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ABSTRACT

Traditional blockchain key management schemes store private keys in the same location, which can easily lead to
security issues such as a single point of failure. Therefore, decentralized threshold key management schemes have
become a research focus for blockchain private key protection. The security of private keys for blockchain user
wallet is highly related to user identity authentication and digital asset security. The threshold blockchain private
key management schemes based on verifiable secret sharing have made some progress, but these schemes do not
consider participants’ self-interested behavior, and require trusted nodes to keep private key fragments, resulting in
a narrow application scope and low deployment efficiency, which cannot meet the needs of personal wallet private
key escrow and recovery in public blockchains. We design a private key management scheme based on rational
secret sharing that considers the self-interest of participants in secret sharing protocols, and constrains the behavior
of rational participants through reasonable mechanism design, making it more suitable in distributed scenarios
such as the public blockchain. The proposed scheme achieves the escrow and recovery of personal wallet private
keys without the participation of trusted nodes, and simulate its implementation on smart contracts. Compared to
other existing threshold wallet solutions and key management schemes based on password-protected secret sharing
(PPSS), the proposed scheme has a wide range of applications, verifiable private key recovery, low communication
overhead, higher computational efficiency when users perform one-time multi-key escrow, no need for trusted
nodes, and personal rational constraints and anti-collusion attack capabilities.
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1 Introduction

Key Escrow [1] refers to the storage of decryption keys in a key escrow system (also known as
a key recovery system), and in some cases, authorizes third parties to access these keys, which is a
key management mechanism for statutory escrow agency. Government and law enforcement agencies’
needs to access encrypted data and recover commercial data have made key escrow a popular research
topic in the 1990s [2]. Key Escrow faces two challenges: the trust level of the key escrow agent and
the ability to protect the keys [3]. It is easy for a single key escrow party to collaborate with illegal
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organizations to obtain confidential data, facing widespread user doubts. A single key escrow node
also faces the risk of a single point of failure. Therefore, split key escrow has gradually become a new
direction for the development of key escrow [4]. In this stage, Shamir [5] proposed partial key escrow
for DES keys, Lenstra et al. [6] proposed a time-constrained key escrow system, and Micali et al. [7]
proposed shared random functions and key escrow schemes. However, based on Shamir [8] and Blakley
[9], independently proposed the concept of key dispersed management, using threshold secret sharing
as the representative threshold cryptography as the theoretical basis, comprehensively considering the
security and implementation difficulty of the scheme, studying threshold key escrow schemes has
become the main trend of key split escrow. Therefore, the key to designing a threshold key escrow
scheme that meets actual needs lies in studying and developing corresponding threshold secret sharing
technology.

Shamir’s threshold secret sharing and other early-stage secret sharing schemes assumed that the
secret distributor and participants were honest without considering deceptive behavior. In response,
Chor et al. [10] proposed the concept of verifiable secret sharing (VSS), which added a verification
algorithm to the traditional secret sharing scheme. However, this scheme required an interactive
process, resulting in low efficiency. Bai et al. [11] proposed a verifiable quantum secret sharing scheme
based on d-dimensional Greenberger-Horne-Zeilinger (GHZ) state and analyzed its security against
three main quantum attacks: interception retransmission attack, entanglement measurement attack,
and honest participant attack. Gentry et al. [12] proposed a non-interactive public verifiable secret
sharing (PVSS) scheme for large-scale distributed networks, which can be extended to have hundreds
or even thousands of participants to support secure computing in large-scale distributed systems.
However, these VSS schemes only consider honest participants and suspected fraudulent participants,
without considering the motivations and benefits of each participant. For large-scale institutions like
governments or enterprises, key escrow participants are usually bound by political orders, business
contracts, and other forms of compulsion, which do not need to consider the self-interested behavior
of each participant in the threshold key escrow scheme. Whereas, for online distributed systems like
blockchain that target a large number of network users, the traditional threshold key escrow scheme
does not have such constraints, resulting in participants who do not upload or upload false key shares
still being able to obtain reconstructed keys.

Halpern et al. [13] considered the selfish behavior of participants and introduced Game theory
to secret sharing and secure multi-party computation. They proposed a rational cryptographic
protocol represented by rational secret sharing and rational secure multi-party computation for the
first time. However, traditional rational secret sharing schemes rely on synchronous communication
environments and cannot be applied to distributed systems such as blockchains with asynchronous
communication. Kol et al. [14] used cryptographic techniques such as oblivious transfer and secure
multi-party computation to construct the first rational secret sharing scheme suitable for asynchronous
communication. In addition, Zhang et al. [15] introduced rational cryptography into quantum secret
sharing research and proposed a rational quantum secret sharing scheme based on GHZ states, which
was implemented on the IBM quantum computer [16].

The wide application of blockchain and smart contracts in the Internet of Things has enabled the
fulfillment of resource sharing and automated transactions without trusted centers [17]. The public
key cryptography technology widely used in blockchain is highly related to the security of user private
keys, user asset security, data security, and identity certification security. As there is no trusted third
party in the blockchain system, individuals need to locally store their private keys. Once the device
where the private key is stored is lost, data is damaged, or even hacked by hackers, it will lead to
the loss or leakage of user data and assets. In this context, blockchain private key escrow solutions
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based on threshold key management technology have become a research hotspot for blockchain private
key protection. However, the currently proposed key management schemes for blockchain private key
recovery still adopt traditional VSS technology, without considering the rational self-interest behavior
of the escrow users [18]; the successfully implemented rational secret sharing schemes on blockchain
require the secret sharing participants to deliver deposits in advance [19]. These schemes do not meet
the individual rational constraint in mechanism design, limiting the application and promotion of
corresponding blockchain threshold key escrow design. The main contributions of this paper are as
follows:

We proposed a threshold multi-key escrow management scheme that satisfied individual rational
constraints and incentive compatibility: We first designed a reputation mechanism for participants
during the key reconstruction phase with the process of uploading and verifying private key fragments
and reporting. Then, according to the ratio of contribution to promote the cooperation and behavioral
norms of blockchain users, we also proposed a benefit distribution mechanism that relied on a fair
process of cooperative gaming.

