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ABSTRACT

Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetables
and determines the stop and the start according to the demands. This study explores the optimization of dynamic
vehicle scheduling and real-time route planning in urban public transportation systems, with a focus on bus
services. It addresses the limitations of current shared mobility routing algorithms, which are primarily designed
for simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. The
research introduces an route planning algorithm designed to dynamically accommodate passenger travel needs
and enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,
multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburban
bus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based on
Genetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, route
length, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposed
algorithm significantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existing
models, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. The
study concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalable
solution for improving urban mobility.
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1 Introduction

With the recent development of Internet/Internet of Things technology, more tasks can be
performed through portable smartphones, and the emergence of shared bicycles, shared taxis, etc.,
has also brought revolutionary changes to the way people travel. As a result of these personal devices
and the shared mobility, smartphones enable various services for public transportation, which include
the schedule-checking, the routes-checking of bus, and the confirmation of the passenger numbers. On
the other hands, Demand Responsive Transport (DRT, Demand Responsive Transit is a transit service
operating in response to calls from passengers or their agents to the operator, who schedules a vehicle to
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pick up the passengers to transport them to their destinations) has been welcomed by many passengers
for its economical, flexible, and environmentally friendly features, and has also greatly changed the way
people travel [1,2]. Initially, DRT refers to a transportation service that can change the itinerary route
according to traffic demand, which includes dial-a-ride transit, flexible transport services, and non-
emergency medical transport [3]. With the diversification of transportation modes, the recent DRT
refers to call-and-answer public transport services provided in areas with rare passenger demand.
In these areas, regular bus service is generally not considered economically viable, e.g., in rural and
peri-urban areas [4]. In other words, DRT public transport changes the route of each trip according
to the passenger’s demand, and the route is determined by the passenger’s demand, without using a
fixed route or timetable. Therefore, unlike traditional public transportation, a DRT bus can avoid the
drawbacks of fixed routes, low flexibility, and low vehicle occupancy rates [5,6]. Moreover, compared
with private transportation based on Mobility on demand (MOD, Mobility on demand is an integrated
and connected multi-modal network of safe, affordable, and reliable transportation options that are
available and accessible to all travelers), a DRT bus exhibits characteristics such as economy, energy
efficiency, and environmental friendliness [7]. However, the achievement of these goals requires an
efficient route-planning algorithm capable of real-time responsiveness.

DRT buses are different from the private cars or bicycles in the following aspects. First, the routes
of DRT buses are undetermined and continuously vary according to user’s demand. Second, every
passenger has a specific origin and destination. As passengers board and disembark, the composition
of users is constantly changing, which gives DRT buses a notable multi-origin and multi-destination
characteristic during transportation [8]. Traditional single-route planning algorithms, such as shortest
path algorithms or heuristic search algorithms, are not applicable to DRT buses due to this difference
[9,10]. Besides the multi-origin and multi-destination, the routes with excessive turns, and the balance
of passengers’ waiting time, travel time, and detour time (the difference between the time through the
DRT bus and the time through with the ordinary bus to reach the destination), need to be considered
while planning the route for DRT buses. Consequently, this problem becomes complex and challenging
to solve by these factors.

Nevertheless, due to the efforts of numerous scholars over the past several decades, various
route planning algorithms have been developed for practical use in public transportation, such as
those based on Genetic Algorithm (GA) and those based on Ant Colony Optimization (ACO) or
Simulated Annealing (SA) [11,12]. However, these algorithms were not designed to solve the real-
time bus route planning problems; rather, their primary purpose was to obtain globally optimal or
near-optimal solutions. Therefore, these algorithms typically employ iterative processes to optimize
results, frequently at the cost of long search times. Because of this reason, it is difficult to apply them
for planning the route for the DRT bus. Although a reduced number of iterations can improve search
performance, it may result in wrong routes in many cases [1,13]. In other words, using these algorithms
frequently fails to strike the balance between real-time responsiveness and efficiency for the DRT
system. In practice, DRT route planning typically involves a trade-off between optimal routes and
planning time [14].

