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ABSTRACT

A consumption of 46.9 million tons of processed tomatoes was reported in 2022 which is merely 20% of the
total consumption. An increase of 3.3% in consumption is predicted from 2024 to 2032. Tomatoes are also rich
in iron, potassium, antioxidant lycopene, vitamins A, C and K which are important for preventing cancer, and
maintaining blood pressure and glucose levels. Thus, tomatoes are globally important due to their widespread usage
and nutritional value. To face the high demand for tomatoes, it is mandatory to investigate the causes of crop loss
and minimize them. Diseases are one of the major causes that adversely affect crop yield and degrade the quality
of the tomato fruit. This leads to financial losses and affects the livelihood of farmers. Therefore, automatic disease
detection at any stage of the tomato plant is a critical issue. Deep learning models introduced in the literature
show promising results, but the models are difficult to implement on handheld devices such as mobile phones
due to high computational costs and a large number of parameters. Also, most of the models proposed so far
work efficiently for images with plain backgrounds where a clear demarcation exists between the background and
leaf region. Moreover, the existing techniques lack in recognizing multiple diseases on the same leaf. To address
these concerns, we introduce a customized deep learning-based convolution vision transformer model. The model
achieves an accuracy of 93.51% for classifying tomato leaf images with plain as well as complex backgrounds into
13 categories. It requires a space storage of merely 5.8 MB which is 98.93%, 98.33%, and 92.64% less than state-
of-the-art visual geometry group, vision transformers, and convolution vision transformer models, respectively. Its
training time of 44 min is 51.12%, 74.12%, and 57.7% lower than the above-mentioned models. Thus, it can be
deployed on (Internet of Things) IoT-enabled devices, drones, or mobile devices to assist farmers in the real-time
monitoring of tomato crops. The periodic monitoring promotes timely action to prevent the spread of diseases and
reduce crop loss.
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1 Introduction

According to data collected from the Food and Agriculture Organization Corporate Statistical
Database, the world produced 189.1 million metric tonnes of tomatoes on 5,167,087 hectares in 2021
[1]. Average production is reported as 36.6 metric tonnes/hectare (mT/ha) [2]. As per data revealed
by Business Standard News, a decline of approximately 4% was observed from 2019 to 2022 in the
production of tomatoes [3,4].

Being a rich source of iron, potassium, antioxidant lycopene, and vitamins A, C and K, tomatoes
are useful in preventing cancer, maintaining blood pressure, regulating blood glucose levels, and heart
health. Thus, the consumption of tomatoes reached approximately 234.5 million metric tons in the
year 2023. As for the statistics, 80% of tomatoes are consumed fresh and 20% are consumed as purees,
soups, tomato ketchup, pickles, juices, sauces, etc. [5]. Moreover, an increase of 3.3% in demand for
tomatoes is estimated from 2024 to 2032 [6].

Thus, a decline in production and an increase in demand become a driving force to investigate the
causes of tomato crop loss and minimize the loss. Based on the literature, disease-prone nature, climate
change, decrease in soil fertility, and lack of water availability are the major causes of tomato crop loss
[7]. The susceptibility of tomato crops to diseases such as early blight, late blight, gray leaf mold, etc.,
is one of the leading factors for its crop loss. In the past decade, the maximum crop loss was observed
due to the viral disease ‘yellow leaf curl’ and the fungal disease ‘late blight’ [8,9].

Diseases in tomato crops can be marked in the form of lesions on leaves, stems, blooms, and fruits
of plants. The unique visual symptoms of each disease can be used for its detection [10]. Manual
disease detection relies on global features such as texture, shape, the color of disease spotsx, etc. [11].
These methods are time-consuming and require expertise in disease identification [12]. Also, these
techniques fail to predict crop loss based on disease severity. In recent years, some researchers have
applied Deep Learning (DL) models to accurately detect diseases using the datasets collected from
laboratories or fields [13–16]. The DL models proposed by [7–12] gave the highest accuracy of 99.35%
in disease detection if the training and testing datasets were part of the same dataset. The models
proposed by Mohanty et al. [14] and Ferentinos [15] reported a training accuracy of more than 99%
but the performance was reduced to 35% when tested on an unseen dataset [13]. Now, Barbedo [16]
highlighted asome factors influencing the performance of DL models applied to detect plant leaf
diseases. They claimed that the proposed approaches still lack developing a generic tool for assisting
farmers in real life.

Further advancements in DL techniques and the success of transformer neural networks in
Natural Language Processing (NLP) tasks inspired the researchers to extend their applicability in
image classification. Thus, the authors in [17] introduced Vision Transformers (ViT) for plant disease
detection. The model exhibits slightly lower recognition accuracy than similar sized Convolutional
Neural Networks (CNNs) trained on the same datasets. This decrease in accuracy can be attributed to
two main reasons. Firstly, transformers process images as patches, leading to the omission of important
local features like edges and lines, resulting in a loss of fine-grained details that CNNs captures well.
Secondly, the attention layer in transformers may not be as efficient as the convolutional layers in
CNNs for extracting fine details in terms of local features. To improve the performance of ViT model,
Wu et al. proposed a hybrid model that incorporates a convolutional layer within the transformer
architecture and introduced convolution to the ViT model. They proposed a Convolutional vision
Transformer (CvT) model [18]. In a CNN, the convolution is performed on the input data using a
filter to produce a feature map [19]. We perform element-wise multiplication of the input matrix and
the filter element followed by calculating sum of the results to extract a feature. For example, Input
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matrix:

⎡
⎣

1 0 1
0 1 1
1 0 1

⎤
⎦, and filter:

⎡
⎣

1 2 3
4 5 6
7 8 9

⎤
⎦ are used to calculate the convolved feature as demonstrated

below. The numbers in the input matrix and the filter that are multiplied together are represented with
the same color.

Convolved Feature = (1 × 1) + (0 × 2) + (1 × 3) + (0 × 4) + (1 × 5) + (1 × 6) + (1 × 7) + (0 × 8)

+ (1 × 9)(1 × 1) + (0 × 2)

Similarly, all other values of the feature map are calculated as shown in the output feature map
below.

Convolution operation in the VGG16 model applies filters to extract hierarchical features, empha-
sizing spatial patterns. In VIT and CvT models, convolution is replaced by self-attention mechanisms,
enabling global contextual understanding, and facilitating improved recognition of intricate disease-
related details.

