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ABSTRACT

Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have been
identified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions is
essential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcing
emission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrial
smoke plumes using freely accessible geo-satellite imagery. The existing system has so many lagging factors such as
limitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timely
response to industrial fires. In this work, the utilization of grayscale images is done instead of traditional color
images for smoke plume detection. The dataset was trained through a ResNet-50 model for classification and a
U-Net model for segmentation. The dataset consists of images gathered by European Space Agency’s Sentinel-
2 satellite constellation from a selection of industrial sites. The acquired images predominantly capture scenes
of industrial locations, some of which exhibit active smoke plume emissions. The performance of the above-
mentioned techniques and models is represented by their accuracy and IOU (Intersection-over-Union) metric.
The images are first trained on the basic RGB images where their respective classification using the ResNet-50
model results in an accuracy of 94.4% and segmentation using the U-Net Model with an IOU metric of 0.5 and
accuracy of 94% which leads to the detection of exact patches where the smoke plume has occurred. This work has
trained the classification model on grayscale images achieving a good increase in accuracy of 96.4%.
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1 Introduction

The degree of Green House Gas (GHG) emissions that result from industrial activities and
their contribution to global warming is a noteworthy and concerning environmental issue. Extensive
research has been conducted to evaluate the scope of these emissions and their hazardous influence
on the Earth’s climate system. A Keynote address by the Intergovernmental Panel on Climate Change
(IPCC) Chair Hoesung Lee at the opening of the First Technical Dialogue of the Global Stocktake
conducted on June 10, 2022, provided reports that prove that climate change poses a grave danger to
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our planet. According to the findings of the climate change mitigation report, the progress in curbing
global warming to 1.5°C falls short of expectations. Over the past twenty years the average annual
greenhouse gas (GHG) emissions have reached unprecedented levels in human history and gradually
it is becoming increasingly difficult to control it [1]. The current situation demands to be acted upon
immediately and effectively to save this planet and the well-being of its inhabitants.

There are so many limitations and issues in existing methods that are being addressed in this work
in detecting the smoke plumes using satellite images. Firstly, current tools lack the performance and
accuracy needed to accurately identify smoke plumes in the industrial area. Sometimes, it misclassified
the clouds and other things as smoke plumes. This causes false alarms while deploying the emergency
teams for rescue, that is why existing methods are less reliable. Small forest fires or those hidden by a
dense canopy are difficult to find with satellite imagery [2].

Secondly, the primary method for detecting smoke plumes of existing technologies is based on
colored images. However, by using color images, it is more difficult for a model to give correct
predictions with good accuracy because there are so many colors in color images that make it difficult
to distinguish between smoke plumes and other colors, especially in climate situations. Hence the
smoke plume detection accuracy is affected. Furthermore, real-time or almost real-time detection and
tracking capabilities might not be offered by the current technologies.

The algorithms and techniques of smoke plume detection and its identification have evolved
over the years. There are several methods including deep learning models like Convolutional Neural
Networks (CNN) or computer vision algorithms. The CNN approaches often make use of approaches
like optical flow analysis or frame differencing to detect smoke plumes and accurately delineate smoke
patches. Smoking plumes are recognized as the target class in a huge collection of labeled photos on
which the network is developed [3].

The proposed system leverages ResNet-50 to achieve precise smoke region detection and incorpo-
rates a powerful processor for fast real-time image processing [4]. The motivation factor for doing this
work is that there is an urgent need to understand the effect of these smoke plumes in industrial areas.
Wildfires are becoming increasingly destructive and devastating. Wildfires are frequently discovered
after they are out of control due to their rapid spread, and as a result, they have billion-scale
consequences in a very short period [5]. In this study, the objective is to develop a model for accurately
identifying the smoke plumes in industrial areas and see what effect they are making in the increase of
global warming. It is well known that there is an impact of industrial activities on global warming. This
study aims to contribute to a better understanding of how much impact these industrial activities have
on global warming by developing an accurate and good performance model to detect and quantify
the amount of smoke using freely available geo-satellite data.

The three main objectives of this work are to investigate the possibility of detecting and quan-
tifying the amount of smoke plumes present in a single image by using freely available geo-satellite
multi-band images. First, the classification is done to classify the images from the images that do not
have the smoke plumes in them. The second objective is to utilize the effectiveness of grayscale images
over colored images for the detection of smoke plumes. In this study, both types of methods are used to
train the model and by using the grayscale imagery, it is clearly shown that there is a notable increase
in accuracy and performance in the results. The third objective is to accurately detect and quantify
the smoke plumes and smoke plumes area for the contribution towards understanding the effect and
impact of industrial activities in the increase of global warming. This last objective shows the broader
perspective of this research work. Additionally, this work aims to support the enforcement of fire
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regulations by developing an improved working model for them to monitor wildfires and identify
their sources so that they can be stopped as soon as possible.

The key highlights of this work include the detection of smoke plumes in the industrial area using
freely available geo satellite multi-band images, the use of grayscale images over colored images to
improve the accuracy and performance of the work, the contribution in understanding the impact of
industrial fire on global warming and to provide improved tools to the professionals to monitor the
smoke plumes through the clouds to identify the fire in its early stage so that it can be stopped early
without doing much damage. The importance of the research’s findings resides in their potential to
improve the measurement and monitoring of industrial smoke plumes. The study provides a low-cost
and widely applicable method to identify and measure smoke plumes, assisting early warning systems
and emergency response planning. This method makes use of Sentinel-2 satellite data. Grayscale
picture analysis sheds light on a detection technique that could be more precise. The results ultimately
assist the implementation of emission restrictions and attempts to lessen the negative consequences
of climate change, addressing the critical need for improved understanding and control of industrial
emissions.

