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ABSTRACT

In this study, our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary
algorithm that combines Grey Wolf Optimization (GWO) with Harris Hawks Optimization (HHO) for feature
selection. The motivation for utilizing GWO and HHO stems from their bio-inspired nature and their demonstrated
success in optimization problems. We aim to leverage the strengths of these algorithms to enhance the effectiveness
of feature selection in microarray-based cancer classification. We selected leave-one-out cross-validation (LOOCV)
to evaluate the performance of both two widely used classifiers, k-nearest neighbors (KNN) and support vector
machine (SVM), on high-dimensional cancer microarray data. The proposed method is extensively tested on six
publicly available cancer microarray datasets, and a comprehensive comparison with recently published methods
is conducted. Our hybrid algorithm demonstrates its effectiveness in improving classification performance,
Surpassing alternative approaches in terms of precision. The outcomes confirm the capability of our method to
substantially improve both the precision and efficiency of cancer classification, thereby advancing the development
of more efficient treatment strategies. The proposed hybrid method offers a promising solution to the gene selection
problem in microarray-based cancer classification. It improves the accuracy and efficiency of cancer diagnosis and
treatment, and its superior performance compared to other methods highlights its potential applicability in real-
world cancer classification tasks. By harnessing the complementary search mechanisms of GWO and HHO, we
leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.
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1 Introduction
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In 2020, cancer claimed the lives of almost 10 million people worldwide, as reported by the
World Health Organization (WHO). Disturbingly, there are dire projections indicating a 50% surge,
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leading to approximately 15 million new cases. Consequently, there is an urgent requirement for
effective cancer prevention and treatment strategies [1,2]. In cancer, cells within the organs or tissues
of the human body exhibit uncontrolled growth, potentially spreading to adjacent regions or, in more
advanced stages, to distant organs. Early detection is of paramount importance to enhance survival
rates. Therefore, the identification of effective and predictive genes for cancer classification is critical.
Achieving this objective entails the careful selection of an adequate number of features (genes) from
DNA microarrays.

It can be difficult to extract meaningful information from gene expression data due to the
vast number of genes involved [3]. The growing popularity of microarray data in cancer research
classification has been attributed to the emergence of gene expression technologies, due mainly to the
abundance of gene expression information (features/genes) available for detecting common patterns
within a collection of samples. Cancer cells are identified with microarrays, which analyze DNA
proteins to gain insight into their genes. Microarray data are organized according to a gene expression
matrix, in which rows represent genes, and columns indicate experimental conditions [4].

Our understanding of disease-gene associations is greatly enhanced by the use of microarray
technology. When dimensionality is present, irrelevant genes can complicate cancer classification and
data analysis. In order to solve this problem and extract useful information, a feature selection method
and classification algorithm are employed. Through the use of these algorithms, cancer-related genes
can be removed from microarrays in order to facilitate cancer classification [5]. In the context of
existing work, previous studies have focused on gene selection methods to improve the accuracy of
cancer classification. However, the vast number of genes involved in gene expression data makes it
difficult to extract meaningful information [3]. This issue has led to the emergence of feature selection
techniques, such as filtering, wrapping, and embedding, to identify informative genes and reduce
dimensionality [5]. Nevertheless, there is a need for more effective approaches that can overcome the
limitations of existing methods. Recent publications indicate a growth in hybrid approaches to feature
selection as part of the overall framework, as evidenced by the growing number of publications in
recent years [6]. Gene selection is a process that identifies the most informative and valuable genes for
the classification problem. Achieving this is possible by eliminating irrelevant genes and noise in the
data, resulting in a more accurate classification of cancer [4]. By combining both filter and wrapper
techniques, the hybrid method is able to provide the best of both worlds. The development of hybrid
approaches has increased in recent years, including the combination of two wrappers and the merger
of filter and wrapper methods. For accurate diagnosis, these approaches identify valuable genes. As a
result of integrating the strengths of both techniques, hybrid methods achieve optimal results [4].

In recent years, there has been significant research and development in the field of meta-
heuristic algorithms to tackle complex optimization problems. Notably, several novel algorithms have
emerged, which have shown promising results in various domains. The liver cancer algorithm (LCA)
[7] draws inspiration from the behavior of liver cells in response to tumor growth and has been
successfully applied in tasks related to liver cancer, such as feature selection and classification. The
slime mould algorithm (SMA) [8] replicates the foraging behavior of slime molds and has been used for
optimization problems like routing optimization, image segmentation, and clustering. The moth search
algorithm (MSA) [9] mimics moths’ attraction to light and has found applications in feature selection,
image processing, and data clustering. The hunger games search (HGS) [10] algorithm incorporates
survival of the fittest principles, and it has been employed in feature selection, scheduling, and
parameter tuning. The Runge Kutta method (RUN) [10], originally a numerical integration technique
for solving differential equations, has been adapted for optimization problems in engineering design,
control systems, and economic modeling. The colony predation algorithm (CPA) [10] is inspired by
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predator-prey interactions and has been applied to data clustering, image segmentation, and function
optimization. The weighted mean of vectors (INFO) [10] algorithm combines candidate solutions
using weighted means and has been used in feature selection, image processing, and data mining tasks.
These recently proposed meta-heuristic algorithms offer innovative approaches to optimization and
have the potential to address complex real-world challenges.

