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ABSTRACT

The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasing
demands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has
caught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. This
has resulted in a myriad of security challenges, including information leakage, malware propagation, and financial
loss, among others. Consequently, developing an intrusion detection system to identify both active and potential
intrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practical
intrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, and
bidirectional Gated Recurrent Unit Network (biGRU). Our ResNeSt-biGRU framework diverges from conventional
intrusion detection systems (IDS) by employing this dual-layered mechanism that exploits the temporal continuity
and spatial feature within network data streams, a methodological innovation that enhances detection accuracy.
In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, to
train and evaluate IDS models with a focus on identifying potential intrusion traffics. The effectiveness of proposed
scheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on the N-BaIoT dataset
as well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal the
potential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preserve
the overall security of IoT ecosystems.
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1 Introduction

The ubiquitous deployment, smart capabilities, and interconnected nature of the Internet of
Things, augmented by rapid advancements in optical transport networks [1,2], have led to IoT devices
becoming integral in various sectors, including those utilized by end-users [3], terminal manufacturers
[4] and developers [5]. However, the expansive growth of IoT has introduced significant threats,
resulting in numerous security intrusion events in IoT. Threats range from spoofing attacks, denial of
service (DoS) attacks, distributed DoS (DDoS) attacks, jamming, eavesdropping, and malware [6,7].
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Such intrusions can result in severe outcomes, including information leakage, fraudulent charging,
malicious advertising inserts, and even loss of control over the server [8,9]. Information security threats
related to IoT devices have ramifications that surpass the confines of individual devices or localized
networks, profoundly influencing the larger digital ecosystem, which includes not only interconnected
IoT appliances but also websites, servers, and cloud-based services [10]. So, the security of IoT is of
great significance for the reliable and stable operation of the entire Internet and needs to be addressed
urgently.

To fortify the security of IoT, IDS is commonly employed in IoT. As the primary defense
mechanism for IoT security [11,12], IDS monitors network attacks [13], recognizes intrusion traffic,
and generates management reports [14]. IDS ensures the confidentiality, integrity, availability, security,
and privacy of IoT traffic [15,16]. The accuracy of detection largely dictates the efficacy of an IDS;
insufficient accuracy compromises the system’s ability to prevent intrusions effectively.

To enhance detection accuracy and recognize potential intrusion traffic, this paper proposes
ResNeSt-biGRU, an intrusion detection framework that combines ResNeSt and biGRU. The pro-
posed scheme addresses two issues: (1) improving detection accuracy, which is vital for the practical
application of the model; and (2) identifying potential intrusion traffic to preemptively combat
intrusions. Considering that intrusions often commence with an “information collection” phase where
early-stage traffic is non-damaging, we introduce the PreIoT dataset to encapsulate traffic from
this preliminary phase. To examine the effectiveness of our proposed scheme, we have compared it
against various algorithms that were recently presented in the literature, utilizing N-BaIoT and PreIoT
datasets. Our experiments demonstrate that the results from ResNeSt-biGRU are comparable to those
of other research efforts on the N-BaIoT dataset; it also surpasses the performance of these alternative
models when evaluated on the PreIoT dataset. The main contributions of this paper can be summarized
as follows:

1. Enhanced detection rate. By integrating the advantages of ResNeSt and biGRU, our model
adeptly extracts both the temporal and spatial feature map of traffic to improve detection accuracy.

2. Detection of potential attacks: Employing the PreIoT dataset, the ResNeSt-biGRU framework
demonstrates the ability to recognize both potential threats.

The structure of this paper is as follows: Section 2 shows the related works; Section 3 introduces
the related knowledge of the intrusion detection model of IoT; the model is illustrated in Section 4;
Section 5 presents the experiment and makes an analysis of the results; in the end, a summary of the
whole paper in Section 6.

2 Related Work

A review of recent work is presented in this section. Research has concentrated on machine
learning-based and hybrid algorithm-based intrusion detection models in IoT networks.