We constructed the whole multi-key escrow and reconstruction process based on verifiable random
functions (VRF) and analyzed and demonstrated the collusion resistance, security verification ability,
incentive compatibility and individual rational constraints of the threshold key escrow scheme through
utility function analysis. We also compared it with existing blockchain recoverable key management
schemes.

We used the smart contracts to complete a multi-wallet key escrow simulation, demonstrating the
ability of the scheme to manage wallet keys in Ethereum. We analyzed the performance and costs of
the scheme, providing possibilities for achieving a distributed rational key management system for
blockchain.

2 Related Work
2.1 Blockchain and Smart Contract

Nakamoto et al. [20] proposed Bitcoin, a virtual encrypted currency, and the blockchain trans-
action structure using Proof of Work and timestamp construction in 2008, which marked the birth
of decentralized blockchain technology. Blockchain combines with cryptographic technology ensures
traceability, immutability, non-repudiation, and non-counterfeiting of transactions, supporting data
security sharing and large-scale collaborative computing, protecting user identity and confidential
data privacy, and is suitable for high-privacy and secure distributed application scenarios. Traceability
refers to the recording of transaction changes in a blockchain in chronological order, immutability
and non-repudiation refer to the inability to modify and deny data written into a blockchain, and
non-counterfeiting refers to the inability to forge transactions that can be verified by miners and the
entire transaction change record. Blockchain uses hash functions, digital signatures, and distributed
consensus fault tolerance to increase the difficulty and cost of attackers falsifying, forging, and denying
data operations, enhancing data security.

Szabo proposed the smart contract, which is a computerized transaction protocol for executing
contract terms [21]. In the context of blockchain, smart contracts serve as scripts on blockchain and
are stored on the blockchain. As smart contracts are located on the blockchain, they have their unique
addresses. We trigger their execution by sending transactions to their addresses. Subsequently, smart
contracts will be executed independently and automatically on every node in the network according
to the data contained in the triggered transaction. Smart contracts on blockchain possess uniqueness,
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transparency, predictability, and monitoring and tracking capabilities, and have fostered the concept of
a decentralized autonomous organization, allowing blockchain to achieve general computing among
users without a trusted central node’s supervision [17]. Raj et al. [22] proposed a blockchain smart
contract scheme for supply chain management, which replaces the trust intermediary with smart
contracts, shortens the payment process, reduces the communication cost, and improves the supply
chain transaction efficiency.

2.2 Research on the Security of Blockchain Wallet and Threshold Key Escrow

Blockchain digital wallets provide users with a convenient way to manage private and public keys,
while also enabling them to complete digital asset transfers and transactions, and record details of all
transactions. The security of the wallet directly relates to the user’s asset security. The comparison of
various blockchain key management schemes is shown in Table 1. The existing common wallet solution
types include software wallets [23], hardware wallets [24], and custodial wallets [25], but they all have
security risks in terms of centralized private key storage. To address these issues, decentralized secure
threshold wallet schemes have emerged, which can split private keys into multiple parts and store
them on different nodes, thereby achieving distributed storage and protection of private keys, while
also allowing private keys to be restored. Therefore, this secure threshold wallet scheme is considered
an effective protection plan.

Table 1: Comparison of various blockchain key management schemes

Scheme type Disadvantages

Software wallets [23] The private key is stored locally, with low security and
the risk of a single point of failure.

Hardware wallets [24] Poor portability and the risk of a single point of failure.
Custodial wallets [25] Reliance on trusted third parties and the risk of a

single point of failure.
Threshold signature wallets [26] Personal wallet private key escrow and recovery are

not supported.
Threshold escrow wallets [18] Require trusted nodes or servers.

A threshold secret sharing-based threshold signature wallet scheme such as [26] does not support
the escrow and recovery of personal user wallet private keys, while a threshold wallet management
scheme that meets the needs of personal key escrow and recovery, such as [18], is only applicable to
consortium blockchain applications, which requires trusted central nodes and identity authentication
mechanisms. In addition, the aforementioned threshold wallet schemes have not taken into account the
rational self-interest behavior of participants, resulting in high costs and limited applicability, which
cannot be satisfied to the safe escrow needs of public blockchain user wallet keys such as Ethereum.
Therefore, designing a private key escrow smart contract based on rational secret sharing is beneficial
for achieving the escrow and recovery of public blockchain user private keys in an environment without
trusted nodes.
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3 Preliminaries
3.1 Bilinear Mapping

Definition 1: Let G1 and G2 be the additive cyclic group and multiplicative cyclic group of a prime
number p, respectively, let g be a generator of G. The mapping e : G1 × G1 → G2 is bilinear if it satisfies
the following properties:

1) Bilinearity: For any m, n ∈ G1 and a, b ∈ Zp
∗, exists e

(
ma, nb

) = e (m, n)
ab.

2) Non-degeneracy: e (g, g) �= 1.

3) Computability: There exists an efficient algorithm to compute e (m, n) for any m, n ∈ G1.

Definition 2: Elliptic Curve Discrete Logarithm Problem (DCELP): Given an elliptic curve E
defined over a finite field Fp, with a base point P ∈ E

(
Fq

)
of order n. Q ∈ E

(
Fq

)
where Q = IP, I ∈ n, it

is difficult to compute I .

Definition 3: Computational Diffie-Hellman (CDH) Given aP, bP, cP ∈ G1, it is difficult to compute
abP for any a, b ∈ ZP

∗.

Definition 4: Bilinear Diffie-Hellman Problem Given aP, bP, cP ∈ G1, it is difficult to compute
e (P, P)

abc for any a, b, c ∈ ZP
∗. This problem relies on the difficulty of the CDH problem in G1.