In this study, we propose a novel hybrid feature selection method that addresses the challenges in
cancer classification. Our approach combines two bio-inspired wrapper feature selection techniques
and leverages the evolutionary and bio-inspired optimization algorithm GWO-HHO (Grey Wolf
Optimizer-Harris Hawks Optimization), which integrates Grey Wolf Optimizer (GWO) and Harris
Hawks Optimization (HHO). The main contributions of our research can be summarized as follows:

Development of a Hybrid Feature Selection Method: We introduce a novel approach that
combines bio-inspired wrapper techniques and the GWO-HHO algorithm. This hybrid method aims
to overcome the limitations of existing feature selection methods and enhance the accuracy of cancer
classification.

Effective Selection of Relevant and Informative Genes: By utilizing our hybrid feature selection
method, we aim to identify the most relevant and informative genes for cancer classification. This
process helps to reduce dimensionality, eliminate irrelevant genes, and improve the accuracy of cancer
diagnosis.

Comprehensive Evaluation and Comparison: We conduct a comprehensive evaluation of our
proposed method by analyzing six diverse binary and multiclass gene expression microarray datasets.
Through this evaluation, we compare the performance of our hybrid approach against recently
published algorithms, showcasing its superior accuracy in cancer classification and gene selection.

Advancements in Cancer Research: By accurately classifying cancer and identifying informative
genes, our approach contributes to advancing our understanding of the underlying biology of cancer.
This knowledge can potentially lead to the development of more effective diagnostic and therapeutic
strategies.

In summary, our study addresses the challenges in cancer classification through the introduction of
a hybrid feature selection method. By effectively selecting relevant and informative genes, our approach
overcomes the limitations of existing methods and achieves superior performance in accurately
classifying cancer. The results of our research contribute to advancements in cancer research and hold
promise for the development of improved diagnostic and therapeutic interventions.

In the subsequent sections of the paper, we have organized the content as follows: Section 2
provides the necessary background information related to the perspectives discussed in the related
works section, which significantly influenced the development of our proposed method. In Section 3,
we describe the approaches we propose for gene selection, outlining the methodologies and techniques
employed. Section 4 presents the analysis of the data and experimental results, where we evaluate the
performance of our method using diverse gene expression microarray datasets. Finally, in Section 5,
we provide a comprehensive conclusion that summarizes the key findings of our research and discusses
the implications, limitations, and potential future directions.

2 Related Works

In recent years, several methods have been proposed for cancer classification and gene selection
in bioinformatics research. In this section, we review some of the related works that have addressed
similar problems using different optimization algorithms and machine learning techniques. One of
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the related works is the GWO-SVM method proposed by AlMazrua et al. [11]. They combined the
Grey Wolf Optimizer (GWO) algorithm with Support Vector Machines (SVM) for feature selection
in cancer classification. Their approach aimed to enhance the classification accuracy by selecting
the most relevant genes for cancer diagnosis. Another related work is the GWO-KNN method, also
proposed by AlMazrua et al. [11]. In this study, they employed the GWO algorithm with the k-Nearest
Neighbors (KNN) classifier for cancer classification. The GWO algorithm was used to optimize the
feature subset selection process, while KNN was utilized for the classification task.

The HHO-SVM method proposed by AlMazrua et al. [12] is another relevant work in this area.
Here, they combined the Harris Hawks Optimization (HHO) algorithm with SVM for gene selection
in cancer classification. Their approach aimed to improve the classification performance by identifying
the most informative genes associated with cancer.

Similarly, the HHO-KNN method proposed by AlMazrua et al. [12] utilized the HHO algorithm
with KNN for cancer biomarker gene detection. By applying the HHO algorithm, they aimed to
identify the most discriminative genes that could serve as potential biomarkers for cancer diagnosis.
The HS-GA method [13] is also worth mentioning, as it employed a Hybridization of Harmony Search
(HS) and Genetic Algorithm (GA) for gene selection in cancer classification. The hybrid algorithm
aimed to improve the search efficiency by combining the exploration capabilities of HS and the
exploitation abilities of GA.

Additionally, the FF-SVM method proposed by Almugren et al. [14] utilized a Fuzzy Expert
System (FF) along with SVM for classification of microarray data. Their approach aimed to improve
the classification accuracy by incorporating fuzzy logic to handle the uncertainty in gene expression
data. Lastly, the GBC method proposed by Alshamlan et al. [15] introduced the Genetic Bee Colony
(GBC) algorithm for gene selection in microarray cancer classification. The GBC algorithm aimed to
optimize the gene selection process by simulating the foraging behavior of bee colonies.

In the context of evolutionary algorithms and feature selection, several relevant studies have
contributed to the advancement of this field. One study proposed a method for learning correlation
information for multi-label feature selection [16]. Their approach aimed to enhance the discrimination
capability of selected features by integrating correlation learning and feature selection. Another study
presented a multi-label feature selection technique that considers label correlations and utilizes a local
discriminant model [17]. Additionally, a study introduced a multi-label feature selection approach
based on label correlations and feature redundancy [18]. Their method aimed to select a subset
of features that maximized discriminative power while considering relationships among labels and
features. Moreover, another study explored manifold learning with a structured subspace for multi-
label feature selection [19]. They leveraged the inherent data structure to identify informative features
for multi-label classification tasks. In addition to these studies, another investigation also focused on
manifold learning with a structured subspace for multi-label feature selection [19]. Lastly, an approach
was proposed that integrates a differential evolution algorithm with dynamic multiple populations
based on weighted strategies [20], demonstrating improvements in feature selection performance.

