example 3.2. Let U = {a, b, c, d} be a non empt set and R = {(a, a), (a, b), (b, b), (b, a) (c, c), (c,
d), (d, b)} be an arbitrary relation. Then, RN(a) = {a, b}, RN(b) = {a, b}, RN(c) = {c, d}, RN(d) =
{b}. Hence, τ = {U ,∅, {a, b}, {c, d}, {b}, {b, c, d}} forms a topology on �.

Remark 3.3. From Theorem 3.1, we can generate many topological structures from any finite
number of arbitrary relations. So, we are ready for the following definition of the approximation
structure.

Definition 3.4. Let (�, R) be a knowledge base, where R is a family of binary relations
R1, R2, R3, . . . , Rn on the universe � and τ1, τ2, τ3, . . . , τn are induced topologies on � by the binary
relations. Then, the multi-lower approximation and multi-upper approximation of the set X ⊆ � are
defined as, respectively,

MLA (X) = ∪n
i=1int (X)τi

MUA (X) = ⋂n

i=1 cl (X)τi

The pair (MLA (X) , MUA (X)) is called a MGRS of X .
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When LA (X) = X , resp., MUA (X) = X , we say that X is a lower definable, resp., an upper
definable set in the MGRS model. If the set X is both lower definable and upper definable, we say the
set X is definable.

Lemma 3.5. Suppose that (�, R) and τ1, τ2, τ3, . . . , τn are induced topologies on �. Then for X ⊆ �,
i ∈ N, we have:

1. int (X)τi
= int (MLA (X))τi

,
2. cl (X)τi

= cl (MUA (X))τi

Proof.

1. Since MLA (X) = ∪n
i=1int (X)τi

= ∪n
i=1Gi, where Gi is the greatest open set with respect to τi

contained in X . So, int (MLA (X))τi
= int

(∪n
i=1Gi

)
τi

= Gi, where Gi is the greatest open set
contained in X and Gi ⊆ ∪n

i=1Gi. Hence, int (X)τi
= int (MLA (X))τi

.
2. Since MUA (X) = ⋂n

i=1 cl (X)τi
= ⋂n

i=1 Fi, where Fi is the smallest set with respect to τi

containing X . Then, cl (MUA (X))τi
= cl

(⋂n

i=1 Fi

)
τi

= Fi where Fi is the smallest closed set
such that

⋂n

i=1 Fi ⊆ Fi. Therefore, cl (X)τi
= cl (MUA (X))τi

.

Proposition 3.6. Assume that (�, R) is a knowledge base where R is a family of binary relations
R1, R2, R3, . . . , Rn on the universe � and τ1, τ2, τ3, . . . , τn are induced topologies on � by the binary
relations. For X1, X2 ⊆ �, the following properties hold:

1. MLA (∅) = ∅;
2. MUA (∅) = ∅;
3. MLA (�) = �;
4. MUA (�) = �;
5. MLA (X1) ⊆ X1;
6. X1 ⊆ MUA (X1);
7. If X1 ⊆ X2 ⇒ MLA (X1) ⊆ MLA (X2);
8. If X1 ⊆ X2 ⇒ MUA (X1) ⊆ MUA (X2);
9. MLA (MLA (X1)) = MLA (X1);

10. MUA (MUA (X1)) = MUA (X1);
11. MLA (X1 ∩ X2) = MLA (X1) ∩ MLA (X2);
12. MUA (X1 ∪ X2) = MUA (X1) ∪ MLA (X2);

Proof. We will prove 7, 8, 9, 10, 11 and 12 parts. The proof of the other parts is clear from
Definition 3.1.

7. Let x ∈ MLA (X1) ⇒ x ∈ ∪n
i=1int (X1)τi

. Then, there exists open set Gio such that x ∈ Gio ⊆ X1 for
some i0 ∈ N. Since X1 ⊆ X2, hence, x ∈ Gio ⊆ X1 for some i0 ∈ N. So x ∈ ∪n

i=1int (X2)τi
, x ∈ MLA (X2).

Therefore, MLA (X1) ⊆ MLA (X2).

8. Let x ∈ MUA (X1) ⇒ x ∈ ⋂n

i=1 int (X1)τi
. Then, for all open set G, x ∈ G ∩ X1 �= ∅. Since

X1 ⊆ X2, then x ∈ G ∩ X2 �= ∅ for all i ∈ N and x ∈ MUA (X2). Therefor, MUA (X1) ⊆ MUA (X2).

9. MLA (MLA (X1)) = ∪n
i=1int(MLA (X1)τi

= ∪n
i=1int (X)τi

= MLA (X1).