Definition 5: Decisional Bilinear Diffie-Hellman Inversion Assumption, also known as q-DBDHI
problem. An adversary with polynomial time capability cannot distinguish between(

g, gx, . . . , g(xq), e (g, g)
1
x

)
and

(
g, gx, . . . , g(xq), Γ

)
with a non-negligible advantage, where x ∈ ZP

∗,
Γ ∈ G2.

3.2 Game Theory Related Knowledge

3.2.1 Incentive Compatibility

Incentive compatibility refers to the consistency between individual incentive mechanisms and
overall benefits in a game. It includes Bayesian incentive compatibility and dominant strategy incentive
compatibility. It should be noted that Bayesian incentive compatibility is a weak concept in games,
while dominant strategy incentive compatibility is a strong concept. If a game is dominant strategy
incentive compatible, then it must be Bayesian incentive compatible.

In mechanism design, Bayesian incentive compatibility is considered a sufficient and necessary
condition for participants to speak the truth. A game is Bayesian incentive compatible if and only
if, for any player i, any possible private type θi, and any other players’ strategies σ−i, the following
condition is satisfied:

∀θi, ∀σi, ∀σ ′
i : Ui (σi, σ−i, θi) ≥ Ui

(
σ ′

i , σ−i, θi

)
(1)

where Ui (σi, σ−i, θi) represents player i’s utility when their private type is θi, they choose strategy σi (the
true strategy), and the other players choose strategies σ−i.

In a game, if each player adopts their dominant strategy regardless of the other players’ actions,
the game is dominant strategy incentive compatible. Mathematically, a game is dominant strategy
incentive compatible if and only if for any player i, any other player’s strategy σ−i, the following
condition is satisfied:

∀σi, ∀σ ′
i : Ui (σi, σ−i) ≥ Ui

(
σ ′

i , σ−i

)
(2)

where Ui (σi, σ−i) represents player i’s utility when all players adopt strategy σi, σ−i.
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3.2.2 Individual Rationality

In game theory, individual rationality refers to each player choosing strategies that are beneficial
to them in pursuit of their own maximum interests. This is also known as the assumption of rational
participants. In mechanism design, individual rationality means designing a game mechanism to
ensure that each participant has the motivation to participate and will not obtain a worse result due
to participation.

Mathematically, individual rationality satisfies the following conditions:

For each participant i, individual rationality requires that their returns after participating in the
mechanism are not less than their worst returns from leaving the mechanism, i.e.,

∀σi, ∀σ−i : Ui (σi, σ−i) ≥ Ui (∅) (3)

where Ui (∅) represents the returns of participant i when they do not participate in the mechanism.

3.2.3 Fairness of Cooperative Game and Shapley Value Principle

Fairness is a concept to measure the justice of a game. In Game theory, fairness usually refers to
whether a game satisfies some fair principles, such as the symmetry principle in a zero-sum game and
the Shapley value principle in a cooperative game.

In a cooperative game, the Shapley value principle means that each player should get the
corresponding reward for his contribution to the game. Specifically, the Shapley value refers to the
average contribution of a player to all possible coalitions. If a player’s Shapley value is lower than
other players, this situation is also unfair.

3.2.4 Rational Fairness

In Game Theory, rational fairness refers to the participants in a game mechanism pursuing their
own interests (rationality) while also obtaining fair results. Rational fairness requires participants
to consider not only their own interests but also the interests of other participants when choosing
strategies, in order to achieve a fair balance.

Rational fairness should satisfy the following conditions:

For each participant, rational fairness requires that the chosen strategy is an optimal response,
i.e.,

σ̂ ∗
i ∈ BRi (s−i) (4)

3.2.5 Resisting Collusion Attack

In Game Theory, a Collusion Attack refers to participants secretly collaborating or cooperating
to devise strategies for their own benefits while disregarding the interests of other participants. This
collusion may distort the results of the game, sacrificing fairness and balance. Resisting Collusion
Attack refers to a feature of strategic or mechanism design that aims to prevent participants from
forming collusion or cooperation that could harm the fairness or balance of the game.

Reference [27] proposed a definition of a computable anti-collusion equilibrium: in a game Γ =({Ai}n
i=1 , {ui}n

i=1

)
, let T represent a collusion group and k be a secure parameter of a cryptographic

protocol. Assuming that for each collusion group, the non-collusive strategy is aT , the collusive strategy
is a′

T , and the non-collusion group’s strategy is a−i, we call the strategic combination a = (a1, . . . , an) ∈
A a computable anti-collusion equilibrium if for Pi ∈ T , there exists a negligible function ε (k) such
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that the game remains in

ui

(
a′

T (k) , a−T (k)
) ≤ ui (aT (k) , a−T (k)) + ε (k) (5)

3.3 Verifiable Random Function

Verifiable Random Function (VRF) [28] is a random function with verification capabilities. It
can generate an output and allow a verifier to verify that the output was generated from a specific
input and key while maintaining the randomness and unpredictability of the output. Reference [29]
proposed an efficient verifiable random function based on bilinear pairs. The scheme includes the
following components:

a) Public-private key generation module Gen
(
1k

)
: Input 1k, output SK = s, PK = gs.

b) Encryption module FSK (x): Input SK, x, output y = FSK (x) = e (g, g)
1

x+SK .

c) Evidence module πSK (x): Input SK, x, output π = πSK (x) = g
1

x+SK .

d) Verification module VPK (x, y, π): Determine whether y is the output corresponding to x, input
(PK, x, y, π), verify whether e (g · pk, π) = e (g, g) and y = e (g, π) are both true, and output 1 if both
are true, otherwise output 0.

4 Multi-Key Management Scheme Based on Rational Secret Sharing

Based on the anti-collusion rational secret sharing [27], and taking into account the practical
situation of blockchain key escrow, the current and long-term benefits of secret-sharing participants,
and the advantages of blockchain smart contracts, a multi-private key management scheme based on
rational secret sharing is proposed as follows.

4.1 System Parameters

The parameters involved in the proposed scheme are shown in Table 2.