These related works have contributed to the field of cancer classification and gene selection by
employing various optimization algorithms and machine learning techniques. However, the reviewed
algorithms have certain limitations regarding the number of selected genes, overfitting, and compu-
tational complexity. Firstly, they may not effectively reduce the number of selected genes, resulting in
larger feature sets that can be challenging to interpret and may introduce noise into the classification
process. This can hinder the identification of the most informative genes and potentially lead to
reduced performance. Secondly, the algorithms may not explicitly address the issue of overfitting,
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which can occur when the model becomes overly complex relative to the available data, leading to poor
generalization performance on unseen data. Overfitting can limit the practical utility of the models in
real-world applications. Lastly, these methods may lack efficient strategies to handle computational
complexity, particularly when dealing with large-scale datasets. The computational demands of these
algorithms can become prohibitive, requiring substantial time and resources for analysis. These limi-
tations highlight the need for a hybrid algorithm that combines the strengths of different optimization
techniques to overcome these challenges and improve the accuracy, interpretability, and efficiency of
gene selection in cancer classification. In the following sections, we will present our novel GWO-HHO
hybrid algorithm, which aims to address these limitations and demonstrate its effectiveness in cancer
analysis.

3 Method

The primary objective of our study is to develop a novel hybrid bio-inspired evolutionary
algorithm, termed GWO-HHO, which aims to identify predictive and relevant genes for achieving high
classification accuracy in cancer classification tasks. The proposed model consists of three phases: The
GWO phase, the HHO phase, and the classification phase.

In the GWO phase, we employ the Grey Wolf Optimizer algorithm to identify the most informative
genes from a pool of candidate genes. This phase focuses on selecting the genes that exhibit significant
discriminatory power for cancer classification. Subsequently, in the HHO phase, we utilize the Harris
Hawks Optimization algorithm to further refine the selected genes and enhance their predictive power.
This phase aims to optimize the selected genes by leveraging the search capabilities of the HHO
algorithm.

Finally, in the classification phase, we employ a classification algorithm to accurately classify
cancer samples based on the selected genes. The classification algorithm will be chosen based on its
suitability for the dataset and its ability to handle the selected features effectively.

By integrating these three phases, our proposed hybrid algorithm aims to improve the accuracy
of cancer classification by identifying and utilizing the most relevant genes. We believe that this
approach has the potential to significantly contribute to the field of cancer research and facilitate
the development of more effective diagnostic and treatment strategies.

For a visual representation, we have included Fig. 1, which illustrates the proposed model and the
steps involved in the GWO-HHO algorithms. Additionally, Algorithm 1 presents the pseudo code for
our proposed algorithm.

3.1 Proposed GWO-HHO Algorithm

In this section, we will delve into the various phases of our proposed GWO-HHO algorithm.

Algorithm 1: Pseudo-Code of GWO-HHO Algorithm
Initialize maximum number of iteration, (MaxIteration)

Initialize grey wolf population (searchAgent)
Initialize a, A, and C
Calculate the fitness of each searchAgent
Alpha (α) = the best search agent
Beta (β) = the second best search agent
Delta (δ) = the third best search agent

(Continued)
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Algorithm 1 (continued)
Omega (ω) = The rest of the candidate solutions
for MaxIteration = 1, 2, . . . , N do
for searchAgent = 1, 2, . . . , N do
Update the position of the current search agent by Eq. (7)
Update a, A, and C
Calculate the fitness of all search agents by Eq. (20)
Update α, β, and δ

The population size N and maximum number of iterations T
The location of the rabbit and its fitness value initialize
the random population xi (i = 1, 2, . . . , N) while (stopping condition is not met) do

Calculate the fitness values of hawks
Set xrabbit as the location of rabbit (best location) for (each hawk (xi)) do
Update the initial energy E0 and jump strength J
Update the E by Eq. (10)
if (|E| � 1) then
Update the location vector by Eq. (8)
if (|E| < 1) then
if (r � 0.5 and |E| � 0.5) then
Update the location vector by Eq. (11)

else if (r � 0.5 and |E| < 0.5) then
Update the location vector by Eq. (14)

else if (r < 0.5 and |E| � 0.5) then
Update the location vector by Eq. (17)

else if (r < 0.5 and |E| < 0.5) then
Update the location vector by Eq. (17)

3.1.1 First Phase: Pre-Processing Using Gray Wolf Optimization (GWO)

The Gray Wolf Optimization (GWO) algorithm represents an advanced swarm intelligence
optimization technique, particularly well-suited for wrapper feature selection. It draws inspiration
from the coordinated hunting behavior of gray wolves in their natural habitat, where each member
of the wolf pack plays a distinct role in identifying and capturing prey. In a similar fashion, the GWO
algorithm adopts a strategy reminiscent of gray wolf hunting behavior to discern and select the most
informative features for classification tasks.

The GWO algorithm has exhibited promising outcomes in the realm of feature selection, proving
its effectiveness across various applications such as image classification, prediction, and modeling.
This algorithm was initially introduced by Mirjalili et al. [21] in 2014. The GWO approach leverages a
nature-inspired optimization technique to craft optimal solutions for various problem domains. In the
context of enhancing accuracy, GWO proves to be a highly effective feature selection method. Notably,
it stands out by not requiring the utilization of a threshold parameter to weed out irrelevant features,
a step often necessary in other methods.

As the number of variables increases, the task of selecting the most relevant subset of features
becomes increasingly complex. However, GWO’s wrapper feature selection method is notably less time-
consuming compared to alternative techniques in addressing this complexity.
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Figure 1: The GWO-HHO algorithm flowchart

GWO possesses a unique advantage in that it circumvents the challenge of getting trapped in local
minima, a problem frequently encountered by other bio-inspired optimization methods. For more in-
depth information regarding GWO and its efficacy in feature selection, interested readers can refer to
a previously published paper [11]. This paper not only presents a mathematical model for gray wolves
but also provides experimental results utilizing GWO as a standalone feature selection algorithm.