10. MUA (MUA (X1)) = ⋂n

i=1 cl (MUA (X1))τi
= ⋂n

i=1 cl (X1)τi
= MUA (X1);

11. Since X1 ∩ X2 ⊆ X1, X1 ∩ X2 ⊆ X2. So by (7), MLA (X1 ∩ X2) ⊆ MLA (X1), MLA (X1 ∩ X2) ⊆
MLA (X2) and MLA (X1 ∩ X2) ⊆ MLA (X1) ∩ MLA (X2). Assume that x /∈ MLA (X1 ∩ X2) ⇒ x /∈
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∪n
i=1int (X1 ∩ X2)τi

. Hence, x /∈ int (X1)τi
and x /∈ int (X2)τi

. Therefore, x /∈ int (X1)τi
∩ int (X2)τi

. Then
MLA (X1) ∩ MLA (X2) ⊆ MLA (X1 ∩ X2) and MLA (X1 ∩ X2) = MLA (X1) ∩ MLA (X2).

12. Since X1 ⊆ X1 ∪ X2, X2 ⊆ X1 ∪ X2. By (8), we get MUA (X1) ⊆ MUA (X1 ∪ X2),
MUA (X2) ⊆ MUA (X1 ∪ X2) and MUA (X1) ∪ MUA (X2) ⊆ MUA (X1 ∪ X2). On the other hand,
Let x ∈ MUA (X1 ∪ X2) ⇒ x ∈ ⋂n

i=1 cl (X1 ∪ X2)τi
. So x ∈ ⋂n

i=1 cl (X1) ∪ ⋂n

i=1 cl (X2) and x ∈
MUA (X1) ∪ MUA (X2). Therefore, MUA (X1 ∪ X2) ⊆ MUA (X1) ∪ MUA (X2). So MUA (X1 ∪ X2) =
MUA (X1) ∪ MLA (X2).

Example 3.7. Suppose that (�, R) is knowledge base since R is a family of binary relations
R1, R2, R3, . . . , Rn on the universe � = {a, b, c, d}, where R1 = {(a, a), (a, b), (b, c), (b, d), (c, a), (d, a)},
R2 = {(b, b) , (c, d) , (c, a) , (d, b) , (d, c)} and R3 = {(a, a), (b, c), (b, d), (c, c)}. Then, by Theorem 3.1, the
induced topologies are τ1 = {{a, b}, {c, d}, {a}, {a, c, d}, U,∅}, τ2 = {{a, d}, {b, c}, {b}, {a, b, d}, U ,∅} and
τ3 = {{a}, {c, d}, {c}, {a, c, d}, {a, c}, U, ∅}. Let X1 = {a, b, c}, X2 = {b, c, d}. Then, the approximation
of two sets is presented in the following Tables 1 and 2.

Table 1: Comparison among different approaches for approximation of X1

Approximation
structure

Lower approximation Upper approximation Accuracy measure

(�, R1) {a, b} � 0.5
(�, R2) {b, c} � 0.5
(�, R3) {a, c} � 0.5
(�, R) {a, b, c} � 0.75

Table 2: Comparison among different approaches for approximation of X2

Approximation
structure

Lower approximation Upper approximation Accuracy measure

(�, R1) {c, d} {b, c, d} 0.6
(�, R2) {b, c, d} � 0.75
(�, R3) {c, d} {b, c, d} 0.6
(�, R) {b, c, d} {b, c, d} 1

Remark 3.8. From Example 3.7, we note that the accuracy measure of our approximation structure
is higher than the other approaches, as our approach is considered a generalization for the others.

3.1 Multi-Granulation of Rough Set Based on Neighborhood Concept

Definition 3.9. Let R1, R2, R3, . . . , Rn be binary relations on the nonempty set �. We define
the minimal neighborhood MN : U → P (U) as MN (x) = ⋂n

i=1 RNi (x) , ∀x ∈ �, where
RNi (x) right neighborhood x ∈ �.

Theorem 3.10. If R1, R2 is two binary relations on the nonempty set �, then, the family

B2
i=1 = {MN (x) : x ∈ �} form a topological base for �.
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Proof. Since x1 ∈ MN (x1) for every x1 ∈ �. So, suppose that β1, β2 ∈ B2
i=1, e ∈ β1 ∩ β2. Then

β1 = MN (x1) , β2 = MN (x2) for x1, x2 ∈ �. Hence, e ∈ β1 ∩ β2 if and only if e ∈ β1 = MN (x1)

and e ∈ β2 = MN (x2). Obviously, e ∈ MN (e) ⊆ MN (x1) and e ∈ MN (e) ⊆ MN (x2). So, ∃β3 =
MN (e) ∈ B2

i=1 such that e ∈ β3 ⊆ β1 ∩ β2.