To address these issues, this study aims to concretize the research question as follows: How
can an optimal route for a bus be planned in a complex road network, given that the number and
locations of origins and destinations change dynamically? The contributions of this study can be
summarized as follows. First, this paper proposes a novel dynamic route planning algorithm that is
real-time, efficient, and logically straightforward. Second, this paper compares the proposed algorithm
with popular GA-based and ACO-based route planning schemes under equivalent conditions. Third,
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through experiment data, the high efficiency and superior performance of the proposed real-time
dynamic route planning algorithm were demonstrated.

This paper is organized as follows: In Section 2, current problems encountered in the research
process of bus route planning algorithms are described in detail, as well as effective solutions proposed
by various researchers, and the content is summarized and analyzed. In Section 3, the basic principle
and algorithm of the proposed route planning algorithm is introduced. In Section 4, this paper shows
the comparison results of multiple route planning algorithms based on the principle of comparison and
confirm the effectiveness and superiority of the proposed real-time dynamic route planning algorithm
through specific and detailed data. In Section 5, the proposed algorithm is summarized and evaluated
based on the evaluation results, and future directions for improvement and research content of the
algorithm are mentioned.

2 Related Works

Bus route planning algorithms can be improved using algorithms for the Vehicle Routing Problem
(VRP, Vehicle Routing Problem is a combinatorial optimization problem of finding a set of routes for
a fleet of vehicles that minimizes travel time) and the Traveling Salesman Problem (TSP, Traveling
Salesman Problem is the problem of finding the shortest path that visits a set of customers and returns
to the first). The TSP is a special case of the VRP, and it has been proven by Gaery and others
that the TSP is an NP-hard problem [15]. Consequently, the VRP is also an NP-hard problem [16].
However, in traditional solutions for both the TSP and VRP, the most representative solutions mainly
involve metaheuristic algorithms. These metaheuristic algorithms primarily include GA, SA, ACO,
and neural network algorithms [2,17,18]. Because of the criticality of the problem, numerous scholars
have continuously researched, tested, evaluated, and optimized these algorithms for several decades.

For example, in an article published by Asih et al., they compared GA, ACO, particle swarm
optimization, and SA algorithms with two distinct sets of cases to verify their performance. The
results indicated that both ACO and SA algorithms consistently found the shortest distances in
the two different case scenarios [19]. In another study led by Hosam and Ashraf, they compared
the performance of SA algorithms with the GA and ACO algorithms in terms of execution time
and shortest distance. Through testing, they found that SA, ACO, and GA have their advantages
and disadvantages. SA demonstrated the shortest execution time, but it was not optimal in terms
of the shortest distance measurement, where ACO significantly outperformed GA and SA. This
demonstrates that ACO, GA, and SA are mainstream algorithms, each exhibiting its strengths in
various aspects [20]. Similarly, Valdez et al. considered the ACO algorithm as a widely recognized
efficient route optimization algorithm. They compared GA and SA through data, substantiating their
viewpoint [21]. In their research, Osaba, Javier, and others analyzed the advantages and disadvantages
of SA, tabu search, and variable neighborhood search in three different scenarios within the Basque
region of Spain. According to their conclusion, SA provides optimal solutions for solving the
TSP or VRP [22]. However, in a study by Gong and Fu, they focused on the routing problem of
vehicles transporting perishable goods, developing a novel solution based on the ACO algorithm and
considering factors such as vehicle and transportation costs and shelf-life losses. They termed this
algorithm ABC-ACO. Their published research results showed that their algorithm, while meeting the
requirements, improved performance by 20.8% and reduced costs by 15.9%, making it a representative
successful research case [23]. This is the fundamental reason why this paper chose the ACO algorithm
as a comparison object.
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After a detailed analysis of the characteristics of the DRT bus route planning problem, this study
focuses on multiple origins, multiple destinations, dynamic changes in starting/ending points, and
the need to balance user riding time and waiting time as research priorities. This study proposes
a novel real-time dynamic route planning algorithm that addresses these issues efficiently while
considering user experience. By designing comparative experiments, this paper scientifically compared
and analyzed data with widely used GA and SA, thereby demonstrating the effectiveness of the
proposed real-time dynamic route planning algorithm.

3 Design and Principles of Algorithm
3.1 Overview

In this section, a real-time dynamic route planning algorithm suitable for DRT buses is proposed,
and the principle of the algorithm is explained in detail. The algorithm is divided into three parts. First,
bus stops are mapped based on road network nodes. Second, user-riding demands are dynamically
managed through a simple queue design. Finally, starting from the current location of the DRT bus,
the algorithm employs a real-time metaheuristic route search based on a multi-objective approach
for the target bus stops contained in the queue, ultimately achieving dynamic route planning. The
algorithm is illustrated in Fig. 1.