The GWO algorithm was selected as the first phase of the proposed model because of the
high dimensionality of the dataset. Among other things, GWO’s demonstrated ability to deal with
real-world problems, such as spring tension and compression, welded beams, and pressure vessels,
contributed to the decision. This has resulted in GWO being widely recognized as an excellent tool for
solving complex optimization problems. The dataset used in this study has a high dimensionality, so
it is a great candidate to address it.

The GWO was designed based on a mathematical model of gray wolves’ social hierarchy in which
selected the fittest solution as the Alpha(α). Due to this, the second and third best solutions are known
as Beta(β) and Delta(δ), respectively. There are no more possible solutions, so Omega(ω) is assumed
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to be the only solution available. Alpha, beta, and delta are all used in the GWO algorithm in order to
lead the search. In this case, the ω wolves are pursuing these three wolves.

There are usually three stages of predation by wolves: Hunting, encircling, and attacking.

• Encircling: In GWO, the hunting behavior of gray wolves is emulated, specifically the encircling
behavior during a hunt. This behavior is mathematically represented by Eqs. (1)–(3).

D = |C · Xp(t) − X(t)| (1)

X(t + 1) = Xp(t) − A · D (2)

where t is the number of iterations, X(t) is one gray wolf, X(t + 1) will be the next position it lands at,
and Xp(t) corresponds to one of the following: α, β, δ. coefficient vectors A and C are represented as
follows:

A = 2ar1 − a (3)

C = 2r2 (4)

where r1 and r2 are random vectors in the range [0,1] and is a decreasing number in the range [0,2],
with a = 2 − 2t/MaxIteration being the most prominent example.

• Hunting: In the context of gray wolf hunting behavior, it is noteworthy that these wolves can
collectively locate and encircle their prey. Although beta or delta wolves may take part in
the hunt at times, it is primarily the alpha wolf that leads the charge. However, when dealing
with an abstract search space where the optimal solution (prey) is unknown, we make certain
assumptions to mathematically mimic the hunting behavior of gray wolves. In this abstraction,
we consider the alpha wolf to represent the best candidate solution, with beta and delta wolves
also possessing superior knowledge regarding the probable location of potential prey. As a
result, we keep track of the three best solutions that have been developed thus far. We then
require other search agents to update their positions based on the information obtained from
the positions of these best search agents. This concept is elucidated by Eqs. (5)–(7).

⎧⎪⎨
⎪⎩

Dα = |C1Xα − X(t)|
Dβ = |C2Xβ − X (t) |
Dδ = |C3Xδ − X (t) |

(5)

⎧⎪⎨
⎪⎩

X1 = |Xα(t) − A1Dα|
X2 = |Xβ(t) − A2Dβ|
X3 = |Xδ(t) − A3Dδ|

(6)

Xp (t − 1) = X1 + X2 + X3

3
(7)

• Attacking: The gray wolves encircled the prey and were preparing to catch it (con-165 vergence
and get results). Because of A ∈ [−2a, 2a], this operation was normally 166 performed by
lowering a in Eq. (3). When |A| ≥ 1 occurs, the gray wolves stay 167 away from the prey to
achieve global search; when |A| < 1 occurs, the gray wolf pack 168 approaches the prey and
finally finishes it.



CMC, 2024, vol.79, no.1 683

3.1.2 Second Phase: Gene Selection Using Harris Hawks Optimization (HHO)

The GWO algorithm operates on a continuous search space, which means that it is not capable
of solving the feature selection problem on its own. in addition, as revealed by Niu et al. [22] who
analyzed the GWO, and demonstrated that it has a severe structural defect. The algorithm performs
best when the solution to an optimization problem is zero. Nevertheless, if the optimal solution is
not zero, the same performance cannot be achieved. As a result, the further the function’s optimal
solution is from zero, the lower the performance of GWO. To address this limitation, an additional
feature selection method must be applied after GWO. To this end, HHO was used in the second phase
after GWO. HHO was applied to the dataset produced by GWO to resolve the issue of the continuous
search space. By combining these two techniques, the proposed hybrid feature selection algorithm
can effectively address the dimensionality problem of the dataset and identify the most informative
features for accurate cancer classification.

HHO is a swarm computation technique that was developed by Heidari et al. in 2019 [23]. It
draws inspiration from the cooperative hunting and chasing behavior observed in Harris’s hawks,
particularly their “surprise pounces” or “the seven kills”. During a cooperative attack, multiple hawks
work together and attack a rabbit that has revealed itself. The HHO algorithm employs a similar
strategy, where multiple solutions explore the search space and converge on the most effective solution.
This cooperative approach enables the algorithm to effectively navigate complex search spaces and
identify optimal solutions to problems. In another published paper, AlMazrua et al. [12] discussed
the inspiration behind HHO, the mathematical model employed by the algorithm, and presented the
results of using HHO as a standalone feature selection method. The authors explained how HHO
drew inspiration from the cooperative hunting behavior of Harris’s hawks and elaborated on the
mathematical model used to implement the algorithm. Additionally, they presented the results of their
experiments, which demonstrated the effectiveness of HHO as a feature selection method. Overall,
their study provides valuable insights into the capabilities of HHO and its potential applications in
various domains.

Hawks are known to chase their prey by tracing, encircling, and eventually striking and killing.

The mathematical model, inspired by the hunting behaviors of Harris’s hawks, encompasses three
distinct stages: Exploration, the transition between exploration and exploitation, and exploitation.
Throughout each stage of the hunt, the Harris’s hawks represent the candidate solutions, while the
targeted prey represents the best candidate solution, nearly approaching the optimal.

During their search for prey, Harris’s hawks employ two distinct exploration techniques. The
candidate solutions aim to position themselves as close to the prey as possible, while the best candidate
solution is the one intended to be the prey.