Table 2: The parameters of the proposed key management scheme

Notation Description

P = {P1, . . . , Pn} n participants
s0, s1, . . . , sp−1 Contains p keys in ciphertext form, each with a length of 256 bits
Rvi The reputation value of participant i
Cvi The contribution value of participant i
h (.) Collision-resistant hash function, SHA-256 hash function is used in this paper
|| Concatenating operation
⊕ XOR operation
V r∗

j The XOR value of key j
Fq The finite field with q elements, where q is a large prime number. The system

operates on the finite field, i.e., all parameters in the system are elements of the
finite field

M The cost of a private key escrow contract with n participants
M1 The total reward amount for successful reconstruction of the secret by the

participants

(Continued)
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Table 2 (continued)

Notation Description

M2 Advance payment for smart contract expenses
M2(r) The remaining value of the advance payment for the contract’s round r of

refactoring process upon completion
L The maximum cost value of the contract during each round of refactoring
λ Determine the parameters of the geometric distribution based on the estimated

profit of the participants
r∗ Security parameter generation based on geometric distribution
Addi The blockchain user address of Participant i
mr The number of participants in round r of the key reconstruction phase
ski The personal private key obtained by Participant i from the key escrow user for

reconstructing
pki The public key used to verify the information uploaded by participant i during

the key reconstruction phase

4.2 Key Generation Phase

This algorithm is executed by the system administrator to generate public key and private key of
Pi. After executing this algorithm, the administrator will exit this program permanently. Especially, the
setup algorithm inputs security parameter 1k and generates the public key pki and the private key ski

by using Shamir’s (t, n)-threshold secret sharing scheme for Pi. Moreover, blockchain administrators
use multiple servers provided by the blockchain platform to secretly obtain randomly generated
two-dimensional point coordinates, reconstruct Lagrange polynomials, and generate private keys by
substituting additional random values. Its purpose is to avoid the risk of a single point of failure during
the user’s local private key generation process.

4.3 Key Escrow Negotiation Phase

As shown in Fig. 1, the key escrow user sets a threshold value t according to its own needs,
determines the number of participants n to sign the key escrow agreement based on the active degree
of the blockchain nodes and p encrypted keys s0, s1, . . . , sp−1, then negotiates the cost of the escrow
contract M = M1 + M2, determines the parameters of the geometric distribution λ based on the
estimated benefits of the participants (see Section 6.3 for details) and generates a secure parameter
r∗ ∈ Z+ (Z+ is a positive integer set) based on this geometric distribution. The key escrow user learns
the addresses of all participants and establishes secure channels with each participant. Send the private
key ski (i = 1, 2, . . . , n) to the participant i through a secure channel and upload the public data to the
smart contract: a) pki (i = 1, 2, . . . , n), b) M = M1 + M2.
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Figure 1: Key escrow negotiation process

4.4 Key Sharing Phase

Step 1: Key Escrow User uses the two-dimensional coordinate points
(
h (Add1||r∗) , Fsk1

(r∗)
)

, (h(

Add2||r∗) , Fsk2
(r∗)

)
, . . . ,

(
h (Addn||r∗) , Fskn (r∗)

)
and (0, s0) , (1, s1) , . . . ,

(
p − 1, sp−1

)
determines a

n + p − 1 degree polynomial as follows:

G (x) =
n∑

i=1

Fski (r
∗)

n∏
j=1,j �=i

x − h
(
Addj||r∗)

h (Addi||r∗) − h
(
Addj||r∗

)
p−1∏
j=0

x − j
h (Addi||r∗) − j

+
p−1∑
i=0

si

p−1∏
j=0,j �=i

x − j
i − j

n∏
j=1

x − h
(
Addj||r∗)

i − h
(
Addj||r∗

) mod q

= ar∗
0 + ar∗

1 x + ar∗
2 x2 + · · · ar∗

n+p−1x
n+p−1 (6)

Let V r∗
0 = s0 ⊕ G (0) , V r∗

1 = s1 ⊕ G (1) , . . . , V r∗
p−1 = sp−1 ⊕ G (p − 1)

Step 2: To avoid duplicate numerical pairs causing failure during the key reconstruction
phase, the key escrow user selects n + p − t smallest integers d1, d2, . . . , dn+p−t from [p, q − 1] −
{h (Addi||r) |i = 1, 2, . . . , n; r = 1, 2, . . . , r∗}.

Step 3: Upload public data to the smart contract: a) (d1, G (d1)) , (d2, G (d2)) , . . . ,
(
dn+p−t, G

(
dn+p−t

))
,

b) V r∗
j = sj ⊕ G (j) (j = 0, 1, . . . , p − 1) and c) h

(
ar∗

k

)
(k = 0, 1, . . . , n + p − 1).

Step 4: The key escrow user deletes ski (i = 1, 2, . . . , n), r∗, s0, s1, . . . , sp−1 and only retains the
public information: pki (i = 1, 2, . . . , n), (d1, G (d1)) , (d2, G (d2)) , . . . ,

(
dn+p−t, G

(
dn+p−t

))
, V r∗

j = sj ⊕
G (j) (j = 0, 1, . . . , p − 1) and h

(
ar∗

k

)
(k = 0, 1, . . . , n + p − 1).

The process of key sharing phase is shown in Fig. 2.

4.5 Key Reconstruction Phase

Step 1: The contract indicates that round r (r = 1, 2, . . . , r∗) begins (the initial value r is 1), and

i (i = 1, 2, . . . , mr, t ≤ mr ≤ n) participants must input yr
i = Fski (r) = e (g, g)

1
r+ski , π r

i = πski (x) =
g

1
r+ski within the prescribed upload time T1 into the smart contract. Repeated uploads or yr

i , π
r
i with a

reputation value Rvi < 0 are considered invalid inputs.
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Figure 2: Key sharing process

Step 2: During the verification time T2, all participants can make their own judgment about
whether e

(
gr · pki, π r

i

) = e (g, g) and yr
i = e

(
g, π r

i

)
both are valid or not. During this period, all

participants can report anyone. If someone reports, the reported person will be marked as fl and
sorted by order. For the same reported person, the reporter with the highest reputation value (or if
the reputation values are the same, the one who reported earlier) will be marked as ld and proceed to
Step 3. If no one reports, proceed to Step 4 directly.