Figure 1: Flowchart of real-time dynamic route planning algorithm

The proposed dynamic route planning algorithm mainly consists of the following four steps:

1. Generate a target queue and place all received user starting stations in the target queue.
2. Use the multi-objective A∗ algorithm to search for routes in the stations within the target

queue.
A) Obtain the current latitude and longitude of the bus to determine its road link node.
B) Calculate the heuristic function h(n) containing turning weights with the road node where

the bus is located as the origin.
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C) Obtain the bus stop with the smallest heuristic value in the target queue as the next stop
for the bus and generate the route.

D) Repeat steps A–C to generate the complete bus route between the bus stops.
3. After the bus arrives at the user’s bus stop, remove the user’s starting bus stop from the target

queue and add the corresponding destination stop to the target queue collection.
4. Repeat steps 2 and 3 to generate/update routes in real-time.

In the above steps, note that all processing occurs during the bus’s journey. Therefore, the routes
generated by the algorithm constantly change based on the received user riding demands. Whenever a
new user riding request is received, the algorithm performs a real-time calculation to update the route,
ensuring that the bus always travels according to the latest and most optimal route promptly.

3.2 Mapping of Bus Stops and Generation of Weighted Network

The process of mapping bus stops in the road network is necessary before route finding can begin.
According to the raw data obtained from the Korean standard node link database, a road in the real
world is saved in a bidirectional and segmented manner in the computer database. In other words,
a road in the real world is divided into multiple “links” in the positive and negative directions and
“nodes” at both ends of the links in the computer world. In addition, bus stops are located adjacent
to roads, but their positions are not exactly on the road link nodes. Therefore, the algorithm needs to
map the bus stop locations in the road network before effectively planning the route.

In the process of mapping bus stops to the existing road network, as illustrated in Fig. 2, suppose
nodes A, B, C, D, E, F , G, and I represent road nodes and J and K represent bus stops. Taking bus stop
J as a case, there are two road links nearby: LinkAB and LinkBE. However, in reality, with the naked eye,
bus stop J only belongs to the bus stop on the side of LinkAB, because the distance between bus stop J
and LinkAB is shorter than that between bus stop J and LinkBE, that is: in Fig. 2, it is shown as d1 < d2.
The purpose of mapping bus stops is to determine which road link a bus stop belongs to. This study
employed the point-to-line distance formula to calculate the distances between bus stops and compare
them to determine which road a bus stop is located on

d =
∣∣Axj + Bxj + C

∣∣
√

A2 + B2
(1)

Figure 2: Schematic of bus station location and road link
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This method ensures that a bus stop is accurately mapped to the correct road link, allowing for a
more precise representation of the road network structure and ultimately contributing to the efficiency
of the proposed dynamic route planning algorithm.

Once the bus stops have been mapped to the road network, the next step is to generate a weighted
network for route planning. The weights assigned to the network include travel time, distance, and
other factors that may influence route selection, such as traffic conditions or road restrictions. By
incorporating these weights into the network, the proposed algorithm can search for the most efficient
and optimal routes based on various criteria. In this paper, this study uses the shortest travel time(

Weight = tmin = d
Vmax

)
as the weight value. If two nodes cannot be directly connected, the weight

value is set to 0, indicating no connectivity. Thus, based on the road network in Fig. 2, it can be
simplified into the following weighted network:

Mconnect =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 ωBA 0 0 0 0
ωAB 0 ωCB 0 ωEB 0
0 ωBC 0 0 0 ωFC

0 0 0 0 ωED 0
0 ωBE 0 ωDE 0 ωFE

0 0 ωCF 0 ωEF 0

(2)

As a result of the mapping of bus stops and the generation of a weighted network, a simple
digital road connectivity network with the shortest travel time as weights is generated. Subsequent
steps will then perform route planning based on the target queue using the weighted network. In
summary, mapping bus stops to the road network and creating a weighted network are fundamental
steps in constructing the proposed real-time dynamic route planning algorithm. These steps enable the
algorithm to plan routes accurately based on the actual road network structure and various factors
influencing route selection.