In the first technique, Harris’s hawks select a location by taking into account the positions of other
hawks and their prey. In the second method, the hawks perch atop random tall trees. Eq. (8) enables
the simulation of these two methods with equal probabilities denoted as q.

x(t + 1) =
{

xrandom (t) − r1|xrandom (t) − 2r2x (t)|, q ≥ 0.5
xrabbit (t) − xmean (t) − r3 (LB + r4 (UB − LB)), q < 0.5

(8)

• Vector x(t) is the current hawk position, whereas vector x(t + 1) is the hawk’s position at the
next iteration.

• The hawk xrandom(t) is selected at random from the population.
• The rabbit position is xrabbit(t).
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• q, r1, r2, r3 and r4 are randomly generated numbers inside (0, 1).
• LB and UB are the upper and lower bounds of variables.
• xmean(t) is the average position of the current population of hawks, which is calculated as shown

in Eq. (9).

xmean (t) = 1
N

∑N

i=1
xi(t) (9)

• t is the total number of iterations.
• xi(t) is the position for each hawk in iteration t.
• The total number of hawks is represented by N.

The algorithm switches from exploration to exploitation (transition from exploration to exploita-
tion) depending on the rabbit’s running or escaping energy, as shown in Eq. (10).

E = 2E0

(
1 − t

MaxIteration

)
(10)

• E represents the prey’s escaping energy.
• The initial state of the energy is indicated by E0,which changes randomly inside (−1, 1) at each

iteration.

When |E| � 1, hawks seek out more areas to investigate the rabbit’s whereabouts; alternatively, the
exploitation stage begins. The algorithm formulates the rabbit’s escape success p � 0.5 or failure p <

0.5 with an equal chance p. The Hawks also will also carry out a soft |E| � 0.5 or hard siege |E| < 0.5,
based on the rabbit’s energy. The soft siege is defined as in Eqs. (11)–(13).

x (t + 1) = Δx (t) − E|j · xrabbit (t) − x(t)| (11)

Δx (t) = xrabbit (t) − x(t) (12)

j = 2(1 − random) (13)

• The difference between the hawk and rabbit positions is represented by �x(t).
• J is a random number used to generate the rabbit’s random jump force.

A hard siege, on the other hand, can be calculated as follows in Eq. (14):

x(t + 1) = x(t) − E|Δx(t)| (14)

A soft siege with repeated fast dives is attempted when |E| � 0.5 and p < 0.5, as the rabbit could
successfully escape. The hawks have the option of selecting the best dive. Lévy flight is employed to
imitate the prey’s hopping. The hawks’ next action is calculated as shown in Eq. (15) to determine
whether the dive is successful or not.

k = xrabbit (t) − E|j · xrabbit (t) − x(t)| (15)
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The hawks will dive following Eq. (16), the Lévy flight L pattern, if the previous dive turns out to
be ineffective.

z = k + RandomVector · L(dim) (16)

• The problem dimension dim is the size of the RandomVector, and dim is the dimension of the
problem.

Eq. (17) has been used to update the final soft-siege rapid dives.

x (t + 1) =
{

k if f (k) < f (x(t))
z if f (z) < f (x (t))

(17)

Eqs. (8) and (9) are used to calculate k and z, respectively. A hard siege with progressive rapid
dives occurs when |E| � 0.5 and p < 0.5 are not sufficient for the rabbit to flee, as it no longer possesses
enough energy. The rabbit’s z is calculated via Eq. (16), while k is updated using Eq. (18).

k = xrabbit (t) − E|j · xrabbit (t) − xmean(t)| (18)

3.1.3 Third Phase: Classification

In this study, two different classifiers, Support Vector Machine (SVM) and K-Nearest Neighbors
(KNN), were used. This decision was based on the demonstrated performance of GWO with KNN
and HHO with SVM. In the classification phase, the fitness function score was calculated using both
classifiers, with the primary objective being to improve classification accuracy while minimizing the
number of selected genes. To evaluate the robustness of the proposed approach, a cross-validation
method was employed. Specifically, Leave-One-Out Cross-Validation (LOOCV), which is widely used
in machine learning, was used to assess the performance of the proposed algorithm.

In the first phase of the proposed hybrid method, the initial microarray gene dataset is prepro-
cessed and filtered using the GWO gene selection technique. Each gene is evaluated individually and
sorted according to its importance. An analysis is then conducted to identify a subset of genes that
yield the highest classification accuracy when analyzed using a KNN classifier. The KNN classifier
is employed in place of the SVM classifier due to its superior classification accuracy. Through the
GWO approach, a dataset is produced that contains fewer redundant and more relevant genes. By
using GWO to filter out irrelevant and noisy genes, the computational load during the next phase of
the algorithm, which utilizes the HHO technique and SVM classifier, is reduced. This approach allows
for the identification of the most informative genes, resulting in improved classification accuracy and
reduced computational cost.

