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ABSTRACT

Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in the
field of small object detection on unmanned aerial vehicles (UAVs). This task is challenging due to variations in
UAV flight altitude, differences in object scales, as well as factors like flight speed and motion blur. To enhance
the detection efficacy of small targets in drone aerial imagery, we propose an enhanced You Only Look Once
version 7 (YOLOv7) algorithm based on multi-scale spatial context. We build the MSC-YOLO model, which
incorporates an additional prediction head, denoted as P2, to improve adaptability for small objects. We replace
conventional downsampling with a Spatial-to-Depth Convolutional Combination (CSPDC) module to mitigate
the loss of intricate feature details related to small objects. Furthermore, we propose a Spatial Context Pyramid
with Multi-Scale Attention (SCPMA) module, which captures spatial and channel-dependent features of small
targets across multiple scales. This module enhances the perception of spatial contextual features and the utilization
of multiscale feature information. On the Visdrone2023 and UAVDT datasets, MSC-YOLO achieves remarkable
results, outperforming the baseline method YOLOv7 by 3.0% in terms of mean average precision (mAP). The MSC-
YOLO algorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets in
UAV aerial photography, providing strong support for practical applications.
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1 Introduction

In recent years, the rapid advancements in unmanned aerial vehicles (UAVs) and computer vision
technologies have opened up new possibilities for various applications, including object detection and
recognition. The ability to detect and identify objects accurately and efficiently from aerial imagery has
become increasingly important in fields such as surveillance [1], disaster management [2], agriculture
[3], obstacle avoidance [4], and urban planning [5]. Unmanned aerial systems offer a unique perspective
and the capability to cover large areas quickly, making them an ideal platform for remote sensing and
data collection.

Object detection in aerial images presents several challenges due to factors such as varying object
scales, occlusions, cluttered backgrounds, and perspective distortions. Traditional methods relying
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solely on manual or semi-automatic image interpretation are time-consuming and prone to human
errors. In addition, since UAVs usually take images at different heights and angles, the scale of the
target to be detected varies drastically, which will cause a large number of small objects to be enriched
in the image and bring a major challenge to target detection. To overcome these limitations, researchers
have turned their attention towards leveraging deep learning techniques for automatic object detection.
Among various deep learning architectures, the You Only Look Once (YOLO) series [6–10] has
emerged as a popular choice for real-time object detection in images and videos. The YOLO series,
with its unique approach of dividing the input image into grid structures, forecast bounding boxes
and class probabilities for every individual cell, have demonstrated impressive accuracy and efficiency.
However, applying the YOLO framework to aerial imagery poses specific challenges that necessitate
modifications and improvements to ensure optimal performance.

This research paper aims to address these challenges by proposing novel enhancements to the
YOLOv7 framework [11] for object detection in aerial images using drone-captured imagery. Our
proposed method combines the strength of the YOLO architecture with adaptations tailored to handle
the unique characteristics of aerial imagery, such as varying object scales and complex backgrounds.
We hypothesize that by incorporating specific modifications, we can improve the accuracy, robustness,
and efficiency of object detection using drone-acquired aerial images. The workflow utilizing MSC-
YOLO is depicted in Fig. 1.
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Figure 1: Overview of the working pipeline using MSC-YOLO

To validate our proposed approach, we conduct extensive experiments using publicly available
aerial datasets, which are Visdrone2023 [12] and UAVDT [13], respectively, comparing the performance
of our modified MSC-YOLO method against existing object detection algorithms. Our results
demonstrate the effectiveness of our approach in accurately detecting and localizing the objects of
interest, particularly in the challenging aerial environment, even for small target detection, highlighting
its practicality for real-world applications.

The primary contributions of this paper are outlined below:

• Shallow feature maps contain more small object features. In the neck part, we introduce shallow
feature maps for feature fusion and combine the upsampling process of the “Small” prediction
head branch to form the “Tiny” prediction head to handle tiny objects.
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• We propose the Spatial-to-Depth Convolutional Combination (CSPDC), which contains only
non-stride convolutions, as a replacement for the original downsampling layer, to reduce the
loss of detailed features.

• We propose the Spatial Context Pyramid with Multi-Scale Attention (SCPMA) and integrate
it into YOLOv7, which enhances the model’s ability to effectively fuse features of various scales
and utilize spatial context information to improve the performance of small object detection.

• We evaluate MSC-YOLO on two datasets, Visdrone2023 and UAVDT. Experimental results
show that MSC-YOLO achieves the level of state-of-the-art (SOTA) object detectors and
significantly improves the detection performance of small objects in the dataset. It is shown
to be an effective and competitive small object detector for UAV-view.

The structure of this paper is organized as follows: In Section 2, we discuss the existing related
work. In Section 3, we introduce the architecture of the YOLOv7 model as well as the design philoso-
phy behind the MSC-YOLO model and explain the implementation of each component of our model.
Section 4 provides a detailed description of the experiments for MSC-YOLO, evaluating our proposed
small object detection model from both quantitative and qualitative perspectives, and verifies each
proposed component with ablation studies. In Section 5, we discuss why the detection performance of
MSC-YOLO is superior to YOLOv7 and the current limitations faced by the algorithm. In Section 6,
we summarize the design methods and results of this paper, as well as future work.

