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ABSTRACT

Significant advancements have been achieved in road surface extraction based on high-resolution remote sensing
image processing. Most current methods rely on fully supervised learning, which necessitates enormous human
effort to label the image. Within this field, other research endeavors utilize weakly supervised methods. These
approaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such as
scribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised and
edge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equipped
with a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generating
edge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise the
model’s training by employing scribble labels and spreading scribble information throughout the image. To address
the historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blend
prediction results dynamically and continually update new pseudo-labels to steer network training. Our solution
demonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-label
support. The studies are conducted on three separate road datasets, which consist primarily of high-resolution
remote-sensing satellite photos and drone images. The experimental findings suggest that our methodology
performs better than advanced scribble-supervised approaches and specific traditional fully supervised methods.
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1 Introduction

The process of road extraction, which is often referred to as road detection or road segmentation,
is a vital undertaking in the fields of computer vision and remote sensing. Autonomous driving, urban
planning, and environmental monitoring are among the fields in which it assumes a pivotal role. Road
extraction aims to precisely detect and outline road areas in aerial or satellite images. This task can be
difficult due to the intricate and varied road configurations in real-life environments. Recently, road
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extraction tasks have witnessed significant achievements using deep learning-based methods. These
methods exploit the capabilities of convolutional neural networks (CNNs) to acquire highly distinctive
features from unprocessed visual data [1]. For example, Khan et al. [2] proposed an encoder-decoder
network with an integrated attention unit to cope with the road segmentation task in high spatial
resolution satellite images, which can automatically analyze high spatial resolution satellite images
and extract road networks. Adopting these technologies has significantly improved road extraction
precision and efficacy compared to traditional image processing approaches. The expansion of satellite
remote sensing technology has dramatically increased the number of open-source roads accessible on
OpenStreetMap (OSM). Nonetheless, some locations still need to be explored and undocumented
on the global map. Although fully supervised learning may accurately extract road information from
remote sensing data, it requires pixel-level labeling, which involves much human effort.

In contrast, weakly supervised learning refers to the process of acquiring knowledge from labels
that need to be more sparsely marked. Furthermore, the utilization of weakly supervised learning
techniques has the potential to decrease the size of the dataset while simultaneously producing
improved classification results.

Standard labeling methods include point annotations [3], scribbles [4], bounding boxes [5],
and image-level annotations [6]. Using different types of sparse labels can lead to varying training
classification outcomes. Taking scribble annotations as an example, ScribbleSup [4] employs alternate
optimization to combine GrabCut [7] and Fully Convolutional Networks (FCN) [8] to enhance
segmentation accuracy. However, this approach also increases model complexity and challenges in
segmenting fine-edge details. During the network training process, as the similarity between the
network’s predicted results and the pseudo-labels increases, the supervision obtained from pseudo-
labels gradually weakens, and the learning process becomes stable. This phenomenon is referred to as
Lazy Learning [9]. In Lazy Learning, the network model stores knowledge in the pseudo-labels for the
student model to learn from. However, if prediction errors occur, they persist throughout the entire
self-learning process. As a result, inaccuracies accumulate, ultimately leading to a degradation in the
quality of generated pseudo-labels. Lazy Learning reflects the lack of quantitative improvement in
pseudo-labels during the learning process. The method provided by Sohn et al. [10] involves utilizing
consistency regularization to construct pseudo-labels. The initial step consists of generating pseudo-
labels for unlabeled images that have undergone weak augmentation. In the context of a specific
image, pseudo-labels are selectively preserved solely when the model generates predictions surpassing
a pre-determined threshold. After the same picture is significantly augmented, the predictions are
changed by computing cross-entropy loss until they match the conserved pseudo-labels. This method
successfully reduces pseudo-label imprecision and ensures the integrity of the generated pseudo-
labels. Zhang et al. [11] introduced a novel algorithm (Mixup) for image mixup augmentation within
the domain of computer vision. The method combines two images from different classes using a
random blending strategy to increase the size of the training dataset. Expanding the dataset size may
significantly improve the classification accuracy with only a slight increase in Central Processing Unit
(CPU) resources.