Machine learning-based solutions have been a focus for classification in IoT intrusion detection
research work. Hussain et al. [17] proposed a Residual Network (ResNet) to detect DoS and DDoS
intrusion traffic in IoT networks. They achieved an accuracy score of 99.99% on the CICDDoS2019
[18] dataset, though their scheme required extensive preprocessing to convert data into pictures.
Almiani et al. [19] designed a multi-layer recurrent neural network (RNN) for IoT. This scheme had
high sensitivity on the NSL-KDD [20] dataset to DoS attack, with a 98.27% detection rate to DoS
attack but gained an overall accuracy score of 92.18%. Saurabh et al. [21] proposed a semi-supervised
Deep Learning approach, which utilized Semi-supervised Generative Adversarial Networks (SGAN)
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for IoT botnet detection on the N-BaIoT dataset. It should be noted, however, that inaccuracies
in the labeled data could affect models learning patterns. Okur et al. [22] examined 23 different
machine learning models on the N-BaIoT regarding detection accuracy, such as Naive Bayes, Logistic,
Hoeffding Tree, Random Forest, Random Tree, and so on. The Random Forest model demonstrated
the highest correct detection rate at 99.92%.

Hybrid intrusion detection models combining multiple algorithmic approaches can often improve
performance by leveraging the strengths of different algorithms, effectively reducing false positive rates
and enhancing detection accuracy [23]. Saba et al. [24] proposed an integrated classifier combining
a Support Vector Machine and a Decision Tree for IoT intrusion detection. They used a bootstrap
aggregating approach to merge the two classifiers, obtaining an accuracy of 99.8% on the NSL-KDD
dataset [20]. However, the NSL-KDD dataset is not specifically focused on IoT intrusion traffic.
Cao et al. [25] put forward an IoT intrusion detection framework based on a Convolutional Neural
Network (CNN) and Gate Recurrent Unit (GRU). They addressed the imbalance of positive and neg-
ative samples in the original dataset with a hybrid sampling algorithm. The scheme was assessed using
the UNSW_NB15 [26], NSL-KDD [20], and CIC-IDS2017 [27] datasets, with a classification accuracy
of 86.25%, 99.69%, 99.65%, respectively, illustrating improvements in classification accuracy and class
balance. Javeed et al. [28] introduced a deep-learning Software Defined Network-enabled intelligent
framework and a hybrid classifier, Long Short-Term Memory (LSTM)-GRU and Bidirectional LSTM
(Cu-LSTMGRU + Cu-BLSTM). The proposed model achieved a high detection accuracy with low
false-positive rate on N-BaIoT datasets [29]. Liu et al. [30] presented the combination of CNN and
LSTM model, CNN-LSTM for IoT intrusion detection. Their study confirmed that the cascading
CNN and LSTM model methods were more stable than the separate CNN and LSTM methods,
achieving a 99.98% dichotomous classification accuracy rate on the N-BaIoT dataset. A summary
table comparing methods for IoT intrusion detection is given in Table 1.

Table 1: Comparison of methods for IoT intrusion detection

Work Year Scheme Dataset Evaluation metrics Attack

[17] 2020 ResNet CICDDoS2019 accuracy, precision,
recall, F1 value

DoS, DDoS

[19] 2020 RNN NSL-KDD accuracy, precision,
false positive rate,
false negative rate, F1
value, Mathew
correlation
coefficient, Cohens’
Kappa coefficient

denial-of-service,
remote to the local,
user to root,
surveillance or probe

[21] 2022 SGAN N-BaIoT accuracy botnet attack for IoT
[22] 2023 23 different

machine-learning
models

N-BaIoT accuracy botnet attack for IoT

(Continued)
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Table 1 (continued)