2 Related Works

To demonstrate the rationale behind the design of our model for detecting small objects, in
this section, we will introduce the general approach for detecting small objects, which includes data
augmentation, general object detectors, and detectors for small objects on UAV-captured images.

2.1 Data Augmentation

The imbalance in sample quantities within a dataset can have a significant impact on object detec-
tion results. When a dataset contains a considerably higher number of large-sized objects compared
to small-sized objects, the model’s ability to learn features from small object samples becomes limited.
In such cases, the utilization of data augmentation strategies can enhance the detection performance
of small objects within the dataset. Some researchers have proposed methods for data augmentation
using multiple images clustered together [14], namely MixUp [15], Copy paste [16], CutMix [17] and
Mosaic [9]. RRNet [18] proposed an adaptive enhancement method called AdaResampling. Although
it shares some similarities in principle with [16], its uniqueness stems from the use of prior segmentation
maps. These segmentation maps guide the sampling process for pasting locations. Furthermore, this
method applies scale adjustments to the objects to be pasted, further minimizing scale differences.
To obtain a larger sample of small objects without acquiring additional data, both Zhang et al. [19]
and Wang et al. [20] adopted operations based on partitioning and resizing to acquire more small
object training samples. DS-GAN [21] has developed an innovative pipeline for data augmentation,
integrating techniques such as object segmentation, image reconstruction, and image blending, with
the aim of producing premium synthetic data for pre-existing diminutive objects.

2.2 Object Detection

With the advancement of deep learning, significant breakthroughs have been made in object
detection methods based on deep neural networks. These deep learning-based object detection
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methods can be divided into two types, one-stage detectors and two-stage detectors, according to
whether they generate candidate boxes first for subsequent detection.

YOLO is a distinguished one-stage object detection approach that reformulates the task of object
detection as a regression problem. It predicts the positions and categories of objects by making
predictions on a grid applied to the image. YOLO9000, YOLOv3, YOLOv4, YOLOv5, YOLOv6,
YOLOv7, and YOLOv8 [7–11] have been launched one after another, continuously improving the
detection accuracy and speed. Additionally, SSD (Single Shot MultiBox Detector) [22] is another
commonly used one-stage object detection algorithm. It predicts the positions and categories of objects
at multiple scales by utilizing multiple feature maps to facilitate detection at different scales. YOLOX
[23] switches the YOLO series detectors to anchor-free mode for the first time and performs other
advanced detection technologies, namely decoupling heads and the leading label assignment strategy
SimOTA.

Two-stage object detectors are a popular class of models used in computer vision for accurate
and robust object detection. These detectors consist of two main stages: Region proposal generation
and object classification. In the initial phase, a collection of prospective bounding boxes for objects
is produced, followed by the subsequent phase, which involves categorizing these candidates into
various classes of objects. One of the most well-known two-stage object detectors is the Faster R-
CNN (Region Convolutional Neural Network) architecture introduced by Ren et al. in 2015 [24].
Faster R-CNN revolutionized object detection by combining a region proposal network (RPN) with
a region-based convolutional neural network (R-CNN) [25]. Another notable advancement in two-
stage object detection is the Cascade R-CNN architecture proposed by Cai et al. in 2018 [26]. Cascade
R-CNN introduces a cascade of classifiers, where each stage progressively refines the detection results
by filtering out false positives and focusing on harder examples. In recent years, there has also been
an increased interest in exploring novel backbone architectures for two-stage object detectors. For
example, the Feature Pyramid Network (FPN) introduced by Lin et al. in 2017 [27] has become a
popular choice for enhancing the feature representation across different scales.

2.3 Small Object Detection on UAV-Captured Images

Developing object recognition techniques for images captured by drones is intricate because
of the variability in flight dynamics, extensive scene ranges, and the variety of objects present.
Existing approaches address these challenges through various strategies. ClusDet [28] integrates
object clustering and detection in an end-to-end framework. Zhang et al. [29] proposed a difficult
region estimation network to identify high-density areas for detection. GLSAN [30] determines an
adaptive region to enhance precision in areas of high density. DMNet [31] employs a crop strategy
guided by density maps to balance foreground and background information. DSHNet [32] addresses
performance degradation in long-tail scenes. HawkNet [33] aggregates multi-scale features effectively.
CDMNet [34] employs a streamlined dual-task network for density estimation. TPH-YOLOv5 [35]
merges transformer-centric prediction heads with YOLOv5, enhancing detection performance in
scenarios with dense objects and varying object sizes. SODNet [36] refines the detection of smaller
objects without compromising real-time efficiency. QueryDet [37] introduces an innovative query
strategy to accelerate the processing speed of feature pyramid-driven object detection systems. DCRFF
as introduced by Mittal et al. in 2022 [38] leverages receptive field principles and merges feature maps
to enhance the performance of deep object detection methods in low-altitude aerial imagery. ARSD
[39] outlines a two-stage adaptive region detection schema. It first utilizes a comprehensive detection
network for preliminary object localization. After this, it implements an object clustering method with
constant point density and a tailored selection algorithm to pinpoint object-rich sub-zones. These
approaches collectively contribute to the advancement of object detection on drone-captured images.
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3 Methodology