Corollary 3.11. Suppose that R1, R2, R3, . . . , Rn be family of binary relations on the nonempty set�. Then, the collection of neighborhoods Bn
i=1 = {MN (x) : x ∈ �} form a topological base for � and

the structure (�, τMN) is called generalized multi-granular rough based topological structure GMRTS.

Theorem 3.12. Suppose that R1, R2, R3, . . . , Rn be a family of binary relations on the nonempty set�. If any relation Ri0 is an identity, then generalized multi-granular rough based topological structure
GMRTS (�, τMN) is the same topology generated by Ri0.

Proof. Since Ri0, i0 ∈ {1, 2, 3, . . . , n} is an identity relation. Then RNi0 (x) = x, ∀x ∈ �. Thus,
N (x) = RNi0 (x), ∀x ∈ � and the base Bn

i=1 = {MN (x) : x ∈ �} is equal the base generated by Ri0. So,
topological structure GMRTS (�, τMN) is the same topology generated by Ri0.

Example 3.13. Let � = {b1, b2, b3, b4, b5, b6} and R1, R2, R3 be family of relations on �
definedas: R1 = {(b1, b1) , (b1, b2) , (b3, b3) , (b3, b5) , (b5, b5) , (b6, b3) , (b6, b6)}, R2 = {(b1, b1) , (b1, b2) ,
(b2, b1) , (b2, b2) , (b3, b3) , (b3, b4) , (b4, b4)}, R3 = {(b2, b1) (b2, b2) , (b3, b3), (b3, b4), (b4, b4) , (b4, b5) , (b4, b6),
(b5, b5) , (b5, b6) (b6, b4) , (b6, b5) , (b6, b6)}. Then MN (b1) = {b1, b2}, MN (b2) = {b1, b2}, MN (b3) = {b3},
MN (b4) = {b4}, MN (b5) = {b5}, MN (b6) = {b6}. Hence, Bn

i=1 = {{b1, b2}, {b3}, {b4}, {b5}, {b6}} is the
base of generalized multi-granular rough structure GMRTS. In Table 3, there is a comparison among
different approximations of the set B = {b1, b4, b6}.

Table 3: Comparison among different approaches for approximations on B

Approximation
structure

Lower approximation Upper approximation Accuracy measure

(�, τR1

) {b4, b6} {b1, b2, b4, b6} 0.5(�, τR2

) {b4} � 0.16(�, τR3

) {b4, b6} � 0.33
(�, τMN) {b4, b6} {b1, b4, b6} 0.66

The reduction process of data is very important since we express the whole data by a part of it with
conservation of the structure of the whole data. So we introduce an algorithm for relation reduction
by removing the superfluous relations and expressing the hole data of the universe by fewer number
of relations. In this algorithm, we remove the redundant bases that generated from the superfluous
relations. This reduction may be helpful in the process of decision-making.

Algorithm 1: (Relations Reduct).
Input: The non-empty set � and the bases B1, B2, B3, . . . , Bn are the bases induced by the binary
relations R1, R2, . . . , Rn.
Output: One reduct
Steps are shown as follows:
I : Put X = {B1, B2, . . . , Bn} and compute

⋂n

i=1 Bi

II : Remove the base B1 from X ,
(Continued)
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Algorithm 1 (continued)
if

⋂
(X − B1) = ⋂n

i=1 Bi, then B1 is reduntant and R1 is superfluous relation
Otherwise
R1 belongs to the reduct
III : Repeat step II fo all Bi, i = 2, 3, . . . , n

This algorithm is shown by the following example:

Example 3.14. That � = {b1, b2, b3, b4, b5, b6} and X = {B1, B2, B3} be a family of bases
induced by any arbitrary relations R1, R2, R3, respectively, where B1 = {{b1, b2, b3}, {b4, b5, b6}}, B2 =
{{b1, b2, b3, b4, b6}, {b5}} and B3 = {(b1, b4), (b2, b5)}, (b3, b6)}}. Then

⋂n

i=1 Bi = {{b1}, {b2}, {b3}, {b4}, {b5},
{b6}}. If we remove B1 from X , then B2 ∩ B3 = {{b1, b4}, {b2}, {b3, b6}, {b5}} �= ⋂n

i=1 Bi. Hence, R1 belongs
to the reduct. Similarly, we find that R3 that belongs to the reduct, but R2 is redundant relation and
can be omitted. So, the reduct = {R1, R3}.

4 Real Life Applications

The data used in this study is based on the collected data of the following paper [14].