Work Year Scheme Dataset Evaluation metrics Attack

[24] 2021 an integrated
classifier of
Support Vector
Machine and
Decision Tree

NSL-KDD accuracy, confusion
matrix

denial-of-service,
remote to the local,
user to root,
surveillance or probe

[25] 2022 CNN and GRU UNSW_NB15,
NSL-KDD and
CIC-IDS2017

accuracy, precision,
recall, F1 value

fuzzers, analysis,
backdoors, generic,
shellcode, worm,
Dos, user to root,
surveillance or probe,
brute force,
heart-bleed, botnet

[28] 2022 Cu-LSTMGRU +
Cu-BLSTM

N-BaIoT precision, recall,
accuracy, and F1
value, confusion
matrix

botnet attack for IoT

[30] 2023 CNN-LSTM N-BaIoT accuracy, precision,
recall, F1 value

botnet attack for IoT

3 Preliminaries

In this section, some background of ResNeSt and GRU network will be reviewed before detailing
ResNeSt-biGRU construction.

3.1 ResNeSt

ResNeSt [31] is a Convolutional Neural Network and an extension of ResNet [32]. It aims to
enhance the network’s expressive power and optimize its performance across various visual tasks.
ResNeSt introduces ‘Split-Attention’ blocks to the ResNet architecture, providing an efficient and
powerful feature extraction and representation mechanism. This modification enables ResNeSt to
deliver high-precision performance across various computer vision tasks, particularly those involving
a large number of categories and complex scenarios. The performance of ResNeSt has been proved to
often surpass those of the original ResNet model and other variants such as Selective Kernel Network
(SKNet), Squeeze-and-Excitation Network (SENet), etc. At present, the downstream work in the field
of computer vision (such as object detection and image segmentation) still chooses ResNet as the
backbone network [33]. ResNeSt model uses the foundational building blocks of the ResNet model,
thus allowing seamless integration into many existing downstream applications [31].

3.2 The Bidirectional GRU

GRU [34] is a special version of RNN. LSTM and GRU are the most Common RNNs. GRU is a
variant of LSTM. GRU model is simpler and faster to compute, which can save a significant amount
of time, especially when a dataset is large [35]. In traditional RNNs, information flows only in one
direction, from the past to the future. BiGRU comprises two one-way GRU layers: One layer processes
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the sequence from start to end, while the other processes it from end to start. That is, biGRU enables
information to traverse in both directions, allowing them to handle not only past information but also
future information. This bidirectional capability makes GRUs particularly effective and powerful in
processing sequential data.

3.3 Detection Model

Combining with the ResNeSt and the biGRU, this paper presents a hybrid algorithm-based
intrusion detection model. It is important to note that both the ResNeSt and biGRU are feasible
for IoT intrusion detection. Furthermore, the proposed model not only has a formidable capacity for
feature extraction but also holds significant potential, providing robust support for future research.
The specific feasibility analysis is as follows:

1. The same goal. ResNeSt, biGRU, and IoT intrusion detection models share a common goal,
which is to make classifications. The primary function of ResNeSt and biGRU are commonly used for
classification. The goal of deploying an IoT intrusion detection model is to detect attack traffic flows
and distinguish attack traffic flows from normal traffic flows.

2. Consistent input formats. During the data preprocessing stage, different types of data are
standardized and uniformly converted into tensor formats that are suitable for neural networks,
enabling subsequent training.

3. Intrusion traffic can be viewed as a sequence. For example, in the context of intrusion detection,
an individual traffic flow may be benign, but a pattern of similar flows could indicate a coordinated
attack. Without considering context, intrusion detection models may suffer from low accuracy and
high false positive rates.

4 The Proposed Model

In this section, our proposed detection model will be demonstrated in detail. The overall detection
process is shown in Fig. 1: Firstly, the raw dataset transformed is processed through some steps such as
standardization and feature selection. The processed dataset is then wrapped appropriately for use with
the model. Afterward, the ResNeSt-biGRU model is trained and tested. Finally, two fully connected
layers and an active layer are used to complete the classification task.