2 Literature Survey

This work proposed in [6] uses an algorithm called the Scattering-Based Smoke Detection Algo-
rithm (SSDA) to overcome obstacles. It primarily relies on the visible and infrared imaging radiometer
suite (VIIRS) blue and green bands. In [7], an automated detection model uses a deep learning
approach to detect smoke plumes by obtaining shortwave reflectance data from the Geostationary
Operational Environmental Satellite R series. The study in [8] discusses the feasibility of detecting
industrial smoke plumes was explored using satellite images on a global scale and applying ResNet-50
and U-Net models. An affordable solution using images from NASA’s Aqua and Terra satellites is
presented in [9] with an overview of the latest innovations and advancements in neural network-based
techniques for object detection. The work [10] implemented a Gradient-weighted Class Activation
Mapping (Grad-CAM) to verify whether the detected regions corresponded to the actual smoke areas
in the image. The evaluation algorithms included ResNet and EfficientNet models.

A two-stage smoke detection (TSSD) algorithm has been implemented on a lightweight detection
algorithm in [11] to monitor the effect of real-time factory smoke. The work discussed in [12] involves a
combination of deep learning and dynamic background modeling to mitigate false alarms. It employed
a Single Shot MultiBox Detector (SSD) deep learning network for initial smoke detection and ViBe
dynamic background modeling technique to identify dynamic regions within the video. The study
[13], presented an innovative technique for smoke characterization by employing wavelets and support
vector machines and raising minimal false alarms. In [14], a masking technique in the HSV color
space is implemented to identify smoke-colored pixels and to apply temporal frame differencing. The
optical flow of smoke is determined using texture information obtained from a Gabor filter bank with
preferred orientations. The work proposed in [15] introduces a novel neural architecture called W-Net
to address the highly ill-posed nature of smoke where multiple stacked convolutional encoder-decoder
structures define the model.

The work [16] uses deep learning techniques and methods to detect fire and smoke. It aims to
develop a model which can keep learning and adapting new information without forgetting past
information. The work discussed in [17] contains all the methods and algorithms to detect smoke and
fire in the air that depend on visual data. In [18], a deep learning model is suggested that uses a self-
attention network. The work proposed in [19] can distinguish smoke plumes from aerial photographs.
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CNN is used to extract information and distinguish each image into two categories containing smoke
and not containing smoke. The work discussed in [20] uses an end-to-end structured network to detect
fire and smoke areas. Deep learning algorithms are used to develop an end-to-end structured network
to extract important information related to fire and smoke from the input images.

The work discussed in [21] has two main components: Dynamic feature model and smoke object
segmentation. The model can spot and detect the smoke present in the images and can accurately
segment the smoke area with high accuracy. The work [22] model uses deep learning methods for
performance and accurate detection of smoke in between clouds and other misleading things. It aims
to improve forest fire surveillance using a learning-based system. The work proposed in [23] can detect
fire and smoke in visual-colored images using image processing and machine learning algorithms. The
approach of computer vision includes many intermediate and crucial steps such as feature extraction,
classification, and image preprocessing. In [24], the model Deep Smoke detects the smoke in smoke
areas in the images dataset. To extract the features of images, the study uses convolutional neural
networks (CNNs) for smoke detection. The work discussed in [25] suggests a system for early forest
fire detection using these two hardware’s capabilities, a DJI M300 drone and an H20T camera.

3 Proposed System

The steps involved in detecting smoke plumes are depicted in Fig. 1. The first step is to obtain
the images via satellite. The images are then preprocessed, which includes grayscale conversion and
histogram equalization. The preprocessed images are then fed into a ResNet-50 model for image
classification. The classified images are then fed into a U-Net model for image segmentation. The
U-Net model produces a segmentation mask that shows where the smoke plumes are in the image.

Figure 1: Flow of the proposed method

Four important blocks make up the block diagram shown in Fig. 2, which depicts the various
phases of a smoke plume’s detection and segmentation. Every block is important to the overall process.
Each block is briefly described below.

3.1 Input

The first block of the block diagram is input, in this, the colored images that may or may not
contain smoke plumes are used as input in the initial block. The ensuing blocks take this input block
as the main source of image data for training, preprocessing, and evaluation. In this work, a dataset
of geo satellite-colored images is used, and some images contain smoke plumes and the rest do not
contain them. So, classification needs to be done with good accuracy to distinguish images containing
smoke plumes from images without smoke plumes.
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Figure 2: Block diagram of the proposed system

3.2 Data Preprocessing

In this block, some crucial steps are performed on the loaded data before feeding into the
classification and segmentation models. The steps are as follows.

3.2.1 Data Normalization

In this step, the data need to be normalized to get good accuracy of the model. Major steps of
normalization of image data include scaling the image pixel value from 0 to 1 for consistency in the
data which can be seen in Eq. (1). Data normalization can also happen by standardizing the images
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using mean and standard deviation.

imgdata =
(

grayimg − min(grayimg)

max(grayimg) − min(grayimg)

)
(1)

3.2.2 Data Transformation

In the image dataset, two classes are there. One is an image with smoke plumes and the other is an
image without smoke plumes. This is a binary classification, but the class distribution is not balanced.
The data is transformed using data up-sampling to make the class distribution balanced. The second
data transformation that is happening is RGB images to grayscale images. This transformation might
help in increasing the model’s performance and accuracy.