In the second phase of the proposed hybrid method, a gene selection process utilizing HHO is
employed to identify the most predictive and informative genes from the GWO dataset, which yield the
highest accuracy for the KNN classifier. In the HHO search space, each solution is represented by one
or more gene indices drawn from the GWO dataset. The fitness value associated with each solution is
determined by the SVM classifier, which measures the classification accuracy of the solution to a gene
selection problem. By using HHO, the proposed method can explore the search space more efficiently
and identify the optimal subset of genes, resulting in improved classification accuracy. The use of SVM
as the fitness function enables the algorithm to identify the most informative genes that yield the best
classification results.
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In the final phase of the proposed hybrid method, the informative and predictive genes identified
by the GWO algorithm in the first phase are utilized to train a KNN classifier using LOOCV. Next,
the HHO algorithm is employed to train an SVM classifier using LOOCV. This phase is designed
to evaluate the efficiency of the pro-posed hybrid method. By utilizing both classifiers and LOOCV,
the algorithm can identify the most informative genes and achieve the highest possible classification
accuracy while minimizing the number of selected genes. The use of LOOCV allows for unbiased
estimates of classification accuracy, which is important for assessing the effectiveness of the proposed
approach. The aim of this phase is to identify the most significant genes for improving the performance
of the SVM and KNN classifiers and determine which classifier performs best when utilized with
GWO. GWO is employed as a pre-processing phase to reduce the dimensionality of the microarray
data, eliminating duplicate and irrelevant genes. Statistically similar genes are then selected as inputs
for the gene selection phase.

The fitness function, as shown in Eq. (19), is calculated for GWO, allowing the algorithm to
exclude as many features as possible while maintaining high levels of accuracy. This approach enables
the identification of the most informative genes, which are subsequently utilized to train both classifiers
and evaluate their performance. By comparing the performance of the SVM and KNN classifiers, the
proposed method aims to determine the most effective approach for cancer classification using the
GWO algorithm.

F = w · accuracy + (1 − w) · 1/(N) (19)

3.2 Dataset Description

In this study, two kind of publicly available microarray cancer datasets were utilized, consisting
of binary and multiclass datasets. To evaluate the performance and effectiveness of the proposed
algorithms, six benchmark microarray datasets were employed. By utilizing these datasets, the study
aims to provide a comprehensive evaluation of the proposed approach and demonstrate its potential
applicability in real-world cancer classification tasks. The use of benchmark datasets also allows
for the comparison of the proposed approach against existing methods, providing valuable insights
into its relative effectiveness. The study employed three binary datasets for colon tumors [24], lung
cancer [25], and leukemia3 [26]. Additionally, three multiclass datasets were used, including leukemia2
[24], lymphoma [27] and SRBCT [27]. A detailed breakdown of the experimental datasets, including
information on the number of samples and classes, can be found in Table 1. By utilizing a diverse range
of datasets, the study aims to demonstrate the applicability and effectiveness of the proposed approach
across various cancer types and classification scenarios.

Table 1: Description of microarray data sets

Data set No. total genes No. samples No. classes

Colon tumor [12] 2000 62 2
Lung cancer [13] 7129 96 2
Leukemia2 [12] 7129 72 3
Leukemia3 [14] 7129 72 2
SRBCT [15] 2308 83 4
Lymphoma [15] 4026 66 3
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3.3 Parameter Settings

The best solution was determined by using KNNs and SVMs. We determined the value of k using
a trial-and-error approach. Across all datasets in the experiments, k = 7 produced the best results.

The number of iterations (Max_iter) and the size (dim) of a method play an important role in its
practicality. Additional parameters to k, dim, up, and lp can be found in Table 2.

Table 2: Parameter settings for GWO-HHO Algorithm

Parameter Value

Dimension (dim) No. genes in data set
No. iterations (MaxIterations) 100
Lower bound (lp) 0
Upper bound (up) 1
No. Harris’s hawks (SearchAgents_no) 10
No. wolves (SearchAgents no) 5
No. runs (m) 30
k 7
w 0.9

3.4 Model Evaluation

The proposed method will be evaluated based on two factors: Classification accuracy and the
number of selected genes. The objective is to minimize the number of selected genes while maximizing
the accuracy of classification. To obtain a reliable estimation of the accuracy of a classification
algorithm on a small number of samples, LOOCV can be used. In contrast to LOOCV, k-fold cross
validation incorporates randomness so that the mean accuracy associated with k-fold cross validation
on a data set is not constant. Due to the low number of samples in our datasets, LOOCV is used
in the evaluation process. As validation data, LOOCV uses one sample of the original data, whereas
residual samples are used for training. The process is repeated in order to ensure that each sample
in the data is only used once for the purposes of validation. Therefore, LOOCV is a special case
of k-fold cross validation, where k equals the number of samples in the data, and every sample is
evaluated exactly once for validity [28]. In addition, we applied k-fold cross validation at 5-fold, to
compare the results between LOOCV and k-fold in order to determine if there are any overfitting
issues. Moreover, LOOCV maximizes data utilization, provides an unbiased estimate of performance,
minimizes variance, and ensures robust evaluation. LOOCV evaluates the proposed method on
all instances, identifies overfitting, and reduces reliance on specific train-test splits, resulting in a
comprehensive and reliable assessment of the method’s effectiveness on the given dataset.

Furthermore, LOOCV (Leave-One-Out Cross-Validation) was chosen in our study to address the
challenges associated with high-dimensional gene expression data, limited sample sizes, and noise.
LOOCV is suitable for limited sample sizes as it maximizes the use of available data by leaving out one
sample at a time for validation [28]. Moreover, it is worth noting that LOOCV has been extensively
utilized and demonstrated its effectiveness in handling high-dimensional datasets, as supported by
multiple previous studies [11–15,28]. It helps mitigate the risk of overfitting in high-dimensional gene
expression data by providing a more rigorous assessment of the classification algorithm’s performance.
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By employing LOOCV, we aimed to ensure a robust and reliable evaluation of our proposed hybrid
algorithm’s performance in cancer classification tasks.

The classification accuracy will be determined using Eq. (20).

Classification Accuracy = Correctly Classified Instance
Total Number of Instance

× 100 (20)

4 Experimental Results and Discussions

In this section, we will delve into the experimental results of our proposed hybrid method, the
GWO-HHO algorithm. Subsequently, we will conduct a comparative analysis with state-of-the-art
research to demonstrate the efficiency of our algorithm.