4.1 Clinical Data Description

Patients with digestive disease have become so many of these lesions due to the high number of
fast foods, which contain high calories, as well as processed meat. As a direct result of this food, many
people suffer from excessive infusion and the subsequent diseases of the digestive system, the most
serious of which are stomach and colon cancers. Because of the eradication of the stomach, the food
directly goes to the intestine, causing confusion in the absorption. The patients have some violent
symptoms after the meal, such as dizziness, headache, colic and increasing the blood sugar. After a
period, the patient has the highest and most dangerous complications, such as high cholesterol and
clogged arteries leading to heart attacks.

Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common type of intrinsic
stomach and colon cancer syndrome. HNPCC, also known as Lynch syndrome, raises the risk of
stomach and colon cancer, as well as other malignancies. People with HNPCC are more likely to
develop stomach and colon cancer before the age of 50. FAP (familial adenomatous polyposis) is an
uncommon condition that causes hundreds of polyps to grow in the inner layer of your stomach, colon,
and rectum. People who consume unprocessed FAP have a significantly higher chance of acquiring
stomach and colon cancer before the age of 40.

4.2 Analysis of the Problem

Our aim in this study is to find recommendations for patients and show them appropriately
greeted approach combines treatment and exercise to reach results and explain the function of every
presentation of the positive and negative impact on the patient. The decision of the Physician for
the medical reports is the continuation of the medical tests, which are all for another or off medical
analysis. The patient’s condition is stable and insensitive to a healthy style of workout.

4.3 Problem Formulation

According to the medical reports requested by the doctor for patients in this case, the following
attributes:
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1) Liver Functions: Of type S. GPT (Natural percent between 0 to 45 U/L) and of the type S. GOT
(Natural percent between 0 to 37 U/L).

2) Kidney Functions: The measurements of uric acid in the blood (Uric Acid varies between 3 to
7 mg/dl).

3) Fat Percentage: Fats in the blood are divided into two types, the cholesterol level has a natural
a range of less than 200 mg/dl. The border range is between 200 to 240 mg/dl. The critical a range of it
that causes arteriosclerosis or heart disease is higher than 240 mg/dl. Second, the so-called triglycerides
range that has reference up to 150 mg/dl.

4) Heart Efficiency: We measured the enzyme (Serum LDH) has a range of reference between 0
to 480 U/L.

5) Signs of Tumors: We tested the digestive system through the scale (CEA) and normal Non-
smoking rooms if it was less than 5 mg/ml. The other measure is so-called CA 19.9 and extent of
reference from 0 to 39 U/ml.

6) Viruses Hepatitis: Test the patient’s immunity against viruses of type B (HBC) and of type C
(Highly infectious) furthermore is positive or negative.

7) Blood Sugar: The patient’s measurement of sugar after fasting for 6 hours, an hour after eating,
and then two hours after eating. The results of the seven patients were collected from official files in
the physician, which was done after six months of surgery (see Table 4).

Table 4: Medical decision information system

Patients ID Age LF2 VH1 VH2 KF FP1 FP2 HE ST1 ST2 BS D

P1 12 63 45 N N 11.2 180 210 526 36 44 N C
P2 5 50 44 N P 4.7 255 188 512 11 26 N C
P3 18 34.5 23 N N 5.6 177 122 430 16 36 P S
P4 22 55 33 P P 14.2 311 240 515 28 49 P S
P5 8 36 22 N N 6.3 166 99 310 11 23 N C
P6 13 49 50 P N 8.5 230 120 420 18 24 N C
P7 15 57.5 41 N P 7.6 206 144 400 17 25 P S

We define a suitable relation for every attribute and apply our approach to this data as follows:

Rage = {(p1, p2): Jfage(p1) − fage(p2)j ≤3 },
RLF1 = {(p1, p2) : fFL1 (p1) and fFL1 (p2) ≤ 45 or fFL1 (p1) and fFL1 (p2) > 45} ,

RLF2 = {(p1, p2) : fFL2 (p1) and fFL2 (p2) ≤ 37 or fFL2 (p1) and fFL2 (p2) > 37},
RVH1 = {(p1, p2) : fVH1 (p1) = fVH1 (p2)} ,

RVH2 = {(p1, p2) : fVH2 (p1) = fVH2 (p2)} ,

RKF = {(p1, p2) : 3 ≤ fKF (p1) and fKF (p2) ≤ 7, fKF (p1) and fKF (p2) ≤ 3o or fKF (p1) and fKF (p2) > 7},
RFP1 = {(p1, p2): 200 ≤ fFP1(p1) and fFP1(p2) ≤ 240, fFP1(p1) and fFP1(p2) ≤ 200 or fFP1(p1)

and fFP1(p2) > 240},
RFP2 = {(p1, p2) : fFP2 (p1) and fFP2 (p2) ≤ 150 or fFP2 (p1) and fFP2 (p2) > 150} ,