However, Deep learning (DL) and computer vision techniques have proven their potential in
the automation of disease detection in tomato crops. Noisy background, identification of multiple
diseases on the same plant or part of the plant, and varying symptoms of the same disease in different
geographical regions create difficulty in disease identification [20]. Moreover, high computation costs,
long training time, and the requirement of large storage space to deploy a DL model restrict their real-
life implementation using handheld devices such as mobile phones, drones and IoT devices. Moreover,
the size and quality of the dataset used for training the DL model highly affect its performance in
disease detection [21]. This leaves room for improvement in existing models.

To address the above-mentioned challenges, we propose a tailored multi-model architecture
‘Swift-Lite-CvT’ for disease detection in tomato plants to assist farmers and plant pathologists. The
architecture is an integration of customized VGG16, ViT, and CvT models.

The key contributions of this study are listed below:

• Preparing the labelled dataset including 13 tomato disease classes with plain, as well as, complex
backgrounds.

• Developing a multimodal ‘Swift-Lite-CvT’ deep learning-based architecture for tomato disease
detection.

• Improving disease detection accuracy for datasets with complex backgrounds and multiple
diseases on the same plant.
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• Reducing computation time and increasing the reliability of the DL-based architectures applied
for tomato disease detection.

The remaining structure of the paper is as follows: Section 2 provides an overview of the related
works. Section 3 presents the materials and methods including details about dataset preparation, and
models employed for the experiment. Section 4 focuses on the experiments, Section 5 demonstrates the
results obtained from trained models. Section 6 illustrates the discussion and provides a comprehensive
analysis of the findings. The last section highlights the conclusions drawn and the future scope.

2 Related Works

In this section, we present the applied models, and the advantages and limitations observed in
works available in literature. Thangaraj et al. [22] reviewed the challenges and limitations of the ML
andDL models employed for tomato plant disease identification. Agarwal et al. [23] introduced a
CNN model and evaluated its performance against established CNN models like VGG16, MobileNet,
and InceptionV3. The proposed model achieved an accuracy of 91.20%, surpassing all the above-
mentioned models. Similarly, Ahmad et al. [24] collected a real field dataset comprising 317 images
and applied augmentation techniques to increase the dataset size. Finally, they prepared an augmented
dataset comprising 15,216 images. They applied VGG-16, VGG-19, ResNet, and Inception V3 models
on the collected as well as augmented datasets. Inception V3 achieved the highest accuracy of
99.60%, and 93.70% on the augmented and collected dataset, respectively. Norria et al. [25] proposed
an automated system for tomato diseases classification using ResNet50 CNN model. This system
classifies the tomato leaf dataset into healthy, septoria leaf and late blight classes. The system reported
an average accuracy of 92.08%. Next, Chowdhury et al. [26] used a plant village dataset for their studies.
They applied ResNet18, MobilenetV2, InceptionV3, and DenseNet201 for binary classification, 6-
class classification and 10-class classification. InceptionV3 outperformed and achieved an accuracy
of 99.2% for binary classification. The DenseNet201 model attained 97.99% and 98.05% accuracy for
6-class and 10-class classification, respectively. This study has the potential for the early identification
and automated diagnosis of diseases in tomato crops. Furthermore, by integrating a feedback system,
this framework can offer valuable insights, treatments, preventive strategies, and disease control
techniques, ultimately resulting in enhanced crop yields. In line with the previous works, Gonzalez-
Huitron et al. [27] developed a GUI interface for the detection of disease in tomato leaves. For the
experiments, they implemented lightweight CNN architectures on Raspberry Pi 4 microcomputer.
Hassan et al. [28] developed an efficient DL model for disease detection in tomato leaves. They
compared four DL models namely InceptionV3, InceptionResNetV2, MobileNetV2 and Efficient-
NetB0 on the plant village dataset. EfficientNetB0, and MobileNet attained 99.56%, and 97.02%
accuracy, respectively. However, MobileNet reports lower accuracy than EfficientNetB0, but its
smaller number of parameters and lightweight architecture promote its real-life application using
mobile devices. The model fails to handle noisy dataset, and complex background. Thus, leaves a
scope for further research.

In all the above-discussed research works, a large training dataset is required. To address this
issue, the authors in [29] applied a hybrid model developed using a Conditional Generative Adversarial
Network (C-GAN) and a DL model. The model can generate synthetic images similar to real images
and increase the dataset size. The authors applied DenseNet121 model for 5-class, 7-class and 10-
class classification on the generated dataset and reported accuracy of 99.51%, 98.56% and 97.11%,
respectively. Zhou et al. [30] used AI challenger dataset for tomato leaf disease detection using
restructured residual dense network (RDN). This approach reduces the number of parameters, so it is
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an efficient model with less computation and attained an accuracy of 95%. Now, Paymode et al. [31]
focused on disease detection in grapes and tomato crops. They collected real field datasets from
Nashik, and Maharashtra, India for grape crops and used publicly available plant village dataset
for tomato crops. They applied VGG16 model and achieved an accuracy of 95.71% for disease
classification in tomatoes and 98.40% for grapes. The study deals with challenges in both collecting
and preparing a genuine dataset, as well as the limited number of epochs used for training the data.
Consequently, deploying this model on handheld devices with limited storage could pose challenges.

Similarly, Vadivel et al. [32] also applied VGG16 CNN model and gained a high accuracy of 99.5%
on the plant village dataset. This study faces a challenge when tested on real-life datasets. Similarly,
Tarek et al. [33] evaluated several DL models like Alex Net, ResNet50, InceptionV3, MobileNetV1,
MobileNetV2 and MobileNetV3 on plant village datasets for tomato disease detection. MobileNetV3
model outperformed all the above-mentioned models and attained an accuracy of 99.81%. Moreover,
the size of the model is reduced to 34 MB. Wang et al. [34] observed that existing classifiers face issues
in recognizing diseases with similar symptoms, more than one disease on the same plant, and small
disease lesions. Therefore, they collected the dataset from the three districts of Beijing, China and
applied a combination of CNN models and transformer architecture for tomato disease detection.
The model reported an accuracy of 96.30% on the real dataset. The authors in [35] used four publicly
available datasets namely plant village [36], ibean [37], AI challenger [38] and PlantDoc [39] for plant
disease detection. They applied Inception convolutional vision transformer model on the above-
mentioned datasets and achieved an accuracy of 99.97%, 99.22%, 86.89% and 77.54%, respectively.
But the model reported a low accuracy of 77.54% when applied to dataset with a complex background.
Now, Alzahrani et al. [40] compared the performance of DenseNet169, ResNet50V2 and ViT models
on the publicly available dataset [13] comprising leaf images with a plain background. DenseNet121
achieved the highest accuracy of 99%. Also, the models are intense and cannot be implemented on
handheld devices. And, the model fails to deal with real-world data. The most related works and their
limitations are summarized in Table 1.