To address the challenge of detecting small objects in mid-low altitude aerial photography by
drones, we propose an improved YOLOv7 algorithm (MSC-YOLO) based on multi-scale spatial
context. In this section, we first introduce the architecture of YOLOv7 and the overall framework of
MSC-YOLO. Subsequently, the key components of MSC-YOLO are detailed, including the prediction
head for tiny objects, the CSPDC module, and the SCPMA module.

3.1 Overview of YOLOv7

YOLOv7 is a brand new version of the YOLO series of detectors. It is based on a collection
of some existing tricks and module reparameterization and dynamic label allocation strategies. The
Efficient Layer Aggregation Networks (ELAN) proposed by it can make a deeper model learn and
converge more effectively by controlling the shortest and longest gradient path. The author of YOLOv7
referred to the above structure and proposed Extended-ELAN (E-ELAN). E-ELAN adopts the
feature aggregation and feature transfer process similar to ELAN, only uses the group convolution,
expansion module, and shuffling module similar to ShuffleNet [40] in the calculation module, and
finally fuses the features through the aggregation module. By adopting this method, more diverse
features can be obtained, and at the same time, the calculation and utilization efficiency of parameters
can be improved. The overall architecture of YOLOv7 is illustrated in Fig. 2.

Figure 2: Overall architecture of the YOLOv7
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3.2 Overview of MSC-YOLO

To solve the problem of sharp target scale changes and small object detection difficulties in UAV
aerial scenes, in this section, we use the tiny object prediction head, modified down-sampling CSPDC
module, and SCPMA module, propose improved YOLOv7 (MSC-YOLO) algorithm. The overall
architecture of MSC-YOLO is illustrated in Fig. 3.
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Figure 3: Overall architecture of the MSC-YOLO

3.3 Prediction Head for Tiny Objects

In the experimental section, we introduce the categories of the datasets used and the proportion
of small objects. Among them, there are a large number of tiny objects that are difficult to detect.
Therefore, we add a fourth prediction head based on the original three prediction heads. The added
prediction head is upsampled for the third time in the Neck, and at the same time, the shallower features
of the Backbone are fused across connections to make it have a smaller receptive field, which enhances
model’s capability to identify both small and multi-scale objects. Although the extra prediction head
increases the parameters and Giga Floating-point Operations Per Second (GFLOPs) of the model, it
notably enhances the efficiency of detecting small objects.

3.4 Spatial-to-Depth Convolutional Combination Module

In object detection, deep learning models such as convolutional neural networks (CNN) are
usually used to extract image features. Downsampling can reduce the size of the image, thereby
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reducing the amount of computation, and can preserve important feature information. Target objects
may appear in different scales in the image, some objects may be small, while others may be large.
Through downsampling, images of different scales can be generated, so that objects can be detected
at different scales. However, downsampling reduces the resolution of an image, resulting in a certain
degree of information loss. Smaller objects may be blurred or lost during downsampling, affecting
detection accuracy.

Therefore, we propose to use the CSPDC downsampling module to optimize downsampling and
reduce the loss of feature information caused by downsampling with a step size of 2. This is a modified
version of SPD-Conv [41]. In the process, we utilize the intermediate feature map, denoted as F , which
has dimensions S × S × C1. Here, S indicates the width and height of this map, while C1 stands for the
channel count. Firstly, the number of channels of the feature map is adjusted by convolution, sliced into
four sub-feature maps of size S/2×S/2×C2 and then spliced into a feature map of S/2×S/2×4∗C2

by the dimension of the channels, and finally adjusted back to the original number of channels by
the convolutional layer. The whole process is shown in Fig. 4. We describe its algorithm as shown in
Algorithm 1.
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Algorithm 1: CSPDC algorithm
Input: the feature map F of size S × S × C1

Output: the feature map F ′of size S/2 × S/2 × C2

F ← S × S × C1, scale ← 2
Function CSPDC(F , scale)

f ← Conv (F , kernel_size = 3, stride = 1, C2)

f ′
0,0 ← f [0 : S : scale, 0 : S : scale]

f ′
1,0 ← f [1 : S : scale, 0 : S : scale]

f ′
0,1 ← f [0 : S : scale, 1 : S : scale]

f ′
1,1 ← f [1 : S : scale, 1 : S : scale]

F ′ ← cat
(
f ′

0,0, f ′
1,0, f ′

0,1, f ′
1,1

)
F ′ ← Conv (F ′, kernel_size = 1, stride = 1, C2)