Step 3: Performs automatic contract verification of the reported account in order of submission.
If the verification result is 0, the reputation value of the reported account will be Rvfl − 1, and the
contribution value will be Cvld − 1. At the same time, the reporter will be rewarded with a reputation
value of Rvld + 1 and a contribution value of Cvld + 1. If the reporter ld has not uploaded yr

ld and
π r

ld within T1, they can resubmit after the Step 3 contract automatic verification is completed and
return to Step 2. If the verification result is 1, the reputation value of the reported account will remain
unchanged, and the contribution value will be Cvfl +1. At the same time, the reporter will be penalized
with a reputation value of Rvld − 1 and a contribution value of Cvld − 1.

Step 4: Within T3, the key escrow user calls the local resource to verify the remaining unreported
participants one by one. If the participant i’s verification result is 0, the user will report feedback to
the contract. After being verified by the contract, Cvi − 1, mr − 1. If the result is 1, it will continue to
verify the participant i + 1. Complete the verification of all participants and mr ≥ t, then proceed to
Step 5.

Step 5: The key escrow user and participants use
(
h (Add1||r) , Fsk1

(r)
)

,
(
h (Add2||r) , Fsk2

(r)
)

, . . . ,(
h

(
Addmr ||r

)
, Fskmr (r)

)
and (d1, G (d1)) , (d2, G (d2)) , . . . ,

(
dn+p−t, G

(
dn+p−t

))
to reconstruct the following

polynomial:

P (x) =
mr∑

u=1

Fsku (r)
mr∏

j=1,j �=u

x − h
(
Addj||r

)
h (Addu||r) − h

(
Addj||r

)
n+p−mr∏

k=1

x − dk

h (Addu||r) − dk

+
n+p−mr∑

i=1

G (di)

n+p−mr∏
k=1,k �=i

x − dk

di − dk

mr∏
u=1

x − h (Addu||r)
di − h (Addu||r)mod q

= br
0 + br

1x + br
2x

2 + · · · br
n+p−1x

n+p−1, (7)
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Then judge whether h
(
br

k

) = h
(
ar∗

k

)
(k = 0, 1, . . . , n + p − 1) is valid. If no one declares the

reconstruction is correct (i.e., declares it to be invalid or remains silent), then proceed to Step 7. If
at least the key escrow user declares the reconstruction is correct, proceed to Step 6.

Step 6: The contract automatically calculates and determines whether h
(
br

k

) = h
(
ar∗

k

)
(k = 0,

1, . . . , n + p − 1) is valid. If it is valid, the secrets si = P (i) ⊕ V r∗
i (i = 0, 1, . . . , p − 1) reconstruction

are completed, the contract assigns each participant with the corresponding contribution value Ai =
Cvi

n∑
u=1

Cvu
· M1, and M2(r) is returned to the key escrow user, terminating the contract. If it is not valid, the

invalid participants j will be executed Rvj + 1 and proceed to Step 7.

Step 7: Check if M2(r) in the current contract is not less than the maximum cost L of the next
round. If it is, proceed to Step 8; if not, notify the key escrow user to make up the payment (not less
than L − M2(r)) within T5. If the payment is made promptly, proceed to Step 8. If not, the contract will
be assigned to each participant with the corresponding contribution value Ai = Cvi

n∑
u=1

Cvu
· M1, and M2(r)

will be returned to the key escrow. The contract will be terminated.

Step 8: The contract executes r + 1, and return to Step 1.

The process of the key reconstruction phase is shown in Fig. 3. The algorithm pseudocode mainly
executed by the smart contract is shown in Fig. 4.

Figure 3: Key reconstruction process
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Figure 4: Pseudocode for the main algorithms in the smart contract

5 Scheme Analysis
5.1 Correctness Analysis

Participants and smart contracts can verify the accuracy of the input yr
i = Fski (r) = e (g, g)

1
r+ski

and π r
i = πski (x) = g

1
r+ski by checking whether e

(
gr · pki, π r

i

) = e (g, g) and yr
i = e

(
g, π r

i

)
are both true.

Proof:

e
(
gr · pki, π r

i

) = e
(

gr · gski , g
1

r+ski

)
= e

(
gr+ski , g

1
r+ski

)
= e (g, g)

(r+ski) 1
r+ski = e (g, g)

yr
i = e (g, g)

1
r+ski = e

(
g, g

1
r+ski

)
= e

(
g, π r

i

)

5.2 Smart Contract Participant Utility Analysis

For Step 1, the contract setting does not allow participants to upload duplicate data to avoid
“free-riding” behavior in a round of polynomial reconstruction, which would improperly increase
the contribution value Cv and allow participants to obtain rewards that do not belong to them. Not
allowing participants satisfied Rv < 0 to upload data reflects punishment for malicious participants
(those who often engage in dishonest behavior).

For Step 2 to Step 4, participants ld and participants fl can be viewed as the following extended
game (a complete information dynamic game, which means participants know each other’s payoffs,
the available actions, and the order in which moves are made):

Participant set N {ld, fl}, ld’s strategy space
{

“report

‘‘

, “silence

‘‘}
, fl’s strategy space

{
“true

‘‘

,

“false

‘‘}
. The corresponding utility functions are:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uld

(
σld = "report", σfl = "false"

) = {Cvld + 1, Rvld + 1} = a
Uld

(
σld = "report", σfl = "true"

) = {Cvld − 1, Rvld − 1} = e
Uld

(
σld = "silence", σfl = "false"

) = {Cvld, Rvld} = c
Uld

(
σld = "silence", σfl = "true"

) = {Cvld, Rvld} = c
Ufl

(
σld = "report", σfl = "false"

) = {
Cvfl − 1, Rvfl − 1

} = e
Ufl

(
σld = "report", σfl = "true"