3.3 Multi-Objective A∗ Algorithm Based on Target Queue

The multi-objective A∗ algorithm based on the target queue is the core component of the
proposed real-time dynamic route planning algorithm. It is not a single process but rather a treatment
throughout the implementation of the route planning algorithm. In particular, steps 1 and 3 involve
dynamic modification of the target queue to meet dynamic user boarding demands.

For example, in the road network shown in Fig. 3, there are four user boarding requests: User1,
User2,User3, and User4. During the calculation process, the target queue is called as Target_List. Then,
the initial processing content of the target queue is to first put the departure bus stops of the four
users into Target_List: Target_List = {BSA, BSE, BSF , BSD}. Then, along with the weighted network,
the proposed multi-objective A∗ algorithm generates an optimized bus route. As all processing is
accompanied by the movement of the bus, when the bus arrives at the bus stop A, it implies that
User1 has already boarded the bus. Accordingly, the bus stop A should be removed from Target_List,
and User1’s target bus stop F should be added to Target_List. In other words, from the perspective of
Target_List, the boarding action of User1 mainly involves the following three operations:

1. Add User1’s destination bus stop F to Target_List.
2. Remove User1’s starting bus stop A from Target_List.

After User1 boards the bus, the outcome is Target_List = {BSE, BSF , BSD}.
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Figure 3: Schematic of user’s boarding action and the processing of Target_List

In the real-time dynamic route planning algorithm, besides the real-time and dynamic processing
of the target queue (Target_List), the generation of the bus route is important. The process of route
generation is related to a series of issues associated with route changes, such as which route the bus
should follow, which bus stop it should head toward first, and where the next target bus stop is. In
the process of route search, the proposed multi-objective A∗ algorithm is designed based on the basic
principles and ideas of the multi-heuristic A∗ algorithm [24,25]. The multi-heuristic A∗ algorithm
proposes a composite heuristic function concept for multidimensional constraints on the heuristic
function of the original A∗ algorithm, aiming to make the routes found by the A∗ algorithm meet
multiple real-life constraints, such as satisfying both the shortest length and the fastest arrival, as
well as minimizing transportation costs. Therefore, the heuristic function in the multi-heuristic A∗
algorithm is multidimensional and is set to affect the final generated route, which can balance multiple
constraint dimensions.

In this study, considering the characteristics of multiple target bus stops in the target queue, the
multi-objective A∗ algorithm performs the following calculation processing to determine the driving
order of bus stops. First, according to the bus stops saved in Target_List, calculate the estimated cost
h(Tn) between the current position of the bus and the bus stops saved in Target_List. Then, according
to the value of the estimated cost h(Tn), select the bus station with the smallest estimated cost value
as the next target station for the bus. While determining the next target station, generate the bus route
between the current position of the bus and the next target station. Subsequently, after modifying the
data of the bus station in the target queue Target_List, take the calculated next target station as the
origin and recalculate the next target station to generate the travel route between the two bus stops.
Finally, repeat the above process to generate a complete bus route. According to the above process, the
function formula of the proposed multi-objective A∗ algorithm is as follows:

f (n) = g (n) + h (n)

where h (n) = min (h (T1), h (T2), . . . , h (Tn)) (3)

As shown in Fig. 4, suppose the current bus position is at Node(0,0), and the nodes connected to
this node are Node(1,0) and Node(0,1). In the calculation, the algorithm needs to use these two nodes as
the origin, respectively, and calculate the estimated cost h (TA), h (TE), h (TF), and h (TD) of the nodes
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to the bus stops in Target_List = {BSA, BSE, BSF , BSD}. Finally, the bus stop A with the minimum
estimated cost h (TA) is selected as the next target stop, and the route between Node(0,0) and Node(2,0)

is generated: Node(0,0) -> Node(1,0) -> Node(2,0). By analogy, with the bus stop A as the origin, the next
target stop is searched for until the complete bus route is generated (as depicted in Fig. 5).