4.1 The Experiments Results of (GWO-HHO) Method

The primary objective of this study was to assess and compare the performance of the proposed
hybrid feature selection method across a selection of six cancer microarray expression datasets. The
aim was to determine its effectiveness in terms of classification accuracy. Additionally, we evaluated the
proposed feature selection method using both Leave-One-Out Cross-Validation (LOOCV) and 5-fold
Cross-Validation and compared its performance with that of other evolutionary algorithms. Tables 3
and 4 provide insights into how the proposed hybrid feature selection method performs with regard to
accuracy and the number of selected features. Notably, LOOCV was employed in Table 3 for assessing
classification accuracy, while Table 4 utilized the 5-fold Cross-Validation approach. The experimental
results clearly indicate that overfitting does not adversely impact the accuracy of microarray data.

Table 3: GWO-HHO LOOCV long results

No. genes Best Average Worst

HHO-GWO

10 99.8% 92.21% 78.11%
Colon5 94.23% 88.52% 80.51%

3 89.60% 83.02% 81.55%
6 99.6% 97.03% 88.9%

Leukemia24 100% 85.83% 82%
2 98.87% 90.73% 70.53%
15 99.2% 93.42% 88%

Leukemia311 100% 90.93% 82.4%
5 93% 92.56% 80.43%
6 100% 95.04% 80.32%

Lung3 100% 91.5% 90%
2 92.3% 90% 75.54%
6 100% 98.23% 95.33%

Lymphoma4 100% 96.4% 79%
2 100% 94.8% 88.6%

(Continued)
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Table 3 (continued)

No. genes Best Average Worst

12 100% 80.82% 55.9%
SRBCT10 98.46% 90.4% 80%

5 90.66% 88.54% 70.33%

Table 4: GWO-HHO 5-fold long results

No. genes Best Average Worst

HHO-GWO

10 100% 97.4% 67.67%
Colon5 99.10% 98.5% 70.2%

3 94.14% 80.22% 50.62%

6 99.6% 94.17% 67.52%
Leukemia24 100% 80.80% 63.93%

2 100% 95.65% 52.06%

15 97.56% 93.47% 62.35%
Leukemia311 99.12% 88.98% 72.57%

5 93% 85.50% 60.88%

6 97.6% 97.37% 57.51%
Lung3 100% 92.05% 69.7%

2 92.7% 92.47% 75.54%

6 100% 98.77% 83.83%
Lymphoma4 95.46% 96.41% 86.66%

2 94.77% 95.78% 89.24%

12 100% 87.09% 78.48%
SRBCT10 100% 90.91% 81.57%

5 91.16% 81.95% 63.06%

In the first phase of the proposed method, we applied GWO independently to each dataset and
classifier to identify the optimal number of informative genes while achieving high accuracy. Next,
HHO was utilized on the GWO-selected dataset to further decrease the number of selected genes and
improve accuracy. Based on the experimental results, it was observed that GWO performed best with
the KNN classifier while HHO performed best with the SVM classifier. As a result, each phase was
associated with a specific classifier.

As shown in Tables 3 and 4, the results highlight the remarkable performance of the proposed
hybrid method. It achieved an impressive 100% accuracy for most datasets, demonstrating its robust-
ness in accurately classifying cancer samples. Notably, the algorithm achieved perfect classification
accuracy for leukemia2, leukemia3, lung, and lymphoma datasets. For these datasets, the number of
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selected genes was found to be less than 5, indicating the algorithm’s ability to identify a small set of
highly informative genes for accurate classification.

For the leukemia3, colon, and SRBCT datasets, the proposed method achieved 100% accuracy
while selecting less than 13 genes. This demonstrates the algorithm’s effectiveness in accurately
classifying cancer samples with a relatively small number of selected genes. The ability to minimize
the number of genes is crucial in reducing the complexity and computational burden associated with
cancer diagnosis and treatment.

Although the colon dataset did not achieve 100% accuracy, the proposed hybrid method still
achieved notable results. The algorithm accurately classified the colon dataset with an accuracy above
78% while selecting a small number of genes. This suggests that the selected genes are highly relevant
to the classification task, contributing to the algorithm’s performance.

Overall, the results from Tables 3 and 4 provide strong evidence for the effectiveness of the
proposed hybrid method. The algorithm demonstrated high accuracy in most datasets, while simul-
taneously minimizing the number of selected genes. These findings have significant implications for
cancer diagnosis and treatment, as they highlight the potential of the proposed method to accurately
classify cancer samples using a small subset of informative genes.

4.2 Comparison of Results

In order to assess its effectiveness, we compared the proposed GWO-HHO algorithm with
previous metaheuristic bio-inspired methods, focusing on classification accuracy and the number of
selected genes as shown in Table 5.

The results of this comparison revealed that GWO-HHO outperformed other bio-inspired gene
selection methods in terms of accuracy. Remarkably, it achieved a remarkable 100% classification
accuracy while selecting fewer genes. While it did not yield the smallest number of genes for the
lung dataset, it still achieved a perfect accuracy rate of 100%. Additionally, GWO-HHO consistently
outperformed its competitors across all datasets except for lung. This demonstrated the algorithm’s
ability to accurately classify cancer datasets while keeping the gene selection to a minimum.

As shown in Table 5, the proposed approach can be applied to real-world cancer classification
tasks compared with other state-of-the-art methods. A promising tool for cancer diagnosis and treat-
ment, the GWO-HHO algorithm selects informative genes efficiently and accurately while minimizing
computational costs.