) = {
Cvfl + 1, Rvfl

} = b
Ufl

(
σld = "silence", σfl = "false"

) = {
Cvfl − 1, Rvfl

} = d
Ufl

(
σld = "silence", σfl = "true"

) = {
Cvfl, Rvfl

} = c

The game tree for two players is shown in Fig. 5 (a > b > c > d > e):

Figure 5: Participants’ game in key reconstruction phase

It is easy to find that the game has two optimal choices (true, silence) and (false, report) for
participant ld. For the participant fl, is a strictly dominant strategy σfl = "true", and from the
perspective of individual rationality, the participant is more inclined to honestly upload their own
data. When malicious participants upload false data, the contract can effectively use the reporting
mechanism to punish malicious participants promptly. Ultimately, a unique pure strategy Nash
equilibrium in the sequential game could be found:

(
σfl = "true", σld = "silence"

)
, honestly uploading

data in the data uploading stage and not making false reports in the verification stage.

For Step 5 to Step 8, there is actually no effective contribution value gain among participants,
but only a reputation value reward is given to honest declaration behavior when the key escrow user
declares deception to the contract. In principle, the key escrow user has no motivation to deceive,
because the key escrow user needs to pay the contract verification overhead, and declaring success
only increases the contract polynomial reconstruction overhead by 1 time when the polynomial is not
reconstructed successfully. If the key escrow user does not declare reconstruction success in T4 when
r = r∗, only the amount belonging to the user M2(r) will be consumed by the contract until it is not
more than one round of the maximum contract overhead value L to stop.

For the entire key escrow protocol, the actual benefits for each participant are Ui = Ai = Cvi
n∑

u=1
Cvu

·M1.
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5.3 Analysis of Smart Contract Fairness

5.3.1 Fairness Analysis of Cooperative Game

In this key escrow contract scheme, the Shapley value of the participant i is Shvi =
r∗∑

r=1

Cvir =
r∗∑

r=1

(
1·mr
mr

− 1·mr−Cvir
mr

)
mr

r∗∑
r=1

mr

= Cvi
r∗∑

r=1
mr

= Cvi
n∑

u=1
Cvu

, which is proportional to its revenue Ai = Cvi
n∑

u=1
Cvu

·M1, satisfying

the fairness of the cooperative game.

5.3.2 Rational Fairness Analysis

In this scheme, everyone’s choice strategy σ̂ ∗
i = {"true", ("false", "report")} ∈ BRi (s−i) satisfies the

requirement of rational fairness.

5.4 Mechanism Design Analysis

5.4.1 Fairness Analysis of Cooperative Game

In the key escrow contract scheme, ∀σi, ∀σ ′
i : Ui

(
σi = σ̂ ∗

i , σ−i

) ≥ Ui

(
σ ′

i , σ−i

)
, which means the

scheme satisfies dominant-strategy incentive compatibility and also satisfies Bayesian incentive com-
patibility.

5.4.2 Personal Rational Analysis

In the key escrow contract scheme, it was found in the utility analysis in Section 5.2 that Ui =
Ai = Cvi

n∑
u=1

Cvu
· M1 ≥ 0 = Ui {∅}, the condition for personal rationality in mechanism design is satisfied.

6 Security Analysis
6.1 Unforgeability of VRF

Proof : Assume there exists an algorithm A that can distinguish between a random element of G2

and y = FSK (x) = e (g, g)
1

x+SK with ε advantage (i.e., 1
2
+ ε probability of success). Then the advantage

of the algorithm B constructed using this algorithm A to solve the DBDHI problem should be ε

2
(i.e.,

1+ε

2
probability of successful solution). Given

(
g, gα, . . . , g(αq), Γ

)
, B attempts to distinguish whether Γ

is a random element of G2 or e (g, g)
1
α . If Γ is e (g, g)

1
α , output 0, otherwise output 1.

First, the challenger sets G1 and G2, determines the bilinear transformation e and generator g.
Then, the challenger randomly selects ξ ∈ {0, 1} without revealing it to B. If ξ = 0, let Γ = e (g, g)

1
α ;

if ξ = 1, then let Γ ∈ G2.

Initial phase: Simulate the algorithm B by running A, select a fake VRF value for some input x0,

let χ = α − x0, define a function m (o) =
q−1∑
j=0

cjoj, m′ (o) =
q−2∑
j=0

rjoj, calculate n = gm(χ), PK = nχ and

SK = χ , and send the public key PK to the attacker A.

Phase 1: A ask for the VRF value of xi (xi �= x0), the oracle will return πSK (xi) = g
1

xi+χ and
FSK (xi) = e (n, n)

1
xi+χ to A.
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Challenge phase: A sends two equal-length values x0, x1 to B. B randomly select ϕ ∈ {0, 1}, and
generate πSK

(
xϕ

) = g
1

xϕ+χ and FSK

(
xϕ

) = e (n, n)
1

xϕ+χ .

Let Γ∗ = Γ(r2)e (g, g)
m(χ)2−r2

α , if Γ = e (g, g)
1
α , then Γ∗ = e (n, n)

1
α . B Send πϕ, yϕ, Γ∗ to A. When

ξ = 0, Γ and Γ∗ have the same distribution; when ξ = 1, Γ and Γ∗ are both random numbers.

Phase 2: Repeat the process of Phase 1.

Guessing phase: A provides a guess value ϕ ′. If ϕ ′ = ϕ, B outputs ξ ′ = 0. If ϕ ′ �= ϕ, B outputs
ξ ′ = 1. When ξ = 1, A obtains random number information with Pr [ϕ ′ �= ϕ|ξ = 1] = 1

2
and B outputs

ξ ′ = 1, Pr [ξ ′ = ξ |ξ = 1] = 1
2
. When ξ = 0, A obtains valid information with an advantage of ε, so

Pr [ϕ ′ = ϕ|ξ = 0] = 1
2
+ ε, B outputs ξ ′ = 0, Pr [ξ ′ = ξ |ξ = 0] = 1

2
+ ε. The probability of algorithm

B cracking q-DBDHI is: Pr [ξ ′ = ξ ] = Pr [ξ = 0] Pr [ξ ′ = ξ |ξ = 0] + Pr [ξ = 1] Pr [ξ ′ = ξ |ξ = 1] = 1+ε

2
,

i.e., the advantage of algorithm is ε

2
. However, there is currently no algorithm with an unignorable

advantage in cracking q-DBDHI, so the advantage ε of the assumed algorithm A is negligible, i.e.,
the output value of VRF cannot be forged in the q-DBDHI problem. Therefore, using VRF for
verification can detect the authenticity and correctness of the data to be verified.