3.2.3 Data Visualization

To improve the contrast and visibility of key details in the grayscale photos, use histogram
equalization. By redistributing the pixel intensities, histogram equalization improves the quality of
the image and makes it easier to distinguish between important elements.

3.3 Classification Block

This is a binary classification problem, in this work the ResNet-50 pre-trained model is used to
distinguish smoke plumes containing images from the other one. After training the model on train
data, evaluation is done on the test data to evaluate the model on unseen image data. This block
returns classified images as a result by using those images, accuracy and other key parameters can
be calculated. Fig. 3 shows the implemented architecture for the ResNet-50 Model. Here is a general
formula for the ResNet-50 model as shown in Eq. (2).

Y = FC_K(FC_K − 1(....FC2(FC1(BN_M(BN_M − 1(....(BN1(ConvN(.....(Conv1(X))))))))))) (2)

Here FC_K describes the Kth fully connected layer, BN_M describes the Mth bottleneck layer
and ConvN describes the Nth convolutional layer.

Figure 3: Architecture of ResNet-50 model
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3.4 Segmentation Block

After classifying the images, to segment the smoke area of an image, a pre-trained model U-Net is
used. The training and evaluation of a UNet model for smoke segmentation are the main topics of this
block. The dataset contains images with smoke plumes and segmentation labels to feed to the U-Net
model to create a segmentation boundary.

After training the U-Net model, evaluation of the U-Net model is done using test image data that
the model has not seen before. To evaluate the precision and performance of the model, measures like
Intersection-over-Union (IoU), and Jaccard accuracy are used.

The proposed system takes RGB images gathered by ESA’s Sentinel-2 satellite constellation from
a selection of industrial sites. The collected data is loaded onto the system for further manipulation.
As shown in Fig. 4, the collected RGB images require some standardization procedure to bring them
all to a uniform and usable format, therefore, we perform Data Normalization on the entire dataset.

Figure 4: Workflow for processing RGB images

In Fig. 5, it is depicted how RGB images are collected from the satellite imagery and then
normalized for further processing. To improve accuracy and enhance model performance, this paper
took a novel approach to convert RGB images to grayscale which led to better results, and it was also
able to overcome the challenges faced by the limitation of RGB images.

grayscale_img =
∑

(i)/i.size() (3)

Figure 5: Workflow for processing grayscale images
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Eq. (3) shows the manipulation required for converting each RGB image to a grayscale image,
where the pixels of the images are stored in the form of an array. The pixels are averaged out to convert
them into grayscale. Grayscale images reduce the number of false interpretations and complexities.
In addition to it, in this approach, Histogram Equalization is also performed to visualize the image
dataset. Fig. 6 shows a sample representation of an image containing a smoke plume.

Figure 6: Smoke density visualized via histogram equalization

The peak in Fig. 6 depicts the intensity of the smoke plume and the width of the peak demonstrates
how far the smoke plume spread is across a specific area in the given image. Fig. 7 depicts the major
and final steps that settle the entire model and architecture. Once the data is processed it undergoes
two modeling processes—Classification via ResNet-50 and Segmentation via U-Net.

Figure 7: Sequential flow depicting classification and segmentation

3.5 Classification

Initially, the preprocessed RGB images are trained via a customized ResNet-50 architecture. The
purpose of this step is to first train the images and classify them into two categories to distinguish
whether or not the images contain any smoke plume. The model is thoroughly trained and saved for
evaluation purposes. This algorithm was able to achieve a decent accuracy of 94.3% on the training
set and an accuracy of 94% against the test data set.
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Next, the innovative method of applying this algorithm to grayscale images led to a significant
increase in accuracy. During the model training, an accuracy of 96.4% was obtained and during the
evaluation of the model, it could obtain an accuracy of 96.6%. This approach not only achieved a
higher percentage of accuracy but also performed lesser computations with more precise and valid
results.

3.6 Segmentation

This process involves the segmentation of both RGB and grayscale images individually. Once
the dataset was loaded, initially the focus was to identify patches of smoke plume against manually
computed segmented labels. This step was a foundation to observe and ideate further stages. Moving
forward, the image dataset was trained through a custom U-Net model along with the segmented labels
to achieve more precise results and better efficiency. The overall accuracy attained was 94.0% where
the model can identify smoke plume patches and the IoU (Intersection-over-Union) metric justifies
the intensity by comparing the percentage of overlap of smoke detected, i.e., the predicated mask in
the trained image to that which appears in the original image or ground truth mask. Eq. (4) shows
how IoU can be mathematically represented.

IoU = A ∩ B
A ∪ B

(4)

It is observed that IoU can be calculated as a ratio of the Area of Overlap (overlapped area between
the predicted region and the ground truth region) to the Area of Union (The total area covered by
the predicted region and the ground truth region), where |A ∩ B| denotes the cardinality (number of
elements) of the intersection of sets A and B and |A ∪ B| denotes the cardinality of the union of sets
A and B.