Table 1: Summary of related works

References Number of
classes

Contributions Accuracy Limitations

Agarwal et al. 2020 [23] 10 Proposed CNN model has a storage
space requirement of 1.5 MB.

91.2% Scope to improve
accuracy. Not evaluated
for dataset with complex
background.

Norria et al. 2021 [25] 3 Pre-processing, segmentation,
feature extraction followed by
CNN for tomato leaf disease
classification.

92.08%

Hassan et al. 2021 [28] 38 Replaced standard convolution
with depth separable convolution to
reduce number of parameters and
computation cost in EfficientNetB0
models.

99.56% Lacks in handling noisy
dataset, and complex
background.

(Continued)
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Table 1 (continued)

References Number of
classes

Contributions Accuracy Limitations

Paymode et al. 2022
[31]

10 Focused on the early detection,
classification, and analysis of
diseases, particularly in tomatoes
and grapes, to aid agricultural
progress. Implemented VGG16
model, for Multi Crops Leaf
Disease (MCLD) detection.

95.71% in tomatoes
and 98.40% in
grapes

Scope to validate the
results on dataset with
complex background.

Wang et al. 2022 [34] 7 Improved the efficiency of feature
extraction in plant images using a
multi-grained model based on
vision transformer and useful for
the small training dataset.

96.30% The model is space
intensive. Also, there is
scope to evaluate on
large dataset.

Yu et al. 2022 [35] 27 Proposed a hybrid model using
CNN and transformer architecture.
Utilized soft split token embedding
to capture local information from
surrounding pixels and patches,
enhancing fine grained feature
learning.

77.54% Lacks in handling
variations in disease
symptoms and
environmental factors.
Scope to improve the
accuracy.

Alzahrani et al. 2023
[40]

10 Provided a plain and low cost
DenseNet121 for diagnosing
tomato leaf diseases only when user
take an image of the affected plant’s
leaf.

99% Scope to evaluate
images with complex
background. Need to
reduce the space and
computation time to
make it feasible for
real-life applications and
to integrate with mobile
applications.

According to the above discussion, it is evident that the employed DL models are less efficient in
disease prediction from the dataset with complex backgrounds. Moreover, the models proposed so far
have higher computational and memory requirements [17]. Thus, there is a need for an architecture
that can correctly detect disease from the plain as well as complex background. Simultaneously, it
should be small so that it can be implemented on handheld devices to assist farmers in automatic
crop monitoring and disease prediction. To meet these challenges, we propose a multimodal ‘Swift-
Lite-CvT’ that correctly performs multi-class classification of the dataset comprising tomato leaf
images with plain and complex backgrounds. The convolution operations performed by this model
are efficient in capturing local spatial details, whereas its transformer part is effective in analyzing the
global context of an image. Therefore, using the insights from the local and global features, the model
can classify the image to the correct class irrespective of type of the background. Moreover, we focus
on minimizing the computation and storage requirements of the model.

3 Materials and Methods

In this research, we applied various DL techniques to detect tomato leaf diseases and classify
them into 10, 11 and 13 classes. For correct multi-class classification, we employed pre-trained
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networks, namely VGG16, Vision Transformer, and CvT models. Pretraining on large datasets of
tomato leaves acts as an initialization, allowing the model to start with already optimized parameters.
While pretraining, the model learns to recognize the shape, size, boundaries, etc. Further training of
the pre-trained model on the labelled dataset and its fine tuning helps in faster converging, making
the training process more computationally efficient. To further improve the reliability, and reduce the
training time we designed a customized model “Swift-Lite-CvT”, based on CVT model [41,42]. The
depth of transformer layer in the proposed model is reduced from 2 to 1 in second block, and 10 to 1 in
the third block. Additionally, the number of attention heads are reduced from 3 to 2, and from 6 to 4
in the second and third blocks, respectively. These changes make the proposed model more lightweight
and computationally efficient than the original CvT. The classification strategy followed in this study
is illustrated in Fig. 1.

Figure 1: Classification strategy: Models implemented for multi class classification
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3.1 Datasets

In this study, three distinct datasets were employed, namely Plant Village [43], Taiwan dataset [44],
and PlantDoc dataset [45] comprising tomato leaves. The dataset comprises tomato leaf images with
a plain grey background and complex background having rotten leaves, stones, soil, dry leaves, etc.
The dataset with complex background is prepared to train the model for real-life datasets captured
directly from fields. The dataset captured from fields cannot have a plain background, thus, to enable
the model for classifying real-life images to the correct disease or healthy class, the dataset with a
complex background is prepared.

3.1.1 Plant Village Dataset

The Plant village dataset [43] comprises 50,000 images of tomato leaves labelled with ten disease
classes such as bacterial spot, early blight, healthy, late blight, leaf mold, septoria leaf spot, target spot,
tomato mosaic virus, tomato yellow leaf curl virus and two-spotted spider mite. Each image contains
a single leaf and a plain background. A plain background means that there is a clear demarcation
between the leaf and the background region. The background region is uncoloured without any object.
Sample images for this dataset are shown in Fig. 2. This dataset is divided into training and testing
datasets in the ratio of 80:20, respectively.

(a) Bacterial Spot (b) Early blight

Figure 2: Sample images from plant village dataset with plain background [43]

3.1.2 Taiwan Dataset

The Taiwan dataset of tomato leaves [44] comprised images labelled with six categories such as
bacterial spot, black leaf mold, gray leaf spot, healthy, late blight and powdery mildew. This dataset
contains images with a single leaf, multiple leaves, a plain background and a complex background.
A complex background contains one or more objects. Thus, there is no clear demarcation between
the leaf and the background region. The sample images are shown in Fig. 3. The dataset comprises
622 original images. The size of images varies, so we unified them to 224 × 224. We also applied
data augmentation techniques such as centre cropping, random cropping, horizontal flipping, etc., to
increase the dataset size. The details of the dataset are shown in Table 2.
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(a) Gray leaf spot  (b) Powdery mildew

Figure 3: Sample images of Taiwan dataset of tomato leaves with complex background [44]

Table 2: Details of customized dataset containing tomato leaf images with plain and complex
background

Number of classes Total number of
images

Images in training
dataset

Images in testing
dataset

Images in
validation dataset

10 class 50,000 39,000 1,000 10,000
11 class 14,344 11,044 1,100 2,200
13 class 8,292 5,564 1,324 1,404

3.1.3 PlantDoc

The PlantDoc dataset [45] comprising 2,598 images was labelled with 13 plant species and 17
classes of diseased and healthy leaves. Also, the dataset contains human hands in the background as
well as other plant parts forming the complex background. Sample images of this dataset are shown
in Fig. 4.