6.2 Threshold Security: No More Than t − 1 Participants Cannot Obtain Information about p
Encrypted Keys
Public information (d1, G (d1)) , . . . ,

(
dn+p−t, G

(
dn+p−t

))
consists of n + p − t numerical pairs, and

no more than n + p − 1 numerical pairs can be determined when no more than t − 1 participants
cooperate, making it impossible to determine a polynomial of n+p−1 degree as in Eq. (6) and obtain
information about the corresponding p encrypted keys.

6.3 Resisting Collusion Attacks

Based on the threshold security analysis, any colluding party of the colluding group T ⊂ [n] , |T | ≤
t − 1 cannot determine whether the current round is the r∗ round through collusion. If the colluding
party wants to obtain the encrypted keys information at this time, they can only guess, with βT

the probability of guessing correctly, corresponding to the benefit U−
i ; and 1 − βT the probability

of guessing incorrectly, corresponding to the benefit U+
i ; the expected benefit of colluding party Pi

for guessing is E
(
UTguess

i

) = βTU+
i + (

1 − βT
)

U−
i . Suppose the probability of attacking exactly at

round r∗ is λT , and the benefit of attacking exactly at round r∗ is still U+
i , otherwise the benefit of

colluding party Pi is E
(
UTguess

i

)
. Therefore, the expected benefit of colluding party Pi is E

(
UT

i

) =
λTU+

i +(
1 − λT

)
E

(
UTguess

i

)
. If colluding members follow the protocol, the benefit of Pi at this time is Ui,

so when Ui > E
(
UT

i

)
(i.e., Ui > λTU+

i + (
1 − λT

)
E

(
UTguess

i

)
), colluding members have no motivation

to deviate from the protocol.

For this private key management protocol, the probability of guessing the plaintext of the private
key of the blockchain private wallet is negligible, i.e., E

(
UTguess

i

)
can be approximated to 0. This

protocol only needs to ensure Ui > λTU+
i . In the protocol, Ui = Ai = Cvi

n∑
u=1

Cvu
· M1 ≥ M1

n
, if the key

escrow user is willing to pay no more than R to the colluding organization through signing a new
smart contract for key shares trading when threatened by a collusion attack, then U+

i = R
|T | < R

t
.

Therefore, λT <
tM1
nR

, in the corresponding protocol, λ ≤ λT can meet the requirement of resisting
collusion attacks.
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7 Performance Analysis
7.1 Communication Cost

During key escrow agreement, the user uploads all public key data (512n bits), hash values of
polynomial coefficients (256 (n + p) bits), the XOR values of all keys (256p bits), and coordinates of
n + p − t two-dimensional points (512 (n + p − t) bits) to the blockchain. The total bits are 1280n +
1024p − 512t. For each round, each participant only needs to upload the encrypted information yr

i =
Fski (r) = e (g, g)

1
r+ski and verification information π r

i = πski (x) = g
1

r+ski , which are 256 bits and 320
bits. Therefore, the communication overhead of each round of communication between participants
and the smart contract is 576 bits. As a result, the total communication cost of our proposed scheme

is 576
r∗∑
1

mr + 1280n + 1024p − 512t bits.

7.2 User Communication Overhead

As shown in Table 3, during the key distribution phase, whether it is Ogata’s scheme [30], Ra’s
scheme [31], or the proposed scheme in this paper, it is necessary to transmit the corresponding key
shares to n server/participant nodes through secure channels. When the server/participant nodes are
honest, Ogata’s scheme [30] only needs to communicate and interact during the reconstruction phase
without the verification stage of server information. Ra’s scheme [31] needs to communicate with each
server through an interactive verification method and determine whether the corresponding node is
malicious. When there are e malicious nodes among the server/participant nodes, the former cannot
correctly reconstruct the corresponding escrow key, while the latter needs to communicate with these e
malicious nodes for an additional round during the verification stage. For the proposed scheme in this
paper, whether there are malicious nodes or not, in each round of key escrow user node verification, it
only needs to obtain the verification information uploaded by each participant from the chain, that is,
the communication overhead per round of verification is O (1), and the communication overhead of r∗

rounds of verification is O (r∗) = O
(

1
λ

)
. After r∗ rounds of iteration, the user reconstructs successfully

locally and communicates with the smart contract deployed on the blockchain once, that is, the
communication overhead of the reconstruction phase is O (1). However, for the proposed scheme,
the overall communication complexity is O

(
n2

)
due to the participants broadcasting communication

interactions during the reconstruction phase.

Table 3: User communication overhead comparison

Phases Ogata [30] Ra et al. [31] Proposed scheme

Distribution phase O (n) O (n) O (n)

Verification phase (Honest nodes) – O (n) O (r∗)
Reconstruction phase (Honest nodes) O (n) O (n) O (1)

Verification phase (Appearance of
malicious nodes)

– O (n) +
O (e)

O (r∗)

Reconstruction phase (The malicious node
exists)

Fail to reconstruct O (n) O (1)
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7.3 Feature Comparison

As shown in Table 4, the current password-protected secret sharing (PPSS)-based key recovery
management schemes for blockchain can meet the key recovery needs of blockchain with semi-
honest nodes, such as the consortium blockchain [30,31]. However, these schemes require interactive
verification between users and servers and often require synchronous communication. At the same
time, they do not consider the rational self-interested behavior of blockchain, and cannot realize key
recovery in more blockchain application scenarios such as the public blockchain. Our scheme uses
rational secret sharing and the non-interactive verification method Elliptic Curve VRF (ECVRF) to
meet all the requirements in the table, thus realizing the key recovery needs of blockchain users in the
asynchronous communication environment of the public blockchain.