4 Experimental Results and Discussion

The Google Colab platform, which offered GPU acceleration for effective training on huge
datasets, was used to create and run the models U-Net and ResNet-50. Several Python modules were
used to improve the modeling process and optimize performance. Notably, TensorFlow and Keras
were important in the model’s development, compilation, and training. NumPy was used to manage
arrays effectively, and OpenCV made reading and processing images easier. The results obtained from
the experimental analysis are presented and analyzed and a comprehensive discussion has been done
on the findings.

4.1 Experimental Setup

The hardware and software requirements for the work are as follows.

4.1.1 Software Requirements

Any Operating System Windows/Linux/MacOS, python programming language for deep learning
algorithms, necessary deep learning frameworks such as PyTorch and TensorFlow. If using an
NVIDIA GPU, CUDA, and cuDNN libraries to leverage GPU acceleration for model training.
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4.1.2 Hardware Requirements

As a tester or developer, a high-performance computing system is needed for running deep
learning algorithms and a high-speed internet connection for model training and evaluation. As a
user, just a computer with an operating system and internet connection is enough to use this system.

4.1.3 Tools Used

For data loading, data transformation, model training, and evaluation, Google Collab is used in
this work. PyTorch is a widely used deep learning framework and in this work, PyTorch is used to load
pre-trained models such as ResNet-50 for image classification and U-Net for image segmentation. In
this work, scikit-learn, NumPy, and matplotlib are used for the basic functionality that is needed in
this project.

4.1.4 Dataset and Its Description

The dataset used for the implementation of this paper consists of imaging data captured by ESA’s
Sentinel-2 satellite constellation, which focuses on observing the Earth. The selection of industrial sites
included in the dataset was based on emission data sourced from the European Pollutant Release and
Transfer Register. The images, to a great degree, showcase industrial locations, with a particular focus
on those that exhibit active smoke plumes.

Each image provided in the dataset is in the GeoTIFF file format consisting of 13 bands, along
with their respective geo-referencing information. Each image represents a square area with a ground
edge length of 1.2 km. The bands are derived from Sentinel-2 Level-2A products, with the exception of
band 10, which originates from the corresponding Level-1C product. A noteworthy point is that band
10 has not been utilized in the underlying work. The bands are derived from within this repository,
and a total of 21,350 images can be found here. After diligent manual annotation, the image sample
was partitioned into distinct subsets, resulting in 3,750 positively classified images portraying the
presence of industrial smoke plumes, while a staggering 17,600 negatively classified images showcased
the absence of any smoke plumes. Moreover, this repository is a comprehensive collection of carefully
crafted JSON files that await manual segmentation labels that precisely identify the boundaries and
details of the smoke plumes detected within the 1,437 images.

4.2 Elaborate on the Findings

Due to the variations in smoke patterns, clouds, lighting conditions, rain, and background clutter,
smoke detection and segmentation are difficult problems to solve. To distinguish smoke from clouds
or other catastrophic entities, current solutions widely use convolutional rule-based or heuristic
techniques. Deep learning algorithms and models such as ResNet-50 for classification and U-Net for
segmentation have shown promising results in the detection and segmentation of the smoke using
GeoTIFF images.

In Fig. 8, the output images are shown after feeding the color images to the ResNet50 model. Each
output image is a collection of three images stacked on top of each other. There are four different types
of possible outcomes from the classification model, in Fig. 8a, the image is classified as true positive
by model. True positive means that the image contains smoke plumes, and the model is also predicting
the same. In Fig. 8b, the image is classified as false positive because the image does not contain smoke
but the model is predicting the opposite. Fig. 8c does not contain any smoke plumes and the model is
also predicting the same that is why it is classified as a true negative. Fig. 8d shows that the image does
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contain some quantity of smoke plumes but the model is predicting the opposite so it is classified as
false negative. The accuracy of the model can be easily calculated by the formula given in Eq. (5).

Accuracy = True Positive(TP) + True Negative(TN)

True Positive(TP) + False Positive(FP) + True Negative(TN) + False Negative(FN)
(5)

Figure 8: RGB images after classification via ResNet-50 (a) True positive; (b) False positive; (c) True
negative; (d) False negative

The segmentation model U-Net gives the output in the form of images shown in Fig. 9. It also
has 3 outcomes discussed earlier in this study. Each output image contains two images inside it. The
first part is the original input image that the model receives and trains itself. The second part shows
the segmentation boundaries of smoke if present in the original photo and also calculates the IoU
value. IoU (Intersection-over-Union) depicts the intensity and the amount of smoke present in the
input image. IoU value varies from 0 with no smoke to 1 being 100% smoke in the image. In Fig. 9a,
the image contains smoke and it is classified as true positive, it has the IoU value of 0.72. It shows
that approximately 72% of the pixels in the predicted segmentation mask align with the corresponding
pixels in the ground truth mask which is a considerable overlap and therefore it can be concluded that
the segmentation result is relatively valid.

Figure 9: RGB images after segmentation via U-Net (a) True positive with 0.72 IoU value; (b) False
positive with 0 IoU; (c) False negative with 0.02 IoU value

Fig. 10 shows the output images after feeding the grayscale images to the ResNet-50 model.
Fig. 10a shows that the image contains smoke and the model is also predicting the same, thus it is
classified as true positive. Fig. 10b shows that the image contains smoke but the model is not predicting
it, that is why it is classified as a false negative. Fig. 10c shows that the image contains clouds, not
smoke, and the model also predicted that the image does not have smoke which is why it is classified
as a true negative.
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Figure 10: Grayscale images after classification via ResNet-50 (a) The image contains smoke and the
model predicted the same; (b) The image contains smoke, but the model predicts it wrong; (c) The
image contains clouds, and the model is also predicted that the image contains clouds do not smoke

One of the advantages of ResNet-50 is when compared to convolutional rule-based or heuristic
techniques, deep learning models and algorithms increase the accuracy and performance of the model
in detecting smoke plumes in the air. Compared to colored images, when grayscale images are used, it
increases the accuracy, precision, and effectiveness of the model in detecting smoke images [26]. Some
techniques can be applied to segment the boundaries of smoke in smoke-containing images. In this
project, the U-Net model is being used to segment the boundaries of smoke and it also calculates the
IoU value for each image.