(a) Bacterial spot (b) Early blight

Figure 4: Sample images from PlantDoc dataset with complex background [45]
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3.1.4 Customized Tomato Leaf Dataset (CTL Dataset)

To extend the applicability of the designed DL model “Swift-Lite-CvT”, we collected images from
all the three above-mentioned datasets. Using solely plain background images proved insufficient for
achieving accurate detection and classification of tomato plant leaf diseases in real life. So, we included
images with plain and complex backgrounds. This enables better training of the model on the versatile
dataset and improves the robustness of the model. Here, robustness is the potential of the model to
accurately classify tomato leaf images captured with plain as well as complex backgrounds. Thus, the
performance of the model remains consistent in data collected in a laboratory or a field. Table 2 shows
the number of classes, dataset size for training, testing and validation of the model.

3.2 DL Models

In this study, we have deployed the following four DL models, based on deep CNN and
transformer architectures.

3.2.1 VGG16

VGG16 [46] model used for plant leaf disease detection. The filter sizes were reduced to 11 and 5 in
the first and second convolutional layers, respectively. Also, the large-sized kernel filters were replaced
with multiple 3 × 3 kernel sized filters. The modification enables the model to capture more localized
features within the images. To enhance the performance and generalization of the VGG16 model,
augmentation techniques such as rotation, scaling, and flipping, were applied to the input images.
The variation caused by augmenting the training data helps to improve the robustness of the model.
Hence, the model becomes more efficient in classifying various plant diseases. Our selection of VGG16
was influenced by its compact architecture with a reduced number of layers and parameters. Its proven
reliability and high accuracy of 99.53%, 95.2% and 89% for tomato disease detection demonstrated in
[11,47,48] respectively further supported our choice.

3.2.2 Vision Transformer (ViT)

The Vision Transformer (ViT) [49] has emerged as a prominent neural network architecture in the
field of computer vision. In this model, the convolution neural network component is replaced with
the transformer block which was earlier designed for handling sequential data. Thus, ViT adapted
to handle images by dividing it into a sequence of patches. It considers each patch as a token of the
sequence and learns to correctly classify images with plain or complex backgrounds.

In this architecture, initially, the input image is divided into patches of equal size, as depicted in
Fig. 5. Each patch is then flattened into a 1-D array vector and subsequently embedded with positional
encoding. This encoding step helps to capture the spatial information of each patch within the image.
The encoded patches are passed through the transformer encoder block. This block consists of self-
attention mechanisms and Multi-Layer Perceptron (MLP) heads, which enable the model to capture
both local and global dependencies within the image. Finally, classification is performed using the
transformer architecture, leveraging the learned representations from the encoded patches. The ViT
architecture divides the input image into patches, encoding with positional information, and then
processing them through transformer encoder blocks for accurate image classification. The potential
of ViT in extracting local as well as global features from an image and maintaining spatial relationships
within an image motivated us to employ this model for tomato disease classification.
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Figure 5: Input image in form of patches

3.2.3 Convolutional Vision Transformer (CvT)

The CvT [50] architecture represents an improved version of the Vision Transformer that enhances
performance and efficiency by incorporating convolutions. It combines the advantages of both CNNs
and transformers. It adopts a hierarchical, multi-stage architecture, enabling progressive feature
extraction and refinement. Its basic architecture is shown in Fig. 6.

Figure 6: Convolution vision transformer model for tomato disease detection
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CvT model initiates its task with tokenization, followed by transformation and classification.
The steps followed are illustrated below: Initially, a convolutional layer is employed to transform
the image’s local features into tokens, which are subsequently processed by the transformer block
and normalized through layer normalization. Now, the transformer blocks capture extended-range
dependencies and establish an interaction among tokens. These transformers incorporate multi-head
attention. Each stage employs a unique number of heads. For example, number of heads are 1, 3, and 6
across three stages. This variation facilitates adaptable and dynamic receptive fields. Upon completion
of processing through all stages, a classification token (cls token) is introduced at the outset, and the
token representations are aggregated for the classification task. A MLP is then applied to this pooled
representation for the final classification.

The experimental results presented in [14,27,50] validate that CvT outperforms both the Vision
Transformer and ResNet model. Also, the removal of the positional encoding step, which is typically
used in transformers to transform input images into patches reduces the training time of the model.
Despite removing positional encoding, the CvT model maintains its performance. The CvT architec-
ture leverages the advantages of convolutions to efficiently process input images while eliminating the
need for explicit positional encoding. This motivated us to select CvT model for our research.

3.2.4 Modified Convolutional Vision Transfer (Swift-Lite-CvT)

We modified the architecture of the CvT model to improve its efficacy for tomato disease
detection. The architecture of “Swift-Lite-CvT” is shown in Fig. 7. The modified version of CvT
“Swift-Lite-CvT”, retains the hierarchical structure of the original CvT to preserve its proficiency
in extracting local features. But the number of attention heads in the transformers is modified to 1,
2, and 4 across the three stages. Also, the depth of the transformer blocks is simplified and set 1 for
all stages. Like the original CvT, after processing the tokens are pooled and subsequently channeled
through a MLP for the classification task.

Figure 7: (a) Overall architecture of proposed Swift-Lite-CvT architecture. (b) Details of Conv_Trans
block
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4 Experiments

In this section, the details of the experimental setup, implementation details, and evaluation
metrics employed are discussed.

4.1 Experimental Setup

For the experiments, a workstation with i9 processor, RTX 3070 GPU, 64 GB RAM and 3 TB
hard disk is used. The pytorch and transformer architecture library are used for developing DL models
implemented in this research.