RHE = {(p1, p2) : fHE (p1) and fHE (p2) ≤ 480 or fHE (p1) and fHE (y) > 480} ,
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RST1 = {(p1, p2) : fST1(p1) and fST1 (p2) ≤ 5 or fST1 (p1) and fST1 (p2) ≤ 15 or fST1(p1) and fST1(p2) >

15},
RST2 = {(p1, p2) : fST2 (p1) and fST2 (P2) ≤ 39 or fST2 (p1) and fST2 (p2) > 39},
RBS = {(p1, p2) : fBS (p1) = fBS (p2)}. Thus, we compute relations as follows:

R1 = {(p1, p7) , (p6, p7) , (p1, p6) , (p2, p5) , },
R2 = {(p1, p2) , (p1, p4) , (p1, p6) , (p1, p7) , (p2, p4) , (p2, p6) , (p2, p7) , (p6, p7) , (p3, p5)},
R3 = {(p1, p2) ,

(
p,p7

)
, (p1, p6) , (p6, p7) , (p3, p4) , (p3, p5)},

R4 = {(p4, p6) , (p1, p2) , (p3, p5) , (p5, p7)},
R5 = {(p1, p3) , (p1, p5) , (p4, p7) , (p2, p4)},
R6 = {(p2, p3) , (p2, p5) , (p1, p7) , (p1, p6) , (p5, p6)},
R7 = {(p1, p3) , (p1, p5) , (p6, p7) , (p2, p4) , (p5, p6)},
R8 = {(p3, p5) , (p1, p2) , (p6, p7) , (p2, p4) , (p1, p4)},
R9 = {(p3, p6) , (p3, p7) , (p6, p7) , (p1, p2) , (p2, p4)},
R10 = {(p2, p5) , (p1, p3) , (p1, p4) , (p6, p7) , (p4, p6)},
R11 = {(p2, p3) , (p5, p6) , (p6, p7) , (p1, p4) , (p3, p4)},
R12 = {(p1, p2) , (p5, p6) , (p3, p4) , (p3, p7) , (p2, p6)}.
By calculating the neighborhood for every element, we get B12

i=1 = {{p1}, {p2}, {p3}, {p4}, {p5}, {p6},
{p7}} as a topological base for approximation structure (�, τMN). So, if we take the set of patients with
condition C (need more check up), PC = {p1, p2, p5, p6}. Therefore, the lower approximation intMN (PC)

and upper approximation clMN (PC) are equal to PC = {p1, p2, p5, p6} and the accuracy measure is 100.
When we apply the algorithm of reduction, we get redcut (R) = {R7, R11, R12} and accuracy measure of
the approximation remain 100. After reduction, the table of information is reduced to be as in Table 5
and has the same structure as the original data in Table 4, where {R7, R11, R12} represent the attributes
{FP1, ST2, BS}, respectively. From this reduct we get the decision rules to be used in the decision
making in the future tests by a decision program.

Table 5: Reduct information system

Patients ID FP1 ST2 BS D

P1 180 44 N C
P2 255 26 N C
P3 177 36 P S
P4 311 49 P S
P5 166 23 N C
P6 120 24 N C
P7 206 25 P S

4.4 Results Analysis

This method of dividing patient data from the results of the 12 medical examinations has been
reduced to only three tests to be sufficient to make the right decision for these patients. There are
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other alternatives for decision-making. Using the pathological method of data analysis and division,
we have been able to find more than one reduction in medical examinations and every patient can
choose the appropriate alternative in terms of financial capacity and likelihood.

5 Conclusions and Future Works

The amount of research papers available online on the topological application is growing and this
growth has generated a need for a unifying theory to compare the results. Also, we need new techniques
and tools that can intelligently and automatically extract implicit information from these data. These
tools and technicalities are the subjects of future research trends using general topological concepts.
It may be inferred that the incorporation of topology in the construction of knowledge base concepts
facilitates the generation of comprehensive outcomes, which encompass several logical statements that
unveil concealed linkages within data. Furthermore, this integration potentially contributes to the
formulation of precise rules.

In future papers, we hope to study more generalizations using topological concepts such as
near sets. And apply these generalized concepts to realistic medical data of large sizes. The topic of
multivariate data reduction can also be studied using generalized topological concepts, developing
a unifying theory of topological generalizations that uses rough concepts. Scaling up to design
topological software to handle big dimensional classification problems.
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