This IoU value shows how much of the smoke is present in the image. This can help fire safety
forces determine the level of fire by just analyzing the IoU value. This method of using deep learning
models seeks to enhance the precision, accuracy, effectiveness, and reliability of smoke detection
and segmentation systems. This work has considerable potential in many areas, including emergency
response management, environmental monitoring, and fire safety.

Fig. 11 shows the training accuracy vs. validation accuracy of colored GeoTiff images against
the number of epochs for (a) the ResNet-50 Model and (b) for U-Net Model. Fig. 11a is a represen-
tation of the ResNet-50 model’s performance while classifying color images–the blue line represents
training accuracy which is approximately 94.3% and the validation accuracy of approximately 93%
is represented by the orange line. Fig. 11b is a representation of the U-Net model’s performance
while executing segmentation on color images—the blue line represents training accuracy which is
approximately 94.0% and the validation accuracy of 93.4% is represented by the orange line. In these
figures, the blue line shows how well the model performs on the training data over time. On the other
hand, the orange line represents validation accuracy, which indicates how well the model performs on
a separate validation dataset that it was not exposed to during training.

Fig. 12 shows the training loss vs. validation loss of colored GeoTiff images against the number
of epochs for (a) the ResNet-50 Model and (b) for U-Net Model. Fig. 12a is a representation of the
ResNet-50 model’s performance while classifying color images—the blue line represents training loss
which is approximately 0.043 and the validation loss of 0.05 is represented by the orange line. Fig. 12b
is a representation of the U-Net model’s performance while executing segmentation on color images—
the blue line represents train loss which is approximately 0.043 and the validation loss of 0.05. The blue
line in the figure corresponds to the training loss, which evaluates the model’s fit to the training data
throughout the training process. On the other hand, the orange line represents the validation loss,
which measures how well the model fits a distinct validation dataset that was not used for training.
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Figure 11: Accuracy graphs of (a) ResNet-50 model; (b) U-Net Model; trained on colored GeoTIFF
image dataset

Figure 12: Loss graphs of (a) ResNet-50 model; (b) U-Net Model; trained on colored GeoTIFF image
dataset

Fig. 13 shows the training accuracy vs. validation accuracy of grayscale GeoTiff images against the
number of epochs for (a) the ResNet-50 Model and (b) for U-Net Model. Fig. 13a is a representation
of the ResNet-50 model’s performance while classifying grayscale images–the blue line represents
training accuracy which is approximately 96.4% and the validation accuracy which is approximately
96% is represented by the orange line. Fig. 13b is a representation of the U-Net model’s performance
while executing segmentation on grayscale images–the blue line represents training accuracy which is
approximately 94.0% and the validation accuracy is represented by the orange line. In these figures, by
comparing the blue (training accuracy) and orange (validation accuracy) lines, insights can be gained
into how well the model is learning and generalizing. Since the two lines closely follow each other and
have similar values, it suggests that the model is generalizing well.
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Figure 13: Accuracy graphs of (a) ResNet-50 model; (b) U-Net model; trained on grayscale GeoTIFF
image dataset

Fig. 14 shows the training loss vs. validation loss of grayscale GeoTiff images against the number
of epochs for (a) the ResNet-50 Model and (b) for U-Net Model. Fig. 14a is a representation of the
ResNet-50 model’s performance while classifying grayscale images—the blue line represents training
loss which is approximately 0.097, and the validation loss of 0.077 is represented by the orange line.
Fig. 14b is a representation of the U-Net model’s performance while executing segmentation on color
images–the blue line represents train loss which is approximately 0.047, and the validation loss of 0.1.

Figure 14: Loss graphs of (a) ResNet-50 model; (b) U-Net model; trained on grayscale GeoTIFF image
dataset
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4.3 Comparison of Various Approaches

This paper reviewed two major approaches, i.e., Classification and Segmentation for identifying
smoke plumes from industrial units to monitor the Greenhouse gas emissions and their effect
on Earth’s climate. Further, these approaches were divided into two categories–RGB images and
Grayscale images. Satellite remote sensing data offers a practical means to routinely detect and monitor
these plumes across extensive regions [27].

Initially, RGB images were trained through a custom layered architecture of Residual Network
(ResNet-50) to classify images into two types—images containing smoke plumes and images not
containing any smoke plumes and through U-Net for segmentation and marking the boundaries. It
was observed that with RGB images, the accuracy attained was approximately 94.3% but there were
certain limitations while processing RGB images such as color variations and complex dimensions.
RGB images capture color information, which can vary depending on the lighting or atmospheric
conditions. Smoke plumes can exhibit different colors depending on the combustion process or
environmental conditions. Moreover, smoke illustrates a nature of dispersion which can lead to areas
with translucent smoke patches with the patterns and colors of the surrounding environment [28–32].
Because of these variations, it becomes quite difficult to set a threshold for smoke detection. In the
work carried out in [33], an adaptive weighted direction algorithm has been proposed for fire and
smoke detection with reduced loss and false alarm.