Figure 4: Computing the minimum estimated cost h (Tn)

Figure 5: Overview of the route search process. The bus advances one step, and the algorithm searches
for a road node

3.4 Heuristic Function h (Tn) of Multi-Objective A∗ Algorithm

Because the heuristic function used by the original A∗ algorithm calculates the distance from the
current node to the target node as the estimated cost [26], as shown in Fig. 6 below, based on the
Manhattan distance calculation [27], there are various forms of actual routes between the two points
A and B, and their Manhattan distances are equal. However, the blue route is the least practical option
for the bus due to its excessive turns, which can cause complexity in bus travel, waste of energy, and
confusion for passengers, among other issues. In this paper, this study proposes a solution to this
problem by modifying the heuristic function h (n) in the existing multi-objective A∗ algorithm. This
study defines Tn as the “turn weight” value when calculating the h (n) of each target node.
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Figure 6: Multiple routes with the same Manhattan distance between NodeA and NodeB

The worst-case scenario for turns is an angle of 180°, i.e., a U-turn is required. In the case of a
U-turn, the vehicle returns along the original route, and the estimated cost function becomes twice the

original distance. The function
(

θ

π

)2

based on the turning angle θ precisely reflects this characteristic,

as the curve in Fig. 7. Therefore, in summary, to minimize the number of turns in the route, this study
uses the following turn weight:

Tn = Distance(x,n) + Distance(x,n) ∗
(

θ

π

)2

(4)

Figure 7: The trend chart of the function
(

θ

π

)2

The time
(

time = Distance
Current Speedbus

)
can also be used as a turn weight factor. If the current speed

of the bus is used in the turn weight, the time-consuming nature of the route can be reflected in real
time, and the duration of the final bus route can be estimated. The changes in generated routes before
and after using the turn weight function are illustrated in Fig. 8.
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Figure 8: Route changes before and after using the turn weight function. The route generated by the
general A∗ algorithm (left), and the route generated after using the turn weight (right)

4 Experimental Results

To objectively evaluate the proposed real-time dynamic route planning algorithm, this study
designed experiments based on the single-variable testing principle according to the requirements of
the used scenarios. This study defined the tested scenarios as mixed scenarios. As the name suggests,
this scenario includes users who have made reservations to use the vehicle in advance, as well as users
who appear during the movement of the vehicle and issue real-time ride requests. In addition to the
simulation test, this study also conducted a three-month real test of students riding the shuttle bus of
Keimyung University in South Korea from November 2021 to February 2022. This study used real
student travel data.

In this paper, this study selects the ride requests of 40 students as the test source. This study uses
the ride requests of the first 20 students as reservation users, and the ride requests of the last 20 students
are randomly issued after the vehicle operation starts. In this way, the data of 40 students can be used
to not only test the algorithm’s response to the reservation scenario but also to test the algorithm’s
processing capabilities during the real-time operation of the bus. Based on the ride requests of 40
students, this study provides the latitude and longitude distribution map as shown in Fig. 9 below. The
red marked point in the figure can be regarded as the current location of the students, and the blue
marked point is the destination.

For the comparison object and evaluation standard of the algorithm, researchers frequently use
different test standards. In their study, Lu et al. mainly focused on the travel distance in the tested
items [28]. In their research, Yoon et al. positioned the test items in terms of service rate, average
travel time, average detour time, average walking time, and calculation time [29]. The research of
Uchimurat et al. is mainly based on travel distance and time [30]. Referring to the experimental design
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of several papers on similar topics, this study decided to start with five aspects: The length and time of
the route generated by the algorithm, the average ride time of users, the average detour time, the average
detour rate of the route, and the time cost of calculating the route. The route length and route time are
mainly key indicators used to evaluate whether the route generated by the algorithm is economical. To
transport the same number of passengers, a shorter route can consume less fuel, which better reflects
the economy and practicality of the route planned by the algorithm. The average ride time of users,
the average detour time, and the average detour rate of the route are related to the user experience. The
average ride time of users is directly related to whether the user can accept the results of the algorithm
calculation. If it is too long, the travel time must be unacceptable to users. The average detour time
and the average detour rate of the route represent the fit between the overall route of the DRT bus
and the route required by the user, which can simultaneously show the economy of the route and the
acceptability of the user, it is Composite indicators.

Figure 9: The distribution of the latitude and longitude coordinates of the starting and ending bus
stations in the user’s ride request. The longitude coordinates in the figure are east longitude, and the
latitude coordinates are north latitude

Combined with the description in the second section, this study selected route planning algorithms
based on GA and ACO as the comparison objects. Through an objective comparison and analysis of
the algorithm on test data, the proposed algorithm can be accurately evaluated. The algorithm calcu-
lation environment of this study was conducted in the Windows 10 Edu x64 version environment, with
hardware consisting of an Intel Core i7-9700K CPU, 16 GB memory, and an NVIDIA RTX2080Ti
graphics card.