Figure 1: Detection model architecture

Define 1. The entity state is defined as:

Sstate0 = {S1, S2, . . . , Sn} (1)
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where Sstate0 represents the raw traffic dataset of IoT. S1 = {s1, s2, . . . , sn}, n ∈ N∗ and si represent the
features of traffic flow.

Define 2. The categories of IoT traffic are defined as:

FT = {NT , IT1, IT2, . . . , ITn}, n ≥ 1 (2)

where NT represents normal traffic of IoT, and ITi represents various intrusion traffic types of IoT.
The relationship between NT and ITi is as follows:

NT ∪ ∪N∗
i=1 ITi = Sstate0, NT ∩ ∪N∗

i=1 ITi = ∅ (3)

Since the cost of the detector is related to the size of Sstate0, reasonable actions are taken to generate
entity state flow to reduce computational complexity.

Define 3. The state transition of traffic flow is defined as:

SF = {
Stemp

∣∣ Sstate0 → Sstate1 → Sstate2} (4)

There are two state transitions: Sstate0 → Sstate1 and Sstate1 → Sstate2. The raw dataset is transformed
into the processed dataset after Sstate0 → Sstate1. The state transition Sstate1 → Sstate2 involves converting
the dataset into a format suitable for the model. Sstate2 represents the final output, which is then used
in the subsequent ResNeSt-biGRU stage.

4.1 Traffic Preprocessing

The first state transition, Sstate0 → Sstate1, includes Z-score Normalization and Random Forest. The
data in each column from the raw dataset exhibits significant dispersion and covers a wide numerical
range, which may lead to troubles, such as long training time, inability to converge, and low accuracy.
Then, Z-score normalization is used to address the issue of the numerical span. Another problem
of the raw dataset is a redundancy of features, accordingly, opting for a Random Forest for feature
selection. Models with fewer features will be improved in time consumption and as well as in accuracy.
The transformation applied to the dataset is portrayed in Fig. 2. Originally, the maximum difference
in data values reached about 1,000,000,000. However, following the data processing—which included
normalization and feature selection—this difference was reduced to a scale of approximately 4, and
many irrelevant features were removed.

Figure 2: Changes in datasets from Sstate0 → Sstate1

The last state transition, Sstate1 → Sstate2, is encapsulating dataset because the neural net-
work exclusively accepts input in a Specified format. The Torch.utils.data.TensorDataset and
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Torch.utils.data.DataLoader functions are used to convert the dataset into an acceptable format for
the model. Initially, the features and class of the training set are separated into two different files. Then,
convert the two files into tensor format, respectively. It is noteworthy that PyTorch defaults to use 32-
bit float (single-precision) tensors for training due to their balance between precision and memory
usage, whereas 16-bit float tensors may lose precision and 64-bit float tensors, despite offering little
accuracy improvement, consume considerably more memory. Subsequently, the Torch.utils.data.The
TensorDataset function is used to combine the feature tensors and label tensors into a single dataset.
At long last, torch.utils.data.DataLoader is responsible for setting values of the batch size, whether
to shuffle the dataset, and the memory size of the results obtained in the previous step. The whole
preprocessing algorithm is shown in Algorithm 1.

Algorithm 1: Traffic preprocessing

Input: dataset A = {(x1, y1

)
. . .

(
xN , yN

)}; M; random number (a, b)

Output: new dataset B
1 X ← Z-score Normalization(X)
2 weight(XN) ← random forest(A)
3 for i = 1 . . . M do
4 select highest (weight(XN))
5 end for
6 X ← reshape X into (X .shape[0], 1, a, b)
7 X ← convert to torch float 32 format (from numpy to torch format (X ))
8 Y ← convert to torch float 32 format (from numpy to torch format (Y ))
9 B ← zip (X , Y) based on tensor dataset