The application of weakly supervised learning in the domain of remote sensing imagery shows
significant potential. Nonetheless, the utilization of weakly supervised deep learning approaches for
road surface extraction is still in its early stages due to remote sensing images’ numerous and complex
characteristics. As a result, exploring methods for efficiently incorporating weak-label information
into standard weakly supervised learning algorithms has become a crucial topic that requires careful
consideration. Therefore, we propose a novel multi-branch network, known as WSSE-net, that utilizes
weak supervision in the form of scribbles and edge masks [12]. This strategy aims to effectively address
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the challenges related to the complexity of models and the precise segmentation of complicated edge
features.

The research conducted has yielded the following primary contributions:

• A novel weakly supervised deep learning strategy has been proposed in this study, which utilizes
weak supervision in the form of scribbles and edge masks to extract road information from
remote sensing images.

• A convolutional neural network has been developed to produce high-quality pseudo-labels for
propagating scribbling annotations. This model integrates edge masks to guide the optimiza-
tion of road edge information. Mixup dynamically blends prediction results and continually
updates new pseudo-labels to steer network training.

• Extensive experimentation has been undertaken using widely recognized public datasets
to showcase the efficacy of the strategy described in our study. The system demonstrates
exceptional performance and outperforms many widely used scribble-supervised segmentation
techniques.

2 Methods

This study presents an innovative approach for road extraction using a weakly supervised
convolutional network. Our method incorporates edge masks and scribbling information to enhance
the accuracy and efficiency of the road extraction process. Fig. 1 illustrates the model’s composition,
which comprises a single encoder and three decoders: The primary segmentation decoder, the auxiliary
segmentation decoder, and the edge-mask auxiliary decoder. The proposed model utilizes the U-
shaped network architecture as the foundational segmentation network and expands it into a three-
branch segmentation network by integrating an auxiliary segmentation decoder.

2.1 Edge Mask Auxiliary Decoding Branch

Drawing from the work of Wei et al. [12], it is imperative to integrate high-resolution predictions
that exhibit distinct edges with more resilient, lower-resolution features. This amalgamation is crucial
for achieving enhanced edge details and minimizing false positives in the segmentation process.
Consequently, the information at the lower-resolution level is increased to align with the resolution
of the high-resolution information. Subsequently, the Holistically-Nested Edge Detection (HED) [13]
technique is employed to merge the abovementioned components, facilitating boundary prediction
production. The HED model utilized in this study has undergone pre-training on the Berkeley
Segmentation Dataset (BSDS500) [14]. The outlined methodology is as follows: Initially, using HED
is employed to generate edge-masks. HED is mainly reformed based on the VGG network. The
pooling layer after the fifth convolutional layer of the network is designed by the Visual Geometry
Group (VGG). All the fully connected layers are deleted, and the remaining part is used as the
primary network. HED employs a stacked structure and a globally integrated perspective to enable
simultaneous learning and integration of information at multiple scales. In a road scene, road edge
elements typically include objects of varying sizes, such as junctions. HED’s multi-scale architecture
allows the algorithm to collect more information on the road edge and enhances sensitivity to edges at
various scales. HED trains multi-scale edge response graphs simultaneously, allowing the network to
interpret the semantic information in pictures better. In the road scene, the road boundary frequently
has semantic properties. HED increases the perception of semantic information through collaborative
training, allowing for more accurate detection and extraction of features from road edges. The
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Edge Mask Auxiliary Decoding Branch also extracts multi-scale features from the Primary Encoder-
Decoder Branch.

Figure 1: The overall structure of the WSSE-net

The structure of the Edge Mask Auxiliary Decoding Branch: In the Primary Encoder-Decoder
Branch, the decoder takes a 32 × 32 pixel feature and performs two separate 2 × 2 up-sampling
operations followed by a 3 × 3 convolution operation. The resulting features are then merged with
the 128 × 128 pixel encoder. The merged result is then subjected to two additional 2 × 2 up-sampling
operations and one 3 × 3 convolution operation to obtain the segmentation prediction edgemask. The
border pseudo-label is evaluated to analyze the loss in conjunction with the projected outcome edgemask.
This process aids in the refinement and direction of the significant segmentation branch.