As mentioned earlier, this study chose three sets of travel data from 20 students each, out of
approximately 300 students’ travel data collected over three months, and organized the data according
to travel time to satisfy the three test scenarios. As the proposed real-time dynamic route planning
algorithm is based on the multi-objective A∗ algorithm, this paper referred to the algorithms as “MO
A∗,” “GA,” and “ACO” for ease of comparison in the experimental data.

For the GA and ACO used as comparative objects, this study directly implemented the GA by
referring to the research on DRT bus planning by Jin et al. [31]. In terms of parameter settings, this
study referred to several papers on similar topics, including those by Tamseh and others, and Li Min
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and others [32,33]. Ultimately, this study conducted tests and comparisons using parameters such
as population size, number of generations, crossover rate, and mutation rate, as shown in Table 1.
Similarly, for the ACO algorithm, this study referred to research on ACO for bus route planning in
urban bus networks by Wei and others, and research on route planning for mobile robots by Zhang
and others [13,34]. Based on the basic principles of the algorithm, this study implemented the code
and used parameter information about the ACO algorithm for algorithm comparison in this study, as
shown in Table 1.

Table 1: Parameters of GA and ACO used as comparison objects in this study

Population size 10000
Number of random tours to create before starting the
algorithm.

GA Max generations 10000000
Number of times to perform the crossover operation before
stopping.
Group size 5
Number of tours to examine in each generation. The top two
tours are chosen as the parent tours whose children replace
the worst two tours in the group.
Mutation 3
Odds that a child tour will be mutated.
Number of ants 1500
The number of ants that can be used when initializing the
algorithm.
Pheromone constant 600
The chemical traces left behind by simulated ants as they
search for food are used to guide subsequent ants in their
path selection.

ACO Maximum number of iterations 200
Threshold to stop finding routes.
Pheromone factor 2
Determines the degree of influence of pheromone
concentration on ants’ path selection decisions.
Heuristic factor 3
It determines the degree of influence of heuristic information
on the path chosen by ants.
Pheromone volatile factor 0.3
Controls the evaporation rate of pheromones. Gradually
reduce the pheromone concentration along the path, thereby
reducing the impact of past decisions on future decisions.
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During the testing process, since the purpose of this study is to propose a route planning algorithm
that can satisfy DRT services in real time, the dynamic and real-time nature of the algorithm is
crucial. Consequently, in the tests in mixed scenarios, this study primarily analyzed and evaluated
the computation results within 10 s for each algorithm.

4.1 Comparison of Test Results

In the mixed scenario, this study divided the boarding data of 40 users into two parts: One part
accounts for users who made reservations in advance, and the other part for users of boarding requests
were received in real-time after the DRT bus departs. In such a test scenario, first, compare the total
distance and time of routes planned by different algorithms. As shown in Fig. 10, the routes planned
by MO A∗ and ACO algorithms show good performance in terms of travel time and total distance.
In particular, the MO A∗ algorithm proposed in this study shows its advantages over the other two
algorithms, this also indicates that the route planned by the GA algorithm may not be optimal (see
the following text for detailed analysis content). Although the route planned by the MO A∗ algorithm
is the “shortest route”, whether it is an “optimized route” needs to be evaluated by comprehensively
considering the user’s average travel time, average detour rate, and other criteria.

Figure 10: Overview of length and travel time of routes planned by the three algorithms

In terms of specific data, as depicted in Fig. 10, when demand = 4, the length of the route
planned by the GA is 239880 m, whereas that planned by the ACO and MO A∗ algorithms is 78747.97
and 77947.73 m, respectively. The route length of the GA algorithm is unexpectedly three times
that of the other two algorithms, largely due to its inability to complete the calculation within the
specified 10 s. The difference between the route lengths of the MO A∗ and ACO algorithms is only
800.24 m, which is approximately the distance of one or two bus stops. Nevertheless, as mentioned
above, whether the route planned by the MO A∗ algorithm is the “optimal route” still needs to be
evaluated while considering other multifaceted standards.