4.2 Implementation

In the first block, ‘Conv_trans1’, convolutional token embedding is done with a 2D convolution,
utilizing a kernel size of 7 and a stride of 4. The output channels generated by this convolution are
referred to dim with a default value of 64. Now, the feature map obtained is transformed into tokens.
These tokens are normalized through LayerNorm. Transformer block comprises a single transformer
layer and the multi-head attention mechanism utilizes heads [0]. The token map generated is designated
as ×1. In the second block, “Conv_trans2”, convolutional token embedding employs a 2D convolution
with a kernel size of 3 and a stride of 2. The number of output channels is determined as a scaled-up
version of the dim from the previous stage. This scaling factor depends on the ratio of the attention
heads in this stage to the previous stage, specifically heads [1]/heads [0]. Similar to block 1, the
convolution’s output is restructured into tokens and subsequently normalized. The transformer block
contains a solitary transformer layer. In this layer, the multi head attention mechanism employs heads
[1], which are configured to use two attention heads. It generates a token map denoted as ×2. Next, in
the third block Conv_trans3, works similar to Conv_trans2 except the ratio of heads is calculated as
[2]/heads [1], and its multi-head attention mechanism utilizes heads [2]. Also, the multi-head attention
has been configured to employ attention heads [4] in the modified model. Before it is passed through
the transformer, a class (cls) token is added at the beginning of the token map. After processing
through the transformer, the output tokens can be aggregated through either means pooling or by
utilizing the cls token. Then, a normalization layer is applied followed by a linear layer responsible
for reducing the feature dimension to be equal to the number of classes (num_classes). The model
parameters improve reliability, and accuracy of disease detection. To further improve the performance
of the model, a set of experiments are performed to finetune the hyperparameters of DL models. The
fine-tuned hyperparameters for all the above-mentioned models applied for the 10, 11, and 13 class
classifications are shown in Table 3. The proposed model is trained for 100 epochs with a batch size of
16. The optimization process utilizes the stochastic gradient descent (SGD) optimizer in combination
with the cross-entropy loss function. The cross entropy loss function is employed due to its effectiveness
in multi-class classification. This loss function helps in the extraction of more distinctive features,
thereby enhancing the process of making informed decisions and accurate predictions.

Table 3: Hyperparameters for the models applied for the tomato disease detection

10 class classification

Models Momentum Optimizer Learning rate Weight decay Activation funtion Patch size

VGG16 0.9 SGD 0.0005 0.0005 ReLu –
ViT 0.9 SGD 0.01 – GeLu 16

(Continued)
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Table 3 (continued)

10 class classification

CvT 0.9 SGD 0.01 – GeLu 7

11 class classification

VGG16 0.9 SGD 0.0005 0.0005 ReLu –
ViT 0.9 SGD 0.01 – GeLu 16
CvT 0.9 SGD 0.01 – GeLu 7

13 class classification

VGG16 0.9 SGD 0.0005 0.0005 ReLu –
ViT 0.9 SGD 0.01 – GeLu 16
CvT 0.9 SGD 0.01 – GeLu 7
Swift-Lite-
CvT

0.9 SGD 0.01 – Gelu 7

4.3 Evaluation Metrics

We employed confusion matrix, precision, recall, F1 score and classification accuracy to assess
the performance of the models implemented in this study. These metrics are defined from Eqs. (1)–(6).

4.3.1 Confusion Matrix

A confusion matrix contains the actual labels and the predicted labels for each class. For plain
representation, we abbreviated tomato disease classes in Table 4. The sample confusion matrix is shown
in Table 5. Here, T denotes true which indicates the number of correct classifications. F denotes false
which indicates the number of incorrect classifications. For example, TBM is the number of correctly
classified instances for class black mold. FBMG is the number of incorrectly classified instances of
black mold to gray spot, and FBMBS is the number of incorrectly classified instances of black mold
to bacterial spot. A similar notation is followed for all the correctly and incorrectly classified instances.

Table 4: Class labels and their abbreviations

Class label Abbreviation

Black mold BM
Gray spot G
Bacterial spot BS
Early blight E
Healthy H
Late blight LB
Leaf mold LM
Mosaic virus M

(Continued)
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Table 4 (continued)

Class label Abbreviation

Powdery mildew P
Septoria leaf spot S
Two spotted spider mite T
Target spot TS
Yellow leaf curl virus Y

Table 5: Sample confusion matrix for multi class classification

Predicted class

BM G BS E H LB LM M P S T TS Y

Actual
class

BM TBM FBMG FBMBS FBME FBMH FBMLB FBMLM FBMM FBMP FBMS FBMT FBMTS FBMY
G FGBM TG FGBS FGE FGH FGLB FGLM FGM FGP FGS FGT FGTS FGY
BS FBSBM FBSG TBS FBSE FBSH FBSLB FBSLM FBSM FBSP FBSS FBST FBSTS FBSY
E FEBM FEG FEBS TE FEH FELB FELM FEM FEP FES FET FETS FEY
H FHBM FHG FHBS FHE TH FHLB FHLM FHM FHP FHS FHT FHTS FHY
LB FLBBM FLBG FLBBS FLBE FLBH TLB FLBLM FLBM FLBP FLBS FLBT FLBTS FLBY
LM FLMBM FLMG FLMBS FLME FLMH FLMLB TLM FLMM FLMP FLMS FLMT FLMTS FLMY
M FMBM FMG FMBS FME FMH FMLB FMLM TM FMP FMS FMT FMTS FMY
P FPBM FPG FPBS FPE FPH FPLB FPLM FPM TP FPS FPT FPTS FPY
S FSBM FSG FSBS FSE FSH FSLB FSLM FSM FSP TS FST FSTS FSY
T FTBM FTG FTBS FTE FTH FTLB FTLM FTM FTP FTS TT FTTS FTY
TS FTSBM FTSG FTSBS FTSE FTSH FTSLB FTSLM FTSM FTSP FTSS FTST TTS FTSY
Y FYBM FYG FYBS FYE FYH FYLB FYLM FYM FYP FYS FYT FYTS TY

4.3.2 Precision

Precision is the ratio of correctly predicted images to the total predicted images for a class. For
example, Precision of black mold class is calculated as per Eq. (1). It is the ratio of correctly classified
samples of black mold (TBM) and the total number of samples classified as black mold, either true or
false black mold ones to different categories mentioned in Table 4. Similarly, Precision for each class
is calculated individually. The average precision of the model is calculated by combining precision of
all individual classes as shown in Eq. (2).