Return F ′

End Function
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3.5 Spatial Context Pyramid with Multi-Scale Attention

Upon aggregating feature maps from different levels, the feature pyramid still retains spatial
local information. To further enhance the features, we introduce the Spatial Context Pyramid (SCP)
[42], which augments the features by learning global spatial context within each level. The core
component of SCP named the Context Aggregation Block (CABlock), resembles a self-attention
mechanism, as depicted in the left half of Fig. 5. Three 1 ×1 convolutional branches serve as linear
transformations, representing contextual relations, contextual content, and contextual importance.
The aggregated spatial context information is subsequently fed into the Efficient Multi-Scale Attention
(EMA) to form the Spatial Context with Multi-scale Attention Block (SCMABlock). EMA [43] is an
efficient multi-scale attention module that groups original features into sub-features along the channel
dimension, reducing computational overhead while retaining channel-wise information. Moreover, the
setup of parallel sub-networks captures spatial and channel dependencies in a multi-scale manner.
After incorporating comprehensive global information to adjust the channel weights within each
parallel pathway, the results from these two parallel branches are further combined using interactions
across dimensions, aiming to recognize pixel-to-pixel associations. The structure of EMA is illustrated
in the right half of Fig. 5. Aerial images captured by drones often cover vast areas, where features of
small objects may not be distinct, especially in complex background scenarios. SCMABlock enables
the model to learn and utilize more crucial features in such contexts. We describe its algorithm as
shown in Algorithm 2.
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Algorithm 2: SCPMA algorithm
Input: the feature maps of level i in the feature pyramid Pi, each contains Ni pixels. The linear trans-
formations wa, wk and wv are implemented using three convolutional blocks with 1 × 1 convolutional
kernels.
Output: the feature maps of level i in the feature pyramid Qi

For i = 0, 1, . . . , leveli do

P′
i ← Pj

i + aj
i · ∑Ni

j=1

[
exp

(
wkP

j
i

)
∑Ni

m=1 exp
(
wkPm

i

) · wvP
j
i

]
, aj

i ← exp (waPi)∑Ni
n=1 exp

(
waPn

i

)
(Continued)
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Algorithm 2 (continued)

P′
i feature groups By G groups, set X as a sub_feature_group;

X ← {
X0, Xg, . . . , XG−1

}
, Xg ∈ RC//G×H×W

Compute Xh, Xw by applying Y Avg Pool and X Avg Pool on X
Concatenate Xh and Xw, Conv1 ×1, then split it back into Xh and Xw

X1 ← X ∗ Sigmoid (Xh) ∗ Sigmoid (Xw) by Group Norm;
X2 ← Apply Conv3 × 3 to X ;
Compute Attention Weights:

X ′
2 ← Softmax(X1 global average pooling) Matmul reshape X2

X ′
1 ← Softmax(X2 global average pooling) Matmul reshape X1

Calculate Final Attention-Weighted Feature Map:
Qi ← Sigmoid

(
X ′

1 + X ′
2

) ∗ X
Reshape the final Qi to the original shape

End For
Return Q0, . . . , Qi

4 Experiments and Evaluations

In this section, we introduce the small object datasets used, namely Visdrone2023 and UAVDT.
We will also provide details of the implementation and the main evaluation metrics. To better evaluate
our model, we assess the effectiveness of the small object detection achieved by our model from both
quantitative and qualitative perspectives.

4.1 Datasets

The Visdrone2023 and UAVDT datasets are selected for use based on their extensive application
and representativeness in the field of drone object detection. The two popular benchmark datasets
encompass a diverse range of drone aerial photography scenes, effectively demonstrating the perfor-
mance of the proposed method in handling small object detection.

The Visdrone2023 dataset encompasses aerially-acquired images from diverse environments,
subjected to varying weather and illumination circumstances. The training set includes 6,471 images,
with 548 images for validation and 1,610 images for the final testing of models. The image scale
of the dataset is about 2,000 ×1,500 pixels. It includes diverse scenarios such as dense and sparse
scenes, strong daylight, cloudy weather, and nighttime conditions. There are ten object categories in
the dataset. The objects exhibit significant variations in scale, with a considerable proportion of small
and densely packed targets. Considering that the official UAVDT dataset does not divide into training
and test sets, we maintain the same division ratio as the methods we compared with, specifically 23,258
images for training and 15,069 images for testing. The images used for testing do not have scenes
similar to the training pictures, and all scenes are shot by drones. The resolution of each image is
approximately 1,080 ×540 pixels. The images have been annotated with bounding boxes, encompassing
three distinct categories, namely, car, truck, and bus.

According to official calculations, 97.1% of the targets occupy 1% or less of the total image area.
Following the definition of small objects in the COCO dataset [44], small objects are those whose area
occupies 1% or less of the total area or whose area is smaller than 32 × 32 pixels. Therefore, these
97.1% of targets can be classified as small objects. Similarly, 74.87% of the UAVDT datasets belong to
small-sized objects, and it is a challenging task to accurately identify small objects on both datasets.