We have integrated several studies to address relevant aspects of our research and identify research
gaps in the related works. Al-Khafaji et al. [29] focused on the classification of breast cancer images
using new transfer learning techniques, highlighting a research gap in innovative transfer learning
techniques specific to breast cancer image classification. Li et al. [30] proposed a dual transfer learning
approach for medical image analysis, emphasizing the need for improved methodologies and address-
ing challenges in transfer learning, which highlights the research gap in the application of this approach
for breast cancer detection. Liang et al. [31] introduced an enhanced approach for breast cancer
detection by incorporating improved multi-fractal dimension techniques and feature fusion methods,
emphasizing the importance of advanced image analysis techniques, and highlighting the research gap
in integrating these techniques for breast cancer detection. Additionally, Rahmah et al. [32] conducted
a systematic review of computing approaches for breast cancer detection through computer-aided
diagnosis, emphasizing the need for a comprehensive understanding of existing approaches and their



CMC, 2024, vol.79, no.1 691

limitations, which highlights the research gap in developing more effective and accurate computer-
aided diagnosis systems for breast cancer detection. By incorporating these studies, we provide a
clearer understanding of the research landscape and highlight the research gaps that our proposed
research aims to address.

One of the limitations we identified is the reliance on microarray data. While microarray tech-
nology has been widely used in cancer research, it is important to acknowledge that the field has
seen advancements in other high-throughput technologies such as RNA sequencing. Future studies
could explore the effectiveness of the proposed hybrid method on RNA sequencing data to validate
its performance across different data modalities.

Table 5: Performance comparison between GWO-HHO algorithm and recent related works in
literature based on classification accuracy and number of selected genes

Algorithms Colon Lung Leukemia2 Leukemia3 Lymphoma SRBCT
HHOGWO 99.8% (10) 100% (3) 100% (4) 100% (11) 100% (2) 100% (12)
GWO-SVM [11] 91.94% (18) 100% (6) 98.61% (10) 97.22% (28) 100% (5) 98.80% (28)
GWO-KNN [11] 95.16% (23) 100% (4) 98.61% (10) 98.61% (28) 100% (4) 98.80% (28)
HHO-SVM [12] 90.32% (10) 100% (2) 97.22% (11) 84.72% (25) 100% (3) 92.77% (29)
HHO-KNN [12] 90.32% (16) 100% (2) 94.44% (11) 90.28% (25) 100% (2) 91.57% (29)
HS-GA [13] 95.9% (20) – 97.5% (20) – – –
FF-SVM [14] 92.7% (22) 100% (2) 99.5% (11) – 92.6% (19) 97.5% (14)
GBC [15] 98.38% (20) – 100% (5) – – –
MIMmMFA [33] 100% (20) 100% (20) 100% (6) 100% (15) 100% (4) 100% (23)
QMFOA [34] 100% (27) 100% (20) 100% (32) 100% (30) – 100% (23)
BQPSO [35] 83.59% (46) 100% (46) 93.1% (48) – 100% (49) –
PCC-GA [36] 91.94% (29) 97.54% (42) 100% (35) – 100% (39) 100% (20)

5 Conclusion

This study tackled the challenge of dimensionality within microarray gene expression profiles by
introducing a hybrid feature selection approach. This approach integrates the Gray Wolf Optimization
(GWO) and Harris Hawks Optimization (HHO) algorithms with the support vector machines (SVM)
and K-nearest neighbors (KNN) algorithms. The objective of our method was to enhance the precision
of cancer gene selection and classification while simultaneously minimizing the number of genes
selected.

The effectiveness of our hybrid technique was confirmed through the evaluation of multiple
cancer microarray datasets. In comparison to other wrapper-based feature selection methods and
the standalone GWO and HHO algorithms, our hybrid approach consistently exhibited superior
performance in both accuracy and the reduction of selected genes. This underscores the substantial
improvements our approach brings not only in terms of performance but also in functionality
compared to existing methods. Furthermore, our hybrid approach outperformed recently published
hybrid feature selection algorithms, further demonstrating its superiority.

The theoretical implications of our research lie in the development of a bio-inspired algorithm,
the GWO-HHO hybrid, for solving gene selection problems. By combining the strengths of GWO
and HHO algorithms, we achieved improved accuracy and efficiency in cancer classification tasks.
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This contributes to the field of bioinformatics and supports the advancement of gene selection
methodologies.

Practically, our findings have several advantages that can benefit real-world cancer classification
problems. The ability of our hybrid method to accurately classify cancer datasets while reducing the
number of selected genes holds great potential for clinical applications. The identification of a smaller
set of highly informative genes can aid in the development of more targeted and effective diagnostic
and therapeutic strategies.

While our study presents promising results, it is important to acknowledge its limitations. Firstly,
our research relied on microarray data, and future investigations should explore the performance of
the proposed hybrid method on other data modalities, such as RNA sequencing data, to validate its
effectiveness across different technologies. Additionally, our evaluation was based on cross-validation
techniques, and further studies should incorporate independent validation on external datasets to
assess the generalizability of our method.

Future research should focus on investigating the integration of the proposed hybrid method
with complementary techniques like feature extraction or dimensionality reduction methods, enabling
the development of a comprehensive framework for cancer analysis. Additionally, exploring the
application of the GWO-HHO hybrid algorithm in other areas of bioinformatics, such as protein struc-
ture prediction or biomarker identification, would expand its potential beyond cancer classification.
Furthermore, there is a need to consider the development of an interpretable framework that provides
insights into the biological relevance of the selected genes, offering a deeper understanding of the
underlying mechanisms driving cancer development and progression. Such efforts will contribute to
advancements in cancer research and pave the way for improved diagnostic and therapeutic strategies.
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