PrecisionBlackmold =
TBM

TBM + FBMG + FBMBS + FBME + FBMH + FBMLB + FBMLM + FBMM + FBMP + FBMS + FBMT + FBMTS + FBMY
(1)

AveragePrecision =
∑13

k=1 Precisionclassk

13
(2)

4.3.3 Recall

Recall is the ratio of correctly classified images to the total number of images used for classifi-
cation. For example, the recall for black mold is calculated as per Eq. (3). It is the ratio of correctly
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classified samples of black mold (TBM) and total number of samples of black mold including correctly
and incorrectly classified samples. Similarly, Recall is calculated for each disease class individually.
Average Recall is calculated by using recall for all the individual classes. The formula is shown in
Eq. (4).

RecallBlackmold =
TBM

TBM + FGBM + FBSBM + FEBM + FHBM + FLBBM + FLMBM + FMBM + FPBM + FSBM + FTBM + FTSTS + FYBM
(3)

Average Recall =
∑13

k=1 Recallclassk

13
(4)

4.3.4 F1 score

F1 score, as shown in Eq. (5), is calculated by using precision and recall. The F1 score is calculated
to evaluate the performance of the model even when it is applied on imbalanced dataset.

F1 − score = 2 × precision × recall
precision + recall

(5)

4.3.5 Accuracy

Accuracy is the total number of correctly classified images from the total number of classified
images. Accuracy is calculated in Eq. (6). It is the ratio of the sum of correctly classified images to
black mold (TBM), gray spot (G), bacterial spot (TBS), early blight (E), healthy (H), late blight (TLB),
leaf mold (LM), mosaic virus (M), powdery mildew (P), Septoria leaf spot (S), two spotted spider mite
(T), target spot (TS), yellow leaf curl virus (Y), and total number of images in the dataset.

Accuracy = TBM + TG + TBS + TE + TH + TLB + TLM + TM + TP + TS + TT + TTS + TY
Total number of images in the dataset

(6)

5 Results

In this section, we demonstrate the results obtained by applying DL models such as VGG16, ViT,
CvT, and Swift-Lite-CvT on the prepared CTL datasets. The confusion matrices obtained for 13 class
classification are shown in Tables 6–9.

Table 6: VGG 16-confusion matrix for 13 class classification

Predicted class
BM G BS E H LB LM M P S T TS Y

Actual
class

BM 105 1 0 0 0 1 0 0 1 0 0 0 0
G 5 94 1 0 2 0 0 0 3 1 0 0 2
BS 4 4 92 0 1 2 0 0 1 3 0 0 1
E 0 0 4 98 0 4 0 0 0 1 0 1 0
H 0 0 0 0 99 0 0 0 0 0 2 7 0

(Continued)
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Table 6 (continued)

Predicted class
BM G BS E H LB LM M P S T TS Y

LB 3 4 4 5 0 83 1 0 6 0 0 1 1
LM 0 0 0 0 0 0 106 1 0 0 1 0 0
M 0 0 0 0 0 0 0 106 0 0 0 2 0
P 0 9 0 0 1 0 1 0 97 0 0 0 0
S 0 0 4 2 0 1 2 0 0 98 1 0 0
T 0 0 0 0 0 0 0 1 0 0 104 3 0
TS 0 0 1 5 3 0 1 0 0 3 2 93 0
Y 0 0 1 0 0 0 0 1 0 0 0 0 106

Table 7: ViT-confusion matrix for 13 class classification

Predicted class
BM G BS E H LB LM M P S T TS Y

Actual class BM 108 0 0 0 0 0 0 0 0 0 0 0 0
G 0 108 0 0 0 0 0 0 0 0 0 0 0
BS 1 2 101 0 0 0 0 0 0 1 0 1 2
E 0 0 0 105 0 0 0 0 0 0 0 3 0
H 0 0 0 0 108 0 0 0 0 0 0 0 0
LB 2 5 0 8 2 89 0 0 1 0 0 0 1
LM 0 0 0 0 0 0 105 0 0 2 1 0 0
M 0 0 0 0 0 0 0 107 0 0 0 0 1
P 0 1 0 0 0 2 0 0 105 0 0 0 0
S 0 0 0 0 0 0 0 0 0 108 0 0 0
T 0 0 0 0 0 0 0 2 0 0 103 3 0
TS 0 0 0 0 1 0 1 0 0 3 1 102 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 108

Table 8: CvT-confusion matrix for 13 class classification

Predicted class
BM G BS E H LB LM M P S T TS Y

Actual class BM 106 0 0 0 0 2 0 0 0 0 0 0 0
G 6 94 3 0 0 2 0 0 3 0 0 0 0
BS 3 1 99 1 0 1 1 0 0 2 0 0 0
E 0 0 2 96 1 1 0 0 0 1 3 4 0
H 0 0 0 0 105 0 0 0 0 0 0 3 0
LB 5 1 0 0 0 96 4 1 0 1 0 0 0

(Continued)
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Table 8 (continued)

Predicted class
BM G BS E H LB LM M P S T TS Y

LM 0 0 2 2 0 1 99 0 0 1 3 0 0
M 0 0 0 1 0 0 0 106 0 0 0 0 1
P 2 4 1 0 0 1 0 0 100 0 0 0 0
S 0 0 4 2 0 2 5 0 0 92 0 3 0
T 0 0 1 0 2 0 0 2 0 0 100 3 0
TS 0 0 0 0 0 0 0 0 0 3 4 100 1
Y 0 0 2 1 0 0 0 1 0 0 0 0 104

Table 9: Swift-Lite-CvT-confusion matrix for 13 class classification

Predicted class

BM G BS E H LB LM M P S T TS Y

Actual class BM 105 0 0 1 0 2 0 0 0 0 0 0 0
G 0 106 2 0 0 0 0 0 0 0 0 0 0
BS 0 0 99 2 0 5 1 0 0 1 0 0 0
E 0 0 0 97 0 6 0 1 0 1 0 3 0
H 0 0 0 0 106 2 0 0 0 0 0 0 0
LB 0 0 0 0 0 94 2 3 4 0 0 2 3
LM 0 0 0 1 0 1 105 1 0 0 0 0 0
M 0 0 0 2 0 0 0 104 0 0 2 0 0
P 0 1 0 4 0 2 0 0 99 0 1 0 1
S 0 1 1 0 0 0 0 0 0 104 1 1 0
T 0 0 1 0 0 0 2 0 0 0 100 5 0
TS 0 0 0 1 1 2 1 4 0 1 0 93 5
Y 0 0 1 1 0 1 1 0 0 1 2 0 101

5.1 VGG16

From the confusion matrix shown in Table 6, we observe that gray spot, powdery mildew,
late blight, and healthy are primarily misclassified as black mold, gray spot, powdery mildew, and
target spot, respectively. The model does the maximum number of misclassifications for late blight
disease. This is due to similarities in its visual patterns or with other classes such as early blight and
bacterial spot.