In terms of passenger user experience, as shown in Fig. 11, in the case of 40 passengers taking
DRT buses, the average travel time of users using the GA is incomparable with that of the ACO and
MO A∗ algorithms. The per capita travel time of the GA is 2600.149 s (approximately 43.34 min),
and the GA cannot fully iteratively calculate within 10 s as mentioned earlier. The average travel time
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of users with the MO A∗ algorithm is 1251.677 s (approximately 20.85 min), and the average travel
time of users with the ACO algorithm is 1101.72 s (approximately 18.362 min), with a difference of
approximately 2.5 min. Such differences result in a completely different user experience for passengers

because the per-capita travel time of the GA algorithm is 2.08 times
(

2600.149
1251.677

≈ 2.08
)

that of the

MO A∗ algorithm and 2.36 times
(

2600.149
1101.72

≈ 2.36
)

that of the ACO algorithm.

Figure 11: Average travel time of routes planned by the three algorithms

In terms of the average detour rate of users, the ACO and MO A∗ algorithms have maintained
consistently low detour rates of 3.17 and 2.97, respectively, showing a steady linear upward growth
trend. In contrast, the GA has the characteristics of a disorderly rise. To explain in particular, the
definition of the user’s average detour rate is defined as the ratio of the actual moving route distance
of users taking mobility DRT to the moving route distance of users taking ordinary DRT buses to
their destinations, that is:

detour rateAve = Mobility DRT bus travel route
Ordinary DRT bus travel route

(5)

From Fig. 12, when demand = 12 and demand = 13, the average bypass rate of users displayed by
the GA is almost the same, but there is a significant difference in their initial detour rates (10.43161 and
12.69808, respectively). This indicates that the optimal routes generated by the algorithm are similar
in both situations, but the initial routes have significant differences, which also indirectly supports the
earlier point that the selection of initial values in probabilistic optimization algorithms is randomly
generated [35,36]. Similarly, the ACO algorithm also exhibited this feature for demand = 14 and
demand = 15.

In terms of the calculation performance of route planning, as depicted in Figs. 13 and 14, the
proposed MO A∗ algorithm is still the fastest. In the case of 40 passengers, the total processing
time is 0.129 s, and the average processing time for 40 calculations is 0.06318 s. In contrast to the
ACO and GA algorithms, when the ACO algorithm is completed by 40 passengers, the minimum
calculation time is 9.268 s and the average processing time for 40 calculations is 5.27655 s, whereas
the GA algorithm is 7.299 and 6.20445 s, respectively. If the average processing time of 40 times of the
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ACO algorithm is used as a benchmark, the processing speed of the MO A∗ algorithm is 82.52 times
(5.27655 − 0.06318)

0.06318
≈ 82.516 higher than that of the ACO algorithm. Taking the GA algorithm as the

benchmark, the processing speed of the MO A∗ algorithm is 97.2 times
(6.20445 − 0.06318)

0.06318
≈ 97.203

higher than that of the GA algorithm.

Figure 12: The average detour rate of the routes planned by the three algorithms

Figure 13: The time spent on the calculation of the three algorithms

In addition, the algorithm goal is not only to be able to dynamically handle the user’s request to
get on and off the vehicle, but also to meet the requirements of real-time calculation and real-time
response. However, judging from the above measurement results, ACO and GA are unable to meet the
immediacy of Mobility DRT bus route planning. In contrast, the algorithm proposed in this study can
process all data within 0.2 s, fully satisfying the real-time requirements for Mobility DRT bus route
planning. Therefore, considering the evaluation criteria from multiple perspectives, the proposed MO
A∗ algorithm can sufficiently meet the needs of DRT bus route planning.
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Finally, since the GA algorithm is at a disadvantage in each calculation result, it is necessary for us
to analyze the reasons. As mentioned before, this may be because both the ACO algorithm and the GA
algorithm are designed to find the optimal solution. In theory, the results generated by these algorithms
should improve with the passage of computing time [37,38]; However, in this study, to pursue the
real-time response characteristics of the algorithm, the maximum calculation time was set to 10 s. In
other words, the main reason why the GA algorithm’s calculation results are at a disadvantage is most
likely that the GA algorithm did not find the global optimal solution within the limited calculation
time (10 s).