992 CMC, 2024, vol.79, no.1

4.2 Implementation Details and Evaluation Metrics

We use PyTorch 1.8.1 as the base environment for implementing MSC-YOLO and train the final
model using the high-computational graphics card NVIDIA RTX3090 GPU. Pretrained weights of
YOLOv7 on the COCO dataset are employed to accelerate the convergence during the training phase.
Since MSC-YOLO and YOLOv7 share a significant portion of the backbone and neck architecture,
some of the weights are transferred to our model. Furthermore, due to hardware computational
limitations, the input images are set to 1,280 ×1,280. During the training phase, we utilize the Adam
optimizer with an initial learning rate of 3e−4, coupled with a cosine learning rate adjustment strategy.
To address the memory consumption of large-sized input images, we set batch size to 2, momentum to
0.937, and weight decay to 5e−4. The first two epochs are used for warmup, and a total of 100 epochs
are trained.

To better utilize the object features in the existing datasets, we employ data augmentation
techniques such as horizontal flipping, mosaic, mixup, paste_in (image copy-paste), scale, and cutmix,
among others. These techniques expand the distribution of object features in the dataset, enhancing
the model’s generalizability in detecting complex scenes.

We adopt mean average precision (mAP) and mean average precision at IOU threshold 0.5
(mAP0.5) as the performance evaluation metrics for object detection. By utilizing precision (P) and
recall (R), we can calculate the AP, mAP, and mAP0.5 as outlined below:

AP =
∫ 1

0

P (R) dR (1)

mAP = 1
N

N∑
i=1

APi, IOU = 0.5 : 0.05 : 0.95 (2)

mAP0.5 = 1
N

N∑
i=1

APi, IOU = 0.5 (3)

where N represents the number of classifications of the targets.

4.3 Quantitative Evaluation

Based on the model implementation and hyperparameter settings in Section 4.2, we evaluate
MSC-YOLO using various metrics including mAP, mAP0.5, Parameters and Frames Per Second (FPS).
Additionally, we employ the COCO evaluation metric mAPS to assess the algorithm’s ability to
detect small objects. To demonstrate the effectiveness of our proposed algorithm, we compare it with
SOTA methods such as one-stage and two-stage approaches. To save time in configuring the baseline
models, some of them, including Faster-RCNN, Cascade-RCNN, YOLOX, YOLOv5X, and YOLOv6,
are implemented using the open-source project MMdetection [45]. All models were trained on the
Visdrone2023 dataset, and the experimental results are presented in Tables 1 and 2. Furthermore,
to demonstrate the robustness of our proposed algorithm, we conduct experiments on the UAVDT
dataset, and the results are shown in Table 3.
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Table 1: Comparison of detection results on the Visdrone2023 validation set between MSC-YOLO
and current existing methods

Method mAP0.5 (%) mAP (%) mAPS (%) Params (M) FPS

Faster-RCNN [24] 42.0 25.4 15.4 41.4 27.9
Cascade-RCNN [26] 41.8 26.2 15.3 69.2 22.6
ClusDet [28] 53.2 28.4 19.1 – 3.7
Zhang et al. [29] 58.0 30.3 – – –
GLSAN [30] 55.8 32.5 – – –
DMNet [31] 49.3 29.4 21.6 – 3.4
DSHNet [32] 51.8 30.3 – – –
HawkNet [33] 44.3 25.6 19.9 – 10.6
CDMNet [34] 52.9 31.9 23.8 – –
DCRFF [38] 57.0 35.0 17.6 – –
ARSD [39] 57.9 35.0 – – –
QueryDet [37] 48.1 28.3 – – 2.8
YOLOX-L [23] 52.5 31.4 23.7 54.2 18.3
YOLOv6L [10] 57.4 36.4 26.7 58.5 21.9
YOLOv5X 57.3 36.5 27.2 86.3 24.3
TPH-YOLOv5++ [46] 61.9 41.4 – – 20.1
YOLOv7 [11] 59.2 35.5 27.1 37.2 43.1
MSC-YOLO (Ours) 62.4 38.5 29.6 40.5 37.0
Note: – indicates that the paper does not provide this data. Bold font indicates the top two rankings for this metric.

Table 2: Comparison of detection results on the Visdrone2023 test-dev set between MSC-YOLO and
current existing methods

Method mAP0.5 (%) mAP (%) mAPS (%) Params (M) FPS

Faster-RCNN [24] 23.0 13.3 7.0 41.4 28.3
Cascade-RCNN [26] 22.9 13.6 7.4 69.2 23.5
YOLOX-L [23] 42.3 24.3 15.1 54.2 19.4
YOLOv6L [10] 47.3 28.7 17.3 58.5 21.9
YOLOv5X 47.6 28.5 17.6 86.3 23.8
YOLOv7 [11] 48.2 27.4 16.8 37.2 44.8
YOLOv8 [47] 45.3 27.9 17.0 46.6 55.6
MSC-YOLO (Ours) 52.1 30.4 19.1 40.5 38.0
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Table 3: Comparison of detection results on the UAVDT test set between MSC-YOLO and current
existing methods