To overcome this challenge even better, an innovative approach of using grayscale and binary
images was taken into consideration. Grayscale images reduce the dimensionality which makes it easier
for the model and it becomes more efficient as there are fewer parameters to be learned. Besides,
grayscale images can appropriately capture the varying levels of brightness caused by smoke, making
it easier for CNN to learn relevant features associated with smoke detection. This method of using
grayscale images for training the ResNet-50 model not only proved to be efficient in computing but
also resulted in a higher accuracy of 96.4%.

During Segmentation, initially, the images were compared against the manually created segmented
labels to obtain a founding idea regarding the patches of smoke plumes and contours being formed.
Following this, a U-Net model is fed with both the images and the manually computed segmented
labels to achieve an automated function for getting precise contours and patches for each image
containing smoke plumes. The automated process is more efficient and results in more precise
segmented boundaries.

In Figs. 15a and 15b, it is clearly shown that by using grayscale images over RGB-colored images
for classification and segmentation training, there is a noticeable difference in the accuracy. In each
epoch, the accuracy for grayscale images is much higher than the accuracy for RGB images. Using
grayscale images for both model’s training does not only increase the accuracy but also increases the
model performance as the test accuracy for grayscale images is also higher.

Although a decent rise in accuracy was observed when instead of RGB images, grayscale images
were trained, it is observed that there is not much difference between the segmentation of RGB
and grayscale images. Fig. 16 shows the comparison graphs (a) Segmentation Training accuracy of
Grayscale vs. RGB and (b) Segmentation Validation accuracy of Grayscale vs. RGB. In these figures,
the blue line represents the grayscale, and the orange line represents the RGB images. It can be observed
that in both the figures, the lines almost travel along together, and the results obtained are almost the
same for both cases.
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Figure 15: Comparison graphs (a) Classification train accuracy: grayscale vs. RGB; (b) Classification
validation accuracy: grayscale vs. RGB

Figure 16: Comparison graphs (a) Segmentation train accuracy: grayscale vs. RGB; (b) Segmentation
validation accuracy: grayscale vs. RGB

Fig. 17 depicts the comparison between IoU values of segmentation performed on RGB images
to grayscale images over the last 5 epochs where Fig. 17a shows the comparison between the values of
Train IoU and Fig. 17b shows the comparison between Segmentation IoU values. The blue line depicts
the Intersection-over-Union values of RGB images whereas the Intersection-over-Union values of
grayscale images are represented by an orange line. The graph can be used to observe the performance
of the U-Net model on two different types of image datasets. Fig. 17a indicates that IoU values remain
stable throughout for RGB images whereas for grayscale images, the values seem to increase initially
but end up converging with the result of RGB. Similarly, in Fig. 17b, it seems that the validation IoU is
initially higher for grayscale images but the result of both the image datasets is nearly the same. Overall,
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a quick comparison can be performed between the model performance of two different image datasets
and can also assist in analyzing the model performance on unseen data while detecting patterns over
a while.

Figure 17: IoU comparison graphs (a) Segmentation train IoU: RGB vs. grayscale; (b) Segmentation
validation IoU: RGB vs. grayscale

The ROC curve shown in Fig. 18 is the trade-off between true positive rate (TPR) and false positive
rate (FPR) at the different thresholds shown by the ROC curves. This shows how well the model
can differentiate between smoke-containing and containing images. The diagonal baseline shows a
random classifier, and the depicted points on the curves reflect various threshold values. The model’s
performance can be evaluated for geoTIFF images, enabling it to analyze its efficiency in identifying
smoke plumes in both RGB and grayscale images, by comparing the RGB and grayscale curves.

Figure 18: ROC curve for CNN model-ResNet-50; applied on RGB and grayscale images
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4.4 Comparison Table

In this work, the metric that is used to compare the results of RGB image training and grayscale
image training is Accuracy. Since the data in this study is balanced, with each class having the same
significance, accuracy is a reliable metric to use. Accuracy is calculated as shown in Eq. (5).

Table 1 is a compilation of the two types of methods used for classification along with their
respective accuracies. It can be observed that converting images to grayscale resulted in a noteworthy
increase in the accuracy of the ResNet-50 Model.

Table 1: ResNet-50 accuracy and loss results

Function Dataset Training
accuracy (in %)

Train loss Validation
accuracy (in %)

Validation
loss

Classification
on: ResNet-50

RGB images 94.3 0.043 93 0.05

Grayscale
images

96.4 0.094 96 0.077

Table 2 is a compilation of the two types of methods used for segmentation along with their
respective accuracies. It can be observed that converting images to grayscale did not portray any
significant difference in the accuracy of the U-Net model. It was observed that during classification,
grayscale images performed extremely well with a higher accuracy of 96.4%. Additionally, it was faster
and more efficient due to reduced noises and dimensionality of grayscale images. This work addressed
the challenges that are encountered during the detection and segmentation of smoke. The process gets
further complicated due to varying smoke patterns, the presence of clouds, lighting conditions, and
background clutter.