2.2 Auxiliary Decoder Branch

The Auxiliary Decoder Branch predominantly uses the U-net encoder as foundational and
introduces a recently defined auxiliary decoder. The decoder comprises four up-sampling layers, and
a dropout [15] layer is incorporated before each convolutional section in the auxiliary segmentation
decoder. Including dropout layers serves the objective of introducing perturbations and enhancing the
robustness and generalization power of the model. The segmentation pseudo-label, denoted as PLseg, is
created by randomly combining the final generated segmentation prediction, referred to as Y aux, with
the primary segmentation prediction, denoted as Y seg.

2.3 Primary Encoder-Decoder Branch

In this paper, we propose a novel method based on Mixup that generates pseudo-labels through
random mixing to enhance image segmentation. The method comprises two distinct and independent
branches: The Primary Encoder-Decoder Branch and the Auxiliary Decoder Branch. The primary
segmentation division employs U-net [16] architecture as the segmentation network’s foundational
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framework. The particular procedure is as follows: Initial input is a 512 × 512 pixel image. The features
are then passed through the four down-sampling layers of the decoder’s principal segmentation branch.
At each down-sampling stage, the feature channels are multiplied by two to reduce the dimensions,
improving feature extraction.

The Atrous Spatial Pyramid Pooling (ASPP) module [17] is employed to connect the encoder and
decoder. The ASPP module consists of three Atrous convolutions with a size of 3 × 3 and one 1 × 1
convolution. This technique facilitates the acquisition of a broader receptive field while maintaining
a substantial level of resolution. In the primary segmentation decoder, the features undergo four up-
sampling layers and are merged with edgemask from the auxiliary segmentation decoding branch to
produce Y seg. The resultant Y seg, the final output, is combined with Yaux, created from the auxiliary
segmentation branch, through random mixup. This process yields pseudo-labels that are utilized for
segmentation purposes. The utilization of pseudo-labels serves the purpose of providing additional
supervision and training for both the primary segmentation branch and the auxiliary segmentation
branch to improve the performance of image segmentation.

Mixup is a mixed-class enhancement algorithm used in computer vision, which can mix images
of different classes to expand the training dataset. The core formula of Mixup is as follows:

x = λ × xi + (1 − λ) × xj (1)

y = λ × yi + (1 − λ) × yj (2)

where xi and xj are raw input vectors, yi and yj are one-hot label encodings. In this paper, we adopted the
core idea of mixup as described above and applied it to the model with the following specific formula:

PLseg = argmax
(
λ × Yseg + (1 − λ) × Yaux

)
(3)

where PLseg is the mixed-generated pseudo-labels, Y seg is the segmentation prediction from the primary
segmentation branch, Y aux is the segmentation prediction from the auxiliary segmentation branch, λ

is a random number between 0 and 1, which is generated randomly at each iteration.

The argmax function is utilized to get the class ID that corresponds to the highest probability value
in the model’s prediction. This ensures that each mixing operation yields a more favorable outcome.

In the meantime, scribble trains the segmentation network directly by minimizing the partial cross-
entropy loss. This method overcomes the inherent flaw of previous pseudo-label generation, in which
the generated labels needed to be updated in conjunction with network training. It accomplishes this by
eliminating the gradient between the primary segmentation decoding branch and the auxiliary segmen-
tation decoding branch, thereby preserving their independence instead of enforcing direct consistency.
This approach extends the supervisory signal from a limited number of pixels to encompass the entire
image. Consequently, the pixels labeled through scribbles can effectively spread across the image by
dynamically combining pseudo-labels with the unlabeled pixels [13].