Method mAP0.5 (%) mAP (%) mAPS (%) FPS

ClusDet [28] 26.5 13.7 9.1 –
Zhang et al. [29] – 17.7 – –
GDFNet [48] 26.1 15.4 8.9 –
GLSAN [30] 30.5 19.0 – –
DMNet [31] 24.6 14.7 9.3 –
DSHNet [32] 30.4 17.8 – 16.4
CDMNet [34] 35.5 20.7 13.9 –
SODNet [36] 29.9 17.1 11.9 45.0
UFPMP-Net [49] 38.7 24.6 – –
TPH-YOLOv5 [35] 41.3 26.9 – 25.1
YOLOv7 [11] 40.0 24.2 27.9 53.8
MSC-YOLO (Ours) 42.9 27.2 28.5 45.7

4.3.1 Experimental Results on the Visdrone2023 Dataset

The experimental results on the validation set of Visdrone2023 are shown in Table 1. Our MSC-
YOLO achieves mAP, mAP0.5, and mAPS scores of 38.5%, 62.4%, and 29.6%, respectively. This
represents an improvement of 3%, 3.2%, and 2.5% over YOLOv7, respectively. Furthermore, our
MSC-YOLO outperforms TPH-YOLOv5++ [46] by 0.5% in terms of mAP0.5. It is worth noting that
our algorithm demonstrates significant advantages over TPH-YOLOv5++ in terms of FPS, with an
increase of 84.1% in FPS. While achieving the highest detection capability, MSC-YOLO only increases
the parameters by 8.9% compared to YOLOv7. Compared to other methods, our method achieves
the best performance with the lowest number of parameters. Considering the difference in object
scale distribution between the validation set and the test set, our experiments on the Visdrone2023
test set are shown in Table 2, MSC-YOLO achieves the best detection performance among all the
methods, and compared to YOLOv7 our improvement improves the mAP by 3% and the mAPS by
2.3%, which outperforms the newest detector YOLOv8 in the YOLO series. Overall, MSC-YOLO
achieves impressive detection performance while maintaining real-time efficiency compared to other
baseline models.

4.3.2 Experimental Results on the UAVDT Dataset

We also conduct experiments on UAVDT, as shown in Table 3. Relative to existing methods, our
MSC-YOLO establishes a novel benchmark across all three evaluation metrics, with mAP, mAP0.5, and
mAPS of 27.2%, 42.9% and 28.5%, respectively. MSC-YOLO achieves a performance gain of nearly
3%, and mAP0.5 is 1.6% higher than TPH-YOLOv5. However, MSC-YOLO does not have a significant
improvement in the mAPS metric. It may be due to the large difference in the scale variation of small
objects between the UAVDT and Visdrone2023, where the size variation of objects in the UAVDT
dataset is well-balanced, which leads to the small performance improvement. Overall, MSC-YOLO
has significantly improved compared to the baseline method.
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4.4 Qualitative Evaluation

The qualitative results for the validation and test sets of the Visdrone2023 dataset are shown in
Figs. 6 and 7. We use the Gradient-weighted Class Activation Mapping (Grad-CAM) [50] method
to visualize the features of the detection results of the two models, so that we can observe which
areas of the image the network pays attention to after passing through the backbone and head
before identifying and locating the target, as shown in Fig. 6. We compare the attention results of
the baseline YOLOv7 and our method. It can be observed that there are a large number of pedestrians
scattered in the distance of the basketball court in Fig. 6a, YOLOv7 can only focus on some pedestrian
targets, and the features of pedestrians in the distance are almost ignored, while MSC-YOLO has a
smaller receptive field and multi-scale spatial context attention capability, our method enhances the
attention capability of small targets. In addition, the second row of Fig. 6 shows that MSC-YOLO
can suppress numerous irrelevant features in complex background target detection, and YOLOv7
incorrectly focuses on the buildings around the road, which may be due to the fact that the black-
and-white color of the buildings is similar to the features of the road and vehicles.

Figure 6: Visualization of model-generated feature maps. (a) Images of basketball courts and city roads.
(b) Attention heatmap of YOLOv7. (c) Attention heatmap of MSC-YOLO

Fig. 7 shows the comparison of our detection results with the baseline method. The first row
is a picture taken by a drone at a low altitude. YOLOv7 is poorly robust to trucks with a lot of
occlusion, our model detects the front end of the trucks well and detects trucks farther down the
road. The second row is a typical medium and high altitude UAV captured image, MSC-YOLO is
significantly better than YOLOv7 for detecting vehicles on the far side of the road. The third and fourth
rows are images under different lighting conditions containing dense crowds. MSC-YOLO still shows
effectiveness under such complex lighting conditions, improving the detection accuracy of crowds in
front of shopping malls in the images.
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Figure 7: Visualization of the detection results of YOLOv7 and MSC-YOLO. The crimson rectangle
highlights instances where the object is overlooked, the azure rectangle signifies cases of misdetection,
and the green rectangle confirms that the object is accurately detected. (a) Original image to be
detected. (b) Detection results of YOLOv7. (c) Detection results of MSC-YOLO. It can be seen that
MSC-YOLO has obvious improvement effects on small targets in different lighting conditions and
dense areas