Table 2: U-Net accuracy and loss results

Function Dataset Training
accuracy (in %)

Train loss Validation
accuracy (in %)

Validation
loss

Segmentation
on: U-Net

RGB images 94.0 0.04 93.4 0.053

Grayscale
images

94.0 0.047 93.3 0.1

5 Conclusion

The work utilized a three-step process: Classifying RGB images, converting RGB to grayscale
images re-training them through the classification model, and segmenting RGB images. This work
employed the concept of Intersection-over-Union (IoU) as a measure of smoke intensity in an image.
By analyzing the IoU value, the level of smoke can be conveniently assessed. By taking advantage of a
pre-trained ResNet-50 model on a large dataset of GeoTIFF images, this study was successfully able to
distinguish smoke plumes and employed the UNet model to identify the patches and perform smoke
boundary segmentation. This method holds promise for various fields such as managing emergency
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responses, monitoring the environment, and ensuring fire safety. It provides improved precision,
accuracy, and reliability in systems for detecting and segmenting smoke. The deep learning models
can accurately distinguish smoke from non-smoke with an accuracy of 96.4%. High performance and
accuracy, robustness of the model under various environmental circumstances are also among the top
results of the project. Taking into account future work, there are several realistic points for future
research and development. By exploring the potential of transfer learning and fine-tuning techniques,
the performance of the model can be enhanced on limited labeled data. The integration of multi-
modal data sources such as thermal imaging or air quality measurements, can enhance the accuracy
and reliability of smoke detection. Furthermore, the extension of this project to real-time monitoring
is also realistic. Overall, this work has established the framework for precise smoke segmentation
and detection utilizing deep learning methods. To further improve the effectiveness, accuracy, and
usefulness of smoke detection and analysis systems, future studies can concentrate on the integration
of multi-modal data, transfer learning, real-time applications, and sophisticated deep learning models.

Acknowledgement: The authors wish to express their thanks to VIT management for their extensive
support during this work.

Funding Statement: The authors received no specific funding for this work.

Author Contributions: The authors confirm their contribution to the paper as follows:study concep-
tion and design: Ananthakrishnan Balasundaram, data collection: Ananthakrishnan Balasundaram,
Ayesha Shaik, Japmann Kaur Banga and Aman Kumar Singh, analysis and interpretation of results:
Ananthakrishnan Balasundaram, Ayesha Shaik, Japmann Kaur Banga and Aman Kumar Singh, draft
manuscript preparation: Ananthakrishnan Balasundaram, Ayesha Shaik, Japmann Kaur Banga and
Aman Kumar Singh. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Industrial Smoke Plume Data Set, 2020, [online] https://zenodo.
org/records/4250706 (accessed on 01 December 2023).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present work.

References
[1] H. Lee, “Intergovernmental panel on climate change,” in First Tech. Dialog. Global Stocktake, IPCC, Bonn,

Germany, 2022, pp. 1–4.
[2] X. Li, W. Song, L. Lian, and X. Wei, “Forest fire smoke detection using back-propagation neural network

based on MODIS data,” Remote Sens., vol. 7, no. 4, pp. 4473–4498, 2015. doi: 10.3390/rs70404473.
[3] A. Larsen et al., “A deep learning approach to identify smoke plumes in satellite imagery in near-real time

for health risk communication,” J. Expo. Sci. & Environ. Epidemiol., vol. 31, no. 1, pp. 170–176, 2021. doi:
10.1038/s41370-020-0246-y.

[4] M. Mukhiddinov, A. B. Abdusalomov, and J. Cho, “A wildfire smoke detection system using unmanned
aerial vehicle images based on the optimized YOLOv5,” Sens., vol. 22, no. 23, pp. 9384–9409, 2022. doi:
10.3390/s22239384.

[5] N. T. Toan, P. T. Cong, N. Q. V. Hung, and J. Jo, “A deep learning approach for early wildfire detection
from hyperspectral satellite images,” in 7th Int. Conf. Robot Intell. Technol. Appl. (RiTA), Daejeon, Korea,
2019, pp. 38–45.

https://zenodo.org/records/4250706
https://zenodo.org/records/4250706
https://doi.org/10.3390/rs70404473
https://doi.org/10.1038/s41370-020-0246-y
https://doi.org/10.3390/s22239384


798 CMC, 2024, vol.79, no.1

[6] X. Lu, X. Zhang, F. Li, M. A. Cochrane, and P. Ciren, “Detection of fire smoke plumes based on aerosol
scattering using VIIRS data over global fire-prone regions,” Remote Sens., vol. 13, no. 2, pp. 196–218, 2021.
doi: 10.3390/rs13020196.

[7] M. Ramasubramanian et al., “Pixel level smoke detection model with deep neural network,” in Image Signal
Process. Remote Sensing XXV , Strasbourgh, France, 2019, pp. 376–386.

[8] M. Mommert, M. Sigel, M. Neuhausler, L. Scheibenreif, and D. Borth, “Characterization of industrial
smoke plumes from remote sensing data,” in Tackling Clim. Change Mach. Learn. Workshop at NeurIPS
2020, St. Gallen, Switzerland, 2020, pp. 1–5.

[9] C. L. C. Huang and T. Munasinghe, “Exploring various applicable techniques to detect smoke on the
satellite images,” in IEEE Int. Conf. Big Data (Big Data), Atlanta, GA, USA, 2020, pp. 5703–5705.

[10] A. M. Fernandes, A. B. Utkin, and P. Chaves, “Automatic early detection of wildfire smoke with visible
light cameras using deep learning and visual explanation,” IEEE Access, vol. 10, pp. 12814–12828, 2022.
doi: 10.1109/ACCESS.2022.3145911.