2.4 Optimization Method

As a functional metric that measures the difference between the model outputs and the anticipated
labels, the loss function is essential to deep network learning and affects the process’s overall efficacy.
The loss function makes the network self-optimize by requiring the communication of the computed
loss value back to the model. Usually, the application’s context and specific criteria influence the choice
of loss function.
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Based on the two types of labels provided by the network in this paper, namely segmentation
pseudo-labels (PLseg) and boundary pseudo-labels (PLboun), the following loss functions are proposed:

Lboun =
w∑

i=1

h∑

j=1

(PLboun − edgemask)
2 (4)

The equation includes the boundary loss, where w and h represent the width and height of the
boundary pseudo-labels (PLboun) at the pixel level, and edgemask represents the prediction of the edge
mask auxiliary decoding branch. The segmentation pseudo-labels generated (PLseg) are utilized to
compute the loss function independently for the segmentation predictions of both the primary decoder
branch (Y seg) and the auxiliary decoder branch (Y aux). The specific loss function can be expressed as
follows:

LPLseg = CE
(
Yseg, PLseg

) + CE
(
Yaux, PLseg

)
(5)

The segmentation prediction Y seg is only used to calculate the loss function for the scribble-labeled
regions, rather than the entire image. In the scribble regions, the local loss function is defined as follows:

Lscri =
∑

i∈Wm

log Ysegi +
∑

i∈Wm

log Yauxi (6)

In the equation, m represents the one-hot encoded scribble-labeled regions, which indicate the
probability of pixel i belonging to the road. W m denotes the set of scribble-labeled pixels. Based on the
above information, the overall loss function can be formulated as follows:

Lfinal = αLboun + γ Lscri + LPLseg (7)

2.5 Dataset Descriptions

To evaluate the performance of the proposed method, we validated our method on three road
datasets, including the CHN6-CUG dataset [18,19], the Berlin Road dataset [20], and the Mas-
sachusetts Dataset. The CHN6-CUG road dataset primarily covers urban areas in China, including six
Chinese cities, such as Chaoyang District in Beijing, Yangpu District in Shanghai, and the city center
of Wuhan. It is a pixel-level dataset containing road and non-road data. CHN6-CUG contains 4511
annotated images with a size of 512 × 512 pixels. These images are divided into 3608 for model training
and 903 for testing and evaluation. Kaiser created the Berlin Road dataset from high-resolution
satellite imagery. The collection primarily focuses on the urban areas of Berlin. It is composed of
aerial images from Google Earth, as well as pixel-level building, road, and background labels from
OpenStreetMap. We performed post-processing on the images and labels of this dataset, preserving
road centerlines as scribble annotations, resulting in the Berlin Road Dataset. The Massachusetts Road
dataset consists of 1171 aerial images from Massachusetts. As with building data, the size of each image
is 1500 × 1500 pixels, covering an area of 2.25 square kilometers. We randomly divided the data into a
training set of 1080 images, a validation set of 21, and a test set of 70 images. These three datasets have
undergone post-processing scribble annotation. These three data sets are all correlated. They are all
road data sets based on remote sensing images taken by satellites, and they all cover various roads in
different scenes, such as cities, rural areas, and mountain areas. However, there are some differences:
The Berlin dataset focuses more on road occlusion in the city, etc., and the CHN6-CUG includes many
mountains, rural, and field roads, focusing on the edge details of the road, while the Massachusetts
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dataset focuses on road continuity. The first dataset uses line annotations from LabelMe as scribbles
(Fig. 2), while the second dataset uses road centerlines from OpenStreetMap (OSM) as scribbles.

Figure 2: Examples of scribble annotations

2.6 Experimental Details

The proposed WSSE-net was implemented using Pytorch11.6 on NVIDIA RTX 2070 GPU. All
our experiments are based on the same hardware and software platform, different hardware and soft-
ware devices may have other effects on the experimental results. The network performance parameters
of WSSE-net are evaluated on the test set using multiple evaluation metrics. We standardized the
datasets to a size of 512 × 512 for the experiments and then restored them to their original sizes
at the end of the experiment.

2.7 Evaluation Metrics

Precision, recall, F1 Score (also known as F1-Score or F1), and intersection over union (IoU)
are widely used for assessing pixel-level segmentation. Precision is a metric that quantifies the ratio of
accurately predicted pixels to the total number of anticipated pixels. These four measures were chosen
to assess the performance of the proposed WSSE-net.