Table 4: Feature comparison

Schemes Ogata [30] Ra et al. [31] Proposed scheme

Decentralized approach YES YES YES
Without honest nodes Semi-honest Semi-honest YES
Non-interactive verification NO NO YES
Preventing malicious behavior NO YES YES
Preventing illegal key recovery YES YES YES
Individual rationality NO NO YES
Nash equilibrium for sequential games NO NO YES
Collusion resistance YES YES YES
Fair reconstruction rewards NOT OFFER NOT OFFER YES

7.4 Computational Efficiency Analysis

Based on the calculation efficiency analysis in Ra et al. [31] and the key distribution and
reconstruction process proposed in the proposed scheme, we compare the computational complexity
of Ogata’s scheme [30], Ra’s scheme [31], and the proposed scheme, as shown in Table 5.

Table 5: Computational complexity comparison

Phases Ogata [30] Ra et al. [31] Proposed scheme

Distribution nS nS + k (n + p) S
Recovery (n + 3k) S (n + 4k) S r∗ [(n + p) S + nT ]

The computational complexity of Shamir’s secret sharing is denoted as S, the time complexity of
generating random numbers is denoted as k, the time complexity of performing one ECVRF execution
is denoted as T , and the number of executions of the proposed scheme during secret reconstruction is
denoted as r∗.

Typically, from the perspective of Byzantine fault tolerance, t ∈ (
2
3
n, n

]
, E (r∗) = 1

λ
≥ 1

λT > nR
tM1

>
nR

2
3 nM1

= 3R
2M1

. We consider the cost of the managed key service as M1, and the cost of the premium

managed key service as R, and from a practical point of view, it should satisfy M1 < R ≤ 2M1, so
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E (r∗) = 3 is more reasonable. The computational complexity of Shamir’s secret sharing is within
0.218 s [32], let r∗ = 3, and the following is the computational time overhead diagram:

As shown in Fig. 6, in the key distribution process, when the user only hosts one key, the
computational time overhead of the proposed scheme is higher than Ogata’s scheme [30] and Ra’s
scheme [31]. When the user hosts two keys at once, only in the case of n = 2, the computational time
overhead of the proposed scheme is the same as Ogata’s scheme [30], and in other cases, it is lower than
Ogata’s scheme [30] and Ra’s scheme [31]. When the user hosts three keys at once, the computational
time overhead of the proposed scheme is lower than Ogata’s scheme [30] and Ra’s scheme [31].

Figure 6: Computational efficiency comparison during distribution

As shown in Fig. 7, when the user only hosts one key in the key recovery process, the computational
time overhead of the proposed scheme is higher than Ogata’s scheme [30] and Ra’s scheme [31]. When
the user hosts five keys at once, in the case of n ≥ 10, the computational time overhead of the proposed
scheme is lower than Ogata’s scheme [30] and Ra’s scheme [31]. When the user hosts seven keys at once,
in the case of n ≥ 5, the computational time overhead of the proposed scheme is lower than Ogata’s
scheme [30] and Ra’s scheme [31].

We conducted computational cost simulations on a personal computer with a 12th Gen Intel (R)
Core (TM) i7-12700H 2.70 GHz CPU and 16.0 GB RAM, using JavaScript language. The number of
participants in the proposed scheme is set to be n = 1000 and the number p of private keys that need
to be escrowed is denoted as p = 5. The computational cost for the negotiation and key sharing stage
was 403881 ms, and the computational cost for the key reconstruction stage was 1248453 ms.



CMC, 2024, vol.79, no.1 325

Figure 7: Computational efficiency comparison during recovery

7.5 Ether Consumption

Table 6 shows the functions and corresponding Ether costs involved in the smart contract during
the refactoring phase of the proposed scheme. However, according to the utility analysis in Section 5.2,
participants will comply with the protocol and upload real data without false reporting. In principle,
the contract will only execute a polynomial refactoring and hash value verification once, and will not
execute the relevant functions of ECVRF (i.e., serial 2 and 3).

Table 6: Ether cost

Serial Function Cost in Ether

1 Deploy 0.047784
2 decodeProof 0.0010178
3 verify 0.058908
4 addPoint 0.0014430
5 getPolynomialCoefficients 0.0027637 (n = 3), 0.0050395 (n = 5),

0.011919 (n = 10), 0.39951 (n = 100), 3.7142 (n = 1000)
6 SHA256 0.000061654
7 sethash 0.000647947
8 verifyhash 0.000071862
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8 Conclusion

We proposed a blockchain private key management scheme based on rational secret sharing, which
can achieve one-time escrow and recovery of multiple wallet private keys for blockchain private user.
This scheme can be applied to the secure backup scenario of digital assets such as blockchain user
wallets and encrypted data. The proposed scheme takes into account the self-interested behavior of
participants and satisfies individual rational constraints and incentive compatibility. It promotes the
cooperation and behavioral norms of blockchain users by designing a reputation mechanism and
a revenue distribution mechanism based on contribution value proportion. In addition, the scheme
also designed the whole process of multi-key escrow and reconstruction based on verifiable random
functions and demonstrated the collusion resistance, security verification ability, communication over-
head, computational overhead, incentive compatibility and individual rational constraints through
participants’ utility function analysis. Finally, the scheme was simulated on Ethereum smart contracts
to prove its feasibility on the public blockchain.

In the future work, in order to make the proposed scheme a long-term blockchain key management
protocol, we will consider the evolutionary game of blockchain users, adjust the reputation incentive
design in this scheme and improve the efficiency of blockchain private key escrow and recovery. In
addition, we will consider extending the management of the blockchain user’s private key from the
wallet to more application scenarios of blockchain key management.
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