[11] Z. Wang, D. Yin, and S. Ji, “Real-time factory smoke detection based on two-stage relation-guided
algorithm,” Sci. Rep., vol. 12, no. 1, pp. 1786–1801, 2022. doi: 10.1038/s41598-022-05523-1.

[12] G. Wang, J. Li, Y. Zheng, Q. Long, and W. Gu, “Forest smoke detection based on deep learning and
background modeling,” in IEEE Int. Conf. Power, Intell.Comput. Syst. (ICPICS), Shenyang, China, 2020,
pp. 112–116.

[13] J. Gubbi, S. Marusic, and M. Palaniswami, “Smoke detection in video using wavelets and support vector
machines,” Fire Safety J., vol. 44, no. 8, pp. 1110–1115, 2009. doi: 10.1016/j.firesaf.2009.08.003.

[14] D. K. Appana, R. Islam, S. A. Khan, and J. M. Kim, “A video-based smoke detection using smoke flow
pattern and spatial-temporal energy analyses for alarm systems,” Inform. Sci., vol. 418, pp. 91–101, 2017.
doi: 10.1016/j.ins.2017.08.001.

[15] F. Yuan, L. Zhang, X. Xia, Q. Huang, and X. Li, “A wave-shaped deep neural network for smoke density
estimation,” IEEE Trans. Image Process, vol. 29, pp. 2301–2313, 2019. doi: 10.1109/TIP.2019.2946126.

[16] V. E. Sathishkumar, J. Cho, M. Subramanian, and O. S. Naren, “Forest fire and smoke detection
using deep learning-based learning without forgetting,” Fire Ecol., vol. 19, no. 1, pp. 1–17, 2023. doi:
10.1186/s42408-022-00165-0.

[17] S. Chaturvedi, P. Khanna, and A. Ojha, “A survey on vision-based outdoor smoke detection techniques
for environmental safety,” ISPRS J. Photogramm. Remote Sens., vol. 185, no. 14, pp. 158–187, 2022. doi:
10.1016/j.isprsjprs.2022.01.013.

[18] M. Jiang, Y. Zhao, F. Yu, C. Zhou, and T. Peng, “A self-attention network for smoke detection,” Fire Safety
J., vol. 129, no. 1, pp. 103547–103556, 2022. doi: 10.1016/j.firesaf.2022.103547.

[19] G. Perrolas, M. Niknejad, R. Ribeiro, and A. Bernardino, “Scalable fire and smoke segmentation from
aerial images using convolutional neural networks and quad-tree search,” Sens., vol. 22, no. 5, pp. 1701,
2022. doi: 10.3390/s22051701.

[20] Y. Li, W. Zhang, Y. Liu, R. Jing, and C. Liu, “An efficient fire and smoke detection algorithm based
on an end-to-end structured network,” Eng. Appl. Artif. Intel., vol. 116, no. 5, pp. 105492, 2022. doi:
10.1016/j.engappai.2022.105492.

[21] M. R. Islam, M. Amiruzzaman, S. Nasim, and J. Shin, “Smoke object segmentation and the dynamic growth
feature model for video-based smoke detection systems,” Symmetry, vol. 12, no. 7, pp. 1075, 2020. doi:
10.3390/sym12071075.

[22] C. Yuan, Z. Liu, and Y. Zhang, “Learning-based smoke detection for unmanned aerial vehicles applied to
forest fire surveillance,” J. Intell. Robot Syst., vol. 93, pp. 337–349, 2019. doi: 10.1007/s10846-018-0803-y.

[23] J. P. Dukuzumuremyi, B. Zou, and D. Hanyurwimfura, “A novel algorithm for fire/smoke detection
based on computer vision,” Int. J. Hybrid Inform. Technol., vol. 7, no. 3, pp. 143–154, 2014. doi:
10.14257/ijhit.2014.7.3.15.

[24] S. Khan et al., “Deepsmoke: Deep learning model for smoke detection and segmentation in outdoor
environments,” Expert. Syst. Appl., vol. 182, no. 1, pp. 115125, 2021. doi: 10.1016/j.eswa.2021.115125.

https://doi.org/10.3390/rs13020196
https://doi.org/10.1109/ACCESS.2022.3145911
https://doi.org/10.1038/s41598-022-05523-1
https://doi.org/10.1016/j.firesaf.2009.08.003
https://doi.org/10.1016/j.ins.2017.08.001
https://doi.org/10.1109/TIP.2019.2946126
https://doi.org/10.1186/s42408-022-00165-0
https://doi.org/10.1016/j.isprsjprs.2022.01.013
https://doi.org/10.1016/j.firesaf.2022.103547
https://doi.org/10.3390/s22051701
https://doi.org/10.1016/j.engappai.2022.105492
https://doi.org/10.3390/sym12071075
https://doi.org/10.1007/s10846-018-0803-y
https://doi.org/10.14257/ijhit.2014.7.3.15
https://doi.org/10.1016/j.eswa.2021.115125


CMC, 2024, vol.79, no.1 799

[25] S. Li, L. Qiao, Y. Zhang, and J. Yan, “An early forest fire detection system based on DJI M300 drone and
H20T camera,” in Int. Conf. Unmanned Aircr. Syst. (ICUAS), Dubrovnik, Croatia, 2022, pp. 932–937.
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