First, we calculate the confusion matrix for road predictions and road ground truth, including
True-Positive (TP), False-Positive (FP), False-Negative (FN) and True-Negative (TN). Precision,
recall, F1 Score, and IoU can be calculated as follows:

IoU = TP
TP + FN + FP

(8)

Precision = TP
TP + FP

(9)

Recall = TP
TP + FN

(10)

F1 = 2 × Precision × Recall
Precision + Recall

(11)
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3 Results

A series of experiments were undertaken using identical datasets and network settings to assess the
validity of the model provided in this research study. A comparative analysis was conducted between
the suggested model and a well-recognized Scribble weakly supervised segmentation model as well as
WSSE-net. Specifically, the comparison was performed with ScribbleSup [4], ScRoadExtractor [12],
BoxSup [21], Boundary Perception Guidance (BPG) [22], Weakly-Supervised Salient Object Detection
via Scribble Annotations (WSOD) [23], and Weakly labeled OpenStreetMap Centerline (WeaklyOSM)
[24] models. Additionally, we assess the efficacy of our model by doing a comparative analysis with
established fully supervised networks, namely U-net, DeepLabV3+ [17], SegNet [25] and D-LinkNet
[26] series. A visual analysis of the segmentation results and quantitative assessment metrics were used
to evaluate each network’s segmentation performance.

3.1 Results on the CHN6-CUG Dataset

The experimental findings obtained from training samples on the CHN6-CUG dataset are shown
in Table 1. The first column of Table 1 presents other weakly supervised techniques compared to
WSSE-net. The following four columns provide the outcomes for four distinct assessment measures,
namely Precision, Recall, F1 Score (sometimes referred to as F1-Score or F1), and Intersection over
Union (abbreviated as IoU). The performance of several approaches on the test dataset is shown
in Fig. 3, which exhibits a random selection of three samples from the test dataset for visualization
purposes.

Table 1: Quantitative results for WSSE-net and the comparison methods on the CHN6-CUG dataset

Method IOU/% F1-Score/% Precision/% Recall

ScribbleSup 43.16 59.84 61.09 58.64
BPG 48.15 64.60 74.14 57.23
WSOD 45.75 59.39 68.82 52.24
WeaklyOSM 50.21 67.29 72.45 62.82
ScRoadExtractor 53.40 70.51 74.96 66.56
Ours 55.26 70.94 74.58 67.54

3.2 Results on the Berlin Road Dataset

Similarly, Table 2 presents the experimental results using training samples on the Berlin dataset.
Fig. 4 demonstrates the efficacy of various methods by randomly selecting three samples from the test
dataset using the same process.

3.3 Results on the Massachusetts Dataset

In this investigation, a distinct set of comparative methodologies were utilized than in the previous
two. We utilized established, fully supervised procedures. Table 3 presents the results of experiments
conducted using training samples on the Massachusetts Road dataset. In particular, we replaced the
fully supervised comparative methods in the first column while maintaining the evaluation metrics
from the previous experiments. Fig. 5 depicts the efficacy demonstrated by various experimental
methodologies.
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Figure 3: Qualitative results of road segmentation using different methods on the CHN6-CUG
dataset. (a) Image. (b) Scribble annotation. (c) ScribbleSup. (d) BPG. (e) WSOD. (f) WeaklyOSM.
(g) ScRoadExtractor. (h) Ours. (i) Ground truth

Table 2: Quantitative results for WSSE-net and the comparison methods on the Berlin Road dataset

Method IOU/% F1-Score/% Precision/% Recall

ScribbleSup 50.76 60.39 65.66 55.92
BPG 59.84 65.66 72.24 60.18
WSOD 56.55 62.71 70.05 56.77
WeaklyOSM 62.42 67.48 75.18 61.21
ScRoadExtractor 64.25 69.42 73.86 65.49
Ours 65.02 70.10 74.52 66.19