Figure 14: The time spent on the calculation of the MO A∗ algorithm

To confirm the aforementioned reasons, this study presents a trend chart of the algorithm results
over time for 20 user transportation demands, as illustrated in Fig. 15. From the figure, the GA
exhibits a linear downward trend within 10 s, with a slow decline rate and occasional periods of
near-horizontal lines, such as between 3.0 and 3.4 s. This indicates that the GA has become trapped
in redundant iterative calculations near a local optimal solution. Furthermore, a noticeable change
can be observed in the ACO algorithm, which initially presents an almost linear trend but exhibits a
rapid decline between approximately 0.3 and 0.5 s; this phenomenon is related to the characteristics
of the ACO algorithm. The ACO algorithm searches for optimal routes by releasing pheromones
on each path segment. In the early stages of the algorithm, insufficient pheromone release by ants
on each path segment results in a slower initial calculation speed [39,40]. As pheromones accumulate on
each segment, the convergence speed of the algorithm increases, resulting in a nearly linear downward
trend that continually approaches the optimal route. The optimal route is first found after 1.983 s of
algorithm execution and is confirmed through repeated iterations, ultimately stabilizing at 2.6 s when
no further route changes occur.

To summarize, the proposed real-time dynamic route planning algorithm is always satisfactory in
mixed scenarios. Although its planned route is not always the “shortest route,” the distance difference
within 3–5 km is acceptable, and it can exhibit excellent performance in other user experience aspects
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and provide a better user experience. In addition, the performance of the proposed algorithm is fast,
82.5 and 97.2 times faster than the ACO and GA algorithms and it can complete route planning for bus
users within 1 s or even 0.2 s. Moreover, the algorithm shows stability of calculation in test scenarios,
which is incomparable to GA- and ACO-based route planning algorithms. Based on this result, this
study also believes that the MO A∗ algorithm will be able to handle it perfectly if it is a full reservation
scenario or a full real-time request scenario.

Figure 15: The changing trend of the total time for each algorithm to find the route within 10s

5 Conclusion

Recently, on-demand mobility services have been developed, and it is expected that the demand for
the services will further increase with the personal requirements in the future. The on-demand mobility
service based on DRT buses will be more widely used due to its more economical and affordable
characteristics. For DRT bus services to operate stably and efficiently, it is critical to reasonably allocate
and dispatch vehicles, and to conduct real-time route planning according to passenger’s requirements.

In this study, the operating characteristics of DRT buses and the algorithm’s requirements can
be summarized as follows: First, it needs to be able to update routes in real time; Second, it needs
to be able to dynamically respond to users’ ride requests. Based on the characteristics of DRT buses,
this study designed an algorithm (Real-time Dynamic Route Planning Algorithm) and explained its
design in detail. Also, this study verified the suggested algorithm based on the real user travel data. To
compare its results, a comparative test was conducted with the existing solutions based on the ACO
algorithm and the GA algorithm, and both the total length and the generation time of the route, as well
as the average travel time and average detour rate of users, were evaluated. The suggested algorithm
can implement route planning and vehicle scheduling within 0.2 s. Based on the special structure this
study proposed, the efficiency of route planning is improved by 82.5 times and 97.2 times compared
with the ACO algorithm and GA algorithm, respectively. It can complete dynamic route planning for
40 passengers in 0.2 s. This calculation performance fully meets the real-time calculation requirements
of on-demand DRT buses.

However, the suggested algorithm can be improved further. First, the working principle of the
proposed algorithm is mainly based on the queue-based multi-objective A∗ algorithm. Therefore, with
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the increase in the number of passengers, the algorithm has to be rerun to plan a new route. This can
result in heavy computation and increase more memory consumption when a new user takes public
transportation. Second, in the actual operation of the bus, if the bus receives a passenger request from
a bus stop less than 100 m ahead, the bus may be driving in the central lane because the bus driver
has not made corresponding preparations in advance. Changing lanes to the bus stop can be difficult
and dangerous, which may result in the user’s boarding request being ignored or assigned to the next
bus. This results in a certain degree of resource waste and a negative user experience, as users may feel
ignored when they see the bus drive away without stopping even though they sent a boarding request
before the bus arrived. Third, although the algorithm can handle regional-level DRT bus operations,
for broader practical operations, it still needs to expand the road network and add multiple DRT
buses for joint operation testing to improve the algorithm to enhance the robustness of the algorithm.
Besides the issues above, we plan to operate the algorithm in a wider urban transportation network
and also plan to apply the algorithm to games in future work.
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