4.5 Ablation Study

The effectiveness of each proposed component is validated through ablation experiments on the
Visdrone2023 test set, and the results are listed in Table 4. The state-of-the-art detector YOLOv7 is
chosen as the baseline. We gradually add the tiny object prediction head P2, CSPDC, and SCPMA to
the baseline. The ablation experiments are conducted with the same training configuration to ensure
a fair comparison. After performing Test-Time Augmentation (TTA), we ultimately increased the
mAP0.5 score of MSC-YOLO to 52.1%.
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Table 4: Results of ablation studies on the VisDrone2023 test-dev set

Baseline YOLOv7 With P2 With CSPDC With SCPMA mAP0.5 (%) mAP (%) mAPS (%)

� 48.2 27.4 16.8
� � 49.8 (+1.6) 28.9 (+1.5) 17.8 (+1.0)
� � � 50.6 (+0.8) 29.5 (+0.6) 18.4 (+0.6)
� � � � 51.5 (+0.9) 30.4 (+0.9) 19.2 (+0.8)

4.5.1 Ablation Study on Each Category

To delve deeper into the effectiveness of various improvement strategies across all categories on
the Visdrone2023 dataset, we determine the AP for each category, illustrated in Fig. 8. “YOLOv7+
P2” refers to the prediction head with a small receptive field added based on YOLOv7. In the
Visdrone2023 dataset, humans walking or standing are defined as “Pedestrians”, while humans relying
on transportation are defined as “People”. The additional prediction head increases “pedestrian” AP
by 1.8%, but “People” AP only increases by 0.6%. This result shows that the additional prediction head
has better performance in dense environments. By adding the SCPMA module, notable enhancement
in AP is observed for all categories except the Van category, specifically increasing Tricycle’s AP by
2%. Therefore, the introduction of the spatial context pyramid with multi-scale attention can tap into
more spatial context features to enhance the detection potential for small objects.

Figure 8: Results of ablation studies for the detection of each category on the Visdrone2023 test-dev
set using the proposed improvement strategies

4.5.2 Effect of Different Numbers of Prediction Heads

The YOLO series object detectors are designed with three prediction heads, representing three
different object size scales (Small, Medium, and Large). This design choice is based on the fact that the
COCO dataset, which the YOLO series is trained on, does not contain a large number of objects with
highly variable sizes. Therefore, the three prediction heads effectively match the object size distribution
in the dataset. However, the Visdrone2023 and UAVDT datasets, with their high image resolutions and
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a significant number of small object instances, prompt us to investigate the impact of the number of
prediction heads on detection results. We conduct experiments by varying the number of prediction
heads, Table 4 demonstrates that after adding the extra small object prediction head P2, the mAP0.5

and mAPS metrics have improved by 1.6% and 1%, respectively.

4.5.3 Effect of CSPDC

We replace the original downsampling layers with CSPDC, the original downsampling layers have
a convolutional kernel of size 3 and a stride of 2. Table 4 shows the changes in model detection
performance after replacing the CSPDC module. As described in Section 3.4, CSPDC performs
complex operations on the input feature map, adding a certain amount of computational overhead.
However, the mAP0.5 has increased from 49.8% to 50.6%, and mAPS has increased by 0.6%. This
improvement justifies the use of the CSPDC module.

4.5.4 Effect of SCPMA

Table 4 validates the effectiveness of our proposed SCPMA in enhancing spatial context feature
perception and multi-scale feature information utilization. The outputs from the Neck part, i.e., P2,
P3, P4, and P5, are fed into SCPMA. The GFLOPS increased from 174.9 to 182.9, and the number
of parameters increased from 40.3M to 40.52M. As a result, MSC-YOLO achieves improvements of
0.9% mAP0.5, 0.9% mAP, and 0.8% mAPS. It demonstrates that by adding only a small computational
overhead and a slight increase in the number of parameters, the detection performance of the model
improved significantly.

5 Discussion

In this section, we will discuss why MSC-YOLO outperforms YOLOv7 in terms of performance
and the limitations of the algorithm.