Table 3: Quantitative results for WSSE-net and the other full-supervised methods on the Mas-
sachusetts Road dataset

Method IOU/% F1-Score/% Precision/% Recall

U-Net 55.10 70.57 76.54 65.46
SegNet 56.98 71.74 77.93 66.42
DeepLabV3+ 62.37 76.86 75.86 77.89
D-LinkNet34 61.35 75.78 72.64 79.20
D-LinkNet50 63.07 77.32 73.45 81.64
Ours 61.88 77.22 79.67 74.92

3.4 Ablation Studies

This section conducts a series of ablation experiments using the CHN6-CUG dataset to assess the
performance of the different modules inside the WSSE-net architecture. In the ablation experiments
of the loss function, we performed three comparison experiments. The first comparative experiment
focused only on selecting the segmentation loss (LPLseg). In the subsequent comparative experiment, we
included both the segmentation loss (LPLseg) and the Scribble label loss (Lscri). The third comparative
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experiment included the edge loss (Lboun), building upon the methodology of the second experiment.
We conducted additional ablation trials in the edge identification section while preserving the integrity
of the overall loss function. In these trials, the edge detection techniques used were HED, Canny [27],
and DeepEdge [28], each applied individually. The detailed findings may be seen in Tables 4 and 5.

Figure 4: Qualitative results of road segmentation using different methods on the Berlin Road
dataset. (a) Image. (b) Scribble annotation. (c) ScribbleSup. (d) BPG. (e) WSOD. (f) WeaklyOSM.
(g) ScRoadExtractor. (h) Ours. (i) Ground truth

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5: Qualitative results of road segmentation using different methods on the Massachusetts
Dataset. (a) Image. (b) U-Net. (c) SegNet. (d) DeepLabV3+. (e) D-LinkNet34. (f) D-LinkNet50.
(g) Ours. (h) Ground truth

Table 4: Comparison of segmentation accuracy with different loss functions

Method IOU/% F1-Score/% Precision/% Recall

LPLseg 49.27 62.55 67.44 60.09
LPLseg + Lscri 51.31 66.04 70.35 62.24
Lfinal 54.76 68.71 72.15 65.58
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Table 5: Comparison of segmentation accuracy with different edge mask methods

Method IOU/% F1-Score/% Precision/% Recall

Canny 49.78 65.07 70.84 60.18
DeepEdge 52.10 68.44 73.37 64.84
HED 54.83 69.25 72.70 66.12

4 Discussion

The performance of our method surpasses that of current advanced weakly supervised methods.
Upon careful examination of the experimental findings, a comprehensive evaluation of several weakly
supervised models is shown in Table 1 and Fig. 3. The model that exhibits the highest level of
performance is emphasized via the use of bold formatting. The results indicate that ScribbleSup
showed subpar performance, displaying notably worse results than BPG, WSOD, WeaklyOSM,
ScRoadExtractor, and our WSSE-net approaches. One limitation of BPG is its limited interaction
between the split branch and the border branch, which occurs only at the level of the loss function.
This approach does not consider the inherent connection between the two subbranches. Based on
the findings shown in Table 1, it can be inferred that the WSSE-net model we have suggested
has superior performance in terms of recall (0.6754), IoU (0.5526), and F1 Score (0.7094) when
evaluated on the CHN6-CUG dataset. Regarding recall, WSSE-net exhibits a 4.72% enhancement
compared to WeaklyOSM, suggesting that our model can extract road network topologies that are
more comprehensive. Compared to ScRoadExtractor, our Intersection over Union (IoU) metric has
seen a significant rise of 1.96%. This finding implies that the road labels retrieved by WSSE-net
exhibit higher alignment with the ground truth data. In the second experiment, as shown in Table 2,
WeaklyOSM exhibits an accuracy marginally greater than WSSE-net by 0.66%. However, our model
demonstrates a notable enhancement of around 3% in terms of IOU and F1 Score, suggesting a
superior quality in comparison. There is no significant difference in the assessment metrics between
ScRoadExtractor and our method. However, while analyzing Fig. 4, it becomes evident that the
segmentation performance of ScRoadExtractor is comparatively worse than that of our technique.
Our technique outperforms ScRoadExtractor in terms of road connectivity and completeness. Our
technique also performs well when compared to existing popular full supervision methods. In the third
experiment, a series of comparison tests were done on the Massachusetts road dataset. The objective
was to evaluate the performance of our technique with various well-established, fully supervised
semantic segmentation methods, including U-Net, SegNet, DeepLabv3+, and the D-LinkNet family
of approaches. The backbone of D-LinkNet34 is built upon a ResNet34 pre-trained on ImageNet,
while the backbones of DeepLabv3+ and D-LinkNet50 are pre-trained on ImageNet using ResNet50.
Based on the data shown in Table 3, it is apparent that our technique demonstrates a significant
superiority over U-Net and SegNet in relation to IOU while somewhat falling behind DeeplabV3+
and D-LinkNet50. Regarding the F1 Score metric, our approach demonstrates a marginal difference
of just 0.1% compared to D-linkNet. Furthermore, our technique exhibits superior performance in
terms of accuracy when compared to other methodologies. As seen in Fig. 5, the outcomes of our
segmentation analysis indicate that our weakly supervised segmentation method based on scribbles
has comparable efficacy to some conventional fully supervised models.

From the ablation experiments on the loss functions, while maintaining the other network
configurations constant, the loss functions are configured as follows: Using only the segmentation
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loss(LPLseg), utilizing both the segmentation loss(LPLseg) and Scribble label loss(Lscri), and employing a
composite loss function that integrates segmentation loss(LPLseg), Scribble label loss(Lscri), and edge
loss(Lboun). The experimental outcomes, as illustrated in Table 4, demonstrate that the employed loss
function of the model achieves an Intersection over Union (IoU) of 54.76%, an accuracy of 72.15%, an
F1 Score of 68.71%, and a recall rate of 65.58%. The assessment results for the suggested integrated loss
function demonstrate its superiority over a given individual loss function. This finding suggests that
the composite loss function outperforms the loss function when applied to a complicated dataset. The
ablation tests in the edge mask section show that the edge branch’s inclusion may effectively improve
the precision of edge details. This improvement is achieved by integrating high-resolution predictions
of unique edges with more resilient, lower-resolution features, correcting false positive detections. In
this study, we compared the edge pseudo-label generation component, denoted as HED, and two
standard edge creation algorithms, namely Canny and DeepEdge. The outcomes of this comparison are
shown in Table 5. The detection performance of the HED algorithm exhibits a modest boost compared
to the DeepEdge and Canny algorithms.

5 Conclusion

This paper introduced a weakly supervised image segmentation method based on scribble-assisted
supervision and edge-masks assistance. The methodology used in this study involves implementing
a multi-branch convolutional neural network to conduct end-to-end training. Expanding upon the
multi-branch network, we proposed strategies for edge-mask guided assistance and random dynamic
mixing to generate pseudo-labels for aiding the training process. Experiments were done on the CHN6-
CUG and Berlin Road datasets to validate the efficacy of the suggested methodology. Furthermore,
our technique outperformed five traditional fully supervised segmentation algorithms when evaluated
on the public Massachusetts road dataset. In this study, high-resolution remote sensing image
road surface extraction is realized, which effectively reduces the cost of manual labeling and is
ahead of other weakly supervised learning methods. Compared with fully supervised learning, this
algorithm can improve the automation of road extraction, but its performance still lags that of the
popular fully supervised learning. Weak supervision algorithms may face challenges when processing
complex objects or images containing fine-grained structures. Therefore, combining deep learning with
traditional methods as a breakthrough to mine potential supervision signals of unlabeled image data
without requiring a lot of manual annotation work will be an essential step in the research of intelligent
road extraction of remote sensing images.

In the future, we are going to keep working on our study on road extraction inside the region of
inadequate supervision, and we are going to keep developing our methodology. In addition, one of our
goals is to apply and evaluate our suggested technique to additional complex remote sensing image
segmentation tasks.
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