5.2 ViT

From the confusion matrix shown in Table 7, we observe misclassifications of late blight to gray
spot and early blight to target spot. The model performs the highest number of misclassifications for
late blight disease class.
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5.3 CvT

From the confusion matrix presented in Table 8, we observe that CvT model misclassifies gray
spot to black mold, early blight to target spot, late blight to black mold, and septoria leaf spot to leaf
mold. Among all the classes, the maximum number of misclassifications are done for gray spot and
septoria leaf spot. This is due to similarity in visual symptoms of diseases and a smaller number of
training samples of gray spot, early blight, late blight, and Septoria spot.

5.4 Swift-Lite-CvT

It is evident from the confusion matrices are shown in Tables 6–9 that VGG16, ViT, CvT, as well
as Swift-Lite-CvT, that they perform the maximum number of misclassifications of powdery mildew,
bacterial spot, septoria leaf spot and two-spotted spider mite diseases to the early blight, late blight,
and target spot disease classes. This is due to the similarity in their symptoms. The sample misclassified
images of the early blight, late blight and target spot are shown in Fig. 8. Also, the confusion matrix
shown in Table 7 proves the supremacy of the ViT model with fewer misclassifications.

(a) Target spot (b) Early blight (c) Late blight

Figure 8: Sample of misclassified images of tomato plant leaves

5.5 Model Performance

The performance of the implemented models is evaluated for each class individually and in average
for all classes.

5.5.1 Classwise Performance of Swift-Lite-CvT for 13 Class Classification

Using the confusion matrix shown in Table 9, the precision, recall, and F1 score for the “Swift-
Lite-CvT” model were calculated for 13-class classification. The values obtained are presented in
Table 10. It is evident from the Table 10 that values for precision and recall are more than 90% for
all the classes except early blight, late blight, and target spot. Also, the F1 score varies from 93% to
98% except in the above-mentioned three classes. This is due to the similarity in disease symptoms
and the highest number of misclassifications. In contrast, the highest values of precision, recall, and
F1 score are reported for Healthy, and Gray Spot classes. The performance of the remaining classes is
comparable to each other.

5.5.2 Average Performance of DL Models

In this section, we illustrate the average precision, recall, accuracy, and F1 score of VGG16, ViT,
CvT, and Swift-Lite-CvT models applied for 10, 11, and 13 class classifications. We also showcase the
training time and storage space required by these models. The comparison in average precision, recall,
F1 score, and accuracy for all the above-stated models is shown in Table 11.
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Table 10: Swift-Lite-CvT classification report for 13-class classification for each class

Disease name Precision Recall F1 score

BM 0.9722 1.0000 0.9859
G 0.9814 0.9814 0.9814
BS 0.9166 0.9519 0.9339
E 0.8981 0.8899 0.8939
H 0.9814 0.9906 0.9859
LB 0.8703 0.8173 0.8429
LM 0.9722 0.9375 0.9545
M 0.9629 0.9203 0.9411
P 0.9166 0.9611 0.9611
S 0.9629 0.9629 0.9629
T 0.9259 0.9433 0.9345
TS 0.8611 0.8942 0.8773
Y 0.9351 0.9181 0.9265

Table 11: Performance evaluation of deep learning and transformer models applied for classification

Classification Models Overall

Precision Recall F1 score Accuracy Time (in min) Size (MB)

10 class
classification

VGG16 1.00 0.999 1.00 99.87% 1367 537.3
ViT 1.00 1.00 1.00 99.94% 2459 345.7
CvT 1.00 1.00 1.00 99.81% 1450 78.8
Swift-Lite-CvT 0.996 0.996 0.994 99.45% 458 5.8

11 class
classification

VGG16 0.9790 0.9809 0.9790 97.81% 198 537.3
ViT 0.9718 0.9718 0.9718 99.37% 338 345.7
CvT 0.8863 0.8872 0.8863 95.72% 208 78.8
Swift-Lite-CvT 0.9636 0.9645 0.9663 96.45% 96 5.8

13 class
classification

VGG16 0.9123 0.9061 0.9091 90.12% 90 537.3
ViT 0.9653 0.9669 0.9661 96.66% 170 345.7
CvT 0.9237 0.9256 0.9246 92.37% 104 78.8
Swift-Lite-CvT 0.9351 0.9437 0.9393 93.51% 44 5.8

It is evident from Table 11 that the Swift-Lite-CvT model achieved an accuracy of 93.51%. It
surpasses the 90.4% accuracy of the basic CvT architecture. It is also apparent from Table 11 that the
accuracy of all the models viz. VGG 16, ViT, CvT, and Swift-Lite-CvT decreases with an increase in
a number of classes. The decrease is due to the availability of a smaller number of training samples
for classes such as gray spot, black mold, and powdery mildew. The precision of the Swift-Lite-CvT
model decreases with an increase in a number of classes. This is due to the increase in data imbalance.
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In 13 class datasets, there are 67, 53, and 125 images for gray spot, black mold, and powdery mildew,
respectively. This adversely affects the training of the model. However, we increased the number of
samples by data augmentation, the number of training samples is 3900, 1004, and 428 for 10 class,
11 class, and 13 class, respectively. The variation in a number of training samples leads to variation
in the precision of the model. Additionally, we observed that the proposed model requires storage of
5.8 MB. The storage requirement ratio of the Swift-Lite-CvT is 1:98 with VGG16, 2:98 with ViT, and
7:92 with CvT. Moreover, the proposed models utilize a training time of 44 min. The training time
ratio for the proposed model is 48:51 with VGG16, 26:74 with ViT and 42:57 with CvT model. Thus,
it is apparent that the proposed model is time and storage-efficient than state-of-the-art models.