5.1 Analysis of Main Component Performance Gains

Based on the results from Tables 1–3 and Fig. 8, as well as subsequent ablation experiments, we
summarize the reasons as follows:

(1) Prediction Head P2. The receptive fields of the three prediction heads in YOLOv7 have limited
effects on detecting high-resolution images taken by drones. The MSC-YOLO introduces shallower
feature maps with a size of 160 × 160, which, after feature fusion in the Neck part, can contain more
features of small targets. In Fig. 8, the addition of the “Tiny” prediction head results in the greatest
increase in AP for “pedestrian”, but only a 0.6% increase for “person”. Therefore, we visualize the
attention effects after adding the “Tiny” prediction head as shown in Fig. 9. It can be observed that
the receptive field of the feature map in the “Small”prediction head is limited, and the smaller receptive
field of the “Tiny” prediction head matches well with the distant crowd in the basketball court. The
further fusion of the “Tiny” and “Small” prediction heads enables the model to learn a sufficient
number of features.
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Figure 9: Visualization of the proposed component attention feature map, where deeper red indicates
a greater contribution to the prediction

(2) CSPDC. The downsampling operation with a 3 × 3 convolutional kernel and a stride of 2
reduces the feature map size by half but loses too many detailed features. Our proposed CSPDC
minimizes the reduction of spatial feature information. It first extracts features, then adjusts all
spatial information across spatial and channel dimensions through spatial-depth operations, and
finally returns to the original number of channels. In Fig. 8, the effectiveness of CSPDC has primarily
reflected in the categories “Bicycle”, “Van”, and “Bus”, with the AP increasing by 1.1%, 1.2%, and
1.2%, respectively. The first image in the second row of Fig. 9 shows the attention result of YOLOv7
when detecting “Van”, the middle image shows the attention effect with the addition of the “Tiny”
prediction head, and the third image shows the attention result after adding CSPDC. Although the
detection effect in the middle image focuses on more features related to “Van”, it also pays attention
to more irrelevant features. The effectiveness of CSPDC is due to the model learning the true features
of “Van” by reducing the feature loss caused by downsampling.

(3) SCPMA. Considering the characteristic of the attention mechanism to enhance the model’s
focus on important features while suppressing irrelevant ones, we propose SCPMA to enhance the
model’s attention effect. SCPMA first performs a coarse self-attention, then calibrates multi-scale
spatial context and channel features, ultimately achieving attention effects based on multi-scale spatial
contexts. In Fig. 8, the effect of SCPMA is mainly reflected in the three categories: “Truck”, “Tricycle”,
and “Bus”, with the AP increasing by 1.9%, 2.0%, and 1.3%, respectively. Therefore, we continue
to visualize the results. The first image in the third row of Fig. 9 is the attention result of YOLOv7
when detecting “Truck”, the middle picture shows the attention effect with the addition of the “Tiny”
prediction head and CSPDC, and the third image shows the attention effect after adding SCPMA,
where the contribution of the red parts is significantly better than that of YOLOv7.
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5.2 Limitations

In this study, we delve into the application of the enhanced YOLOv7 algorithm for detecting small
objects in drone-captured aerial imagery. While this approach has demonstrated notable advancements
in certain areas, it confronts several pivotal challenges that warrant further investigation. A primary
concern is sustaining high-resolution object detection in computationally constrained environments,
particularly where low-power devices are involved. Consequently, future research will prioritize
enhancing the algorithm’s detection speed without compromising accuracy, a critical aspect for
fulfilling the real-time surveillance demands of drones. In addition, when objects are obscured by other
objects in the environment, especially dense small objects, the detection capability of the algorithm
is greatly reduced. This limitation underscores the necessity for more precise and robust object
recognition techniques. Another prominent issue is category misidentification, exemplified by the
model’s occasional confusion between similar categories, such as “cars” and “vans”. This may be
attributed to the model’s overfitting or underfitting of specific category characteristics. In future work,
it will be necessary to more carefully adjust and optimize the learning process of category features to
improve classification accuracy. At the same time, as drones are increasingly used in modern society,
due to time and resource constraints, this study is not able to verify a larger number of datasets, such as
small object detection in drone firefighting and rescue scenarios. Therefore, extending the diversity of
training datasets and exploring more versatile model architectures represent crucial avenues for future
research.

6 Conclusion

To address the challenges associated with suboptimal small object detection due to low resolution
and inconspicuous features, this paper presents an enhanced approach to YOLOv7 based on multi-
scale spatial context. By incorporating minute object prediction heads, a finer-grained receptive
field is obtained to cater to smaller objects. The proposed methodology introduces the Spatial-
to-Depth Convolutional Combination module and the Spatial Context Pyramid with Multi-Scale
Attention, which collectively mitigates the loss of intricate features of small objects. This facilitates an
increased emphasis on pivotal features while diminishing the interference of background information.
Furthermore, comprehensive evaluations are conducted on the Visdrone2023 and UAVDT datasets.
The detection performance of MSC-YOLO on the Visdrone2023 and UAVDT datasets has improved
by 3.0% in terms of the mAP compared to YOLOv7, ultimately raising the mAP to 30.4% on the
Visdrone2023 test-dev set and 27.2% on the UAVDT test set. These results underscore the efficacy of
MSC-YOLO in the realm of small object detection from the perspective of unmanned aerial vehicles.
In future work, we will focus on designing more lightweight models and introducing model pruning
techniques to increase the model’s FPS to make it more suitable for real-time drone scenarios.
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