Furthermore, our analysis revealed that increasing the number of classes for training affects the
model’s performance. A degradation in accuracy is depicted as the increase in number of classes
from 10 to 13 as shown in Table 11. Specifically, when conducting a 10-class classification task, we
observed remarkably high accuracy across all implemented models. However, as we transitioned to
11-class and 13-class classification tasks, we observed a decline in accuracy. In order to address this
challenge, we proposed the utilization of the transformer architecture for the 13-class classification
task. The implementation of this architecture significantly improved results, with an accuracy of
93.51%. Notably, this approach offers the added benefits of reduced storage space requirements and
decreased processing time compared to previous models. It is evident from results reported in Fig. 9
that a reduction of 51.12%, 74.12%, and 57.7% in computing time of Swift-Lite-CvT is reported when
compared to VGG16, ViT, and CvT models, respectively. Moreover, a reduction of 98.93% 98.33%,
and a 92.64% in storage space of Swift-Lite-CvT is reported when compared to VGG16, ViT, and CvT
models.
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Figure 9: Comparison in storage space and computation time required by the implemented deep
learning and transformer models

5.6 Comparative Analysis

To further validate the effectiveness of the Swift-Lite-CvT model, we conducted a comprehensive
performance comparison with models applied in the literature for the detection of tomato diseases [51–
53]. For instance, the models proposed in references [32–34] achieved comparable accuracies of 96.30%,
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99.64%, and 98.05%, respectively. These models utilized a combination of CNN and transformer
architectures for 10 class classification. Similarly, Hossain et al., as outlined in reference [54], applied
a ViT transformer model with 11 classes and attained an accuracy of 97%, aligning closely with the
performance of our proposed model. However, it is noteworthy that the accuracy experienced a decline
of 6% as the number of classes increased to 13. The comparison is illustrated in Table 12.

Table 12: Comparison of results of Swift-Lite-CvT model against other deep learning and transformer
models

Authors Year Methods Classification Accuracy

Agarwal et al. [23] 2020 Proposed CNN model 10 classes 91.20%
Ahmad et al. [24] 2020 CNN model inception V3 6 classes 93.70%
Zhou et al. [30] 2021 Restructured deep

residual dense network
9 classes 95%

Chowdhary et al. [26] 2021 DenseNet201
DL model

2 classes, 6 classes,
and 10 classes

2 Class–99.2%,
6 Class–97.99%,
10 Class–98.05%

Wang et al. [34] 2022 ViT + CNN 10 classes 96.30%
Alzahrani et al. [40] 2023 Proposed DenseNet121

model + ViT
10 classes 99.64%

Hossain et al. [54] 2023 Max ViT 11 classes 97%

Proposed Swift-Lite-CvT
model

Swift-Lite-CvT 10 classes, 11 classes
and 13 classes

10 class–99.45%,
11 class–96.45%,
13 class–93.51%

In our investigation, we found out that the Swift-Lite-CvT model has reached its highest accuracy
of 99.45% in the case of 10 class classification. Also, it maintains a commendable accuracy of 96.45%
in the 11-class classification and a competitive 93.51% in the 13-class classification. While there is
room for improvement in terms of accuracy, it is important to highlight that our model demonstrates
a significant reduction in both computation time and storage requirements. This improved efficiency
enhances the acceptability of our model in real-life implementation for tomato disease classification.

6 Discussions

The CvT model offers a unique blend of convolutional and transformer elements. Convolutions
excel at capturing local spatial details, whereas transformers empower the model to analyze global
context. This dual proficiency renders CvT a resilient model for visual tasks, surpassing models
that rely solely on one of these two mechanisms. The alterations made in the Swift-Lite-CvT were
aimed at enhancingcomputational efficiency while preserving a substantial portion of the model’s
representational capacity. Here, a convolutional block is used instead of the linear patch projection
as in ViT model. This allows for the extraction of local features and spatial information in a more
efficient way, especially when dealing with smaller models. Additionally, replacing positional encoding
with a convolutional block helps alleviate the need for explicit encoding of positional information.
Convolutional layers inherently capture spatial relationships and patterns, removing the need for
separate positional encoding. By decreasing the depth of the transformer blocks and fine tuning the
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number of attention heads, the Swift-Lite-CvT achieved a notable reduction in training by up to 58%
which is approximately two times faster than the original CvT The study highlights advantages such
as efficient resource utilization and reduced training time making it suitable for mobile devices.

The study given in this manuscript highlights the effectiveness of the Swift-Lite-CvT model
for classifying tomato plant leaves. It achieves high accuracy while demanding significantly less
storage space and computational time compared to the ViT model as shown in Fig. 9. The proposed
architecture utilizes only 44 min and a mere 5.8 MB of space, marking a remarkable success in the
realm of plant leaf disease detection. In this study, modifying the heads and depths in the proposed
hybrid transformer architecture makes the model efficient even with a small dataset.

7 Conclusions

In this manuscript, we successfully developed the deep learning model “Swift-Lite-CvT” for
accurately classifying diseases using images of tomato leaves. We achieved the objectives of minimizing
the storage space, and reducing the training time, and some parameters without compromising the
accuracy of the model. The model takes a storage space of 5.8 MB and a training time of 44 min. It
proves its applicability in real-life scenarios on mobile devices. Moreover, the ratio of storage space
of the proposed model to that of VGG16, ViT, and CvT is 1:98, 2:98, and 7:92, respectively. Also,
the training time ratio of the proposed model with VGG16, ViT, and CvT models is 48:51, 26:74,
and 42:57, respectively. This justifies the superiority of the proposed model “Swift-Lite-CvT” over the
above-mentioned models. The model is efficient in handling versatile datasets comprising images with
plain as well as complex backgrounds. The efficacy of the proposed model for 10, 11, and 13 classes
as shown in Table 11, proves the robustness of the model. The comparison in VGG16, ViT, CvT, and
Swift-Lite-CvT models for 10, 11, and 13 classes shows the highest accuracy achieved for 10-class
classification. The decrease in accuracy is reported when the number of classes increases from 10 to
11, and 13. The decrease is due to data imbalance and availability of merely 67, 53, and 125 training
samples in the original dataset for gray spot, black mold, and powdery mildew classes, respectively.
Among all the above-mentioned models, ViT reported the highest accuracy of 96.66%, it utilized a
substantial amount of storage space 345.7 MB and a training time of 170 minutes. In contrast, the
Swift-Lite-CvT model achieved a comparable accuracy of 93.51%, utilized a storage space of 5.8 MB
and a training time of 44 minutes. This plain and compact model can be easily integrated with a mobile
or web application and can be implemented in real-life scenarios for classifying tomato leaf diseases.
It can also be implemented using IoT-enabled devices, integrated with a user interface for real-time
monitoring of tomato fields, and disease detection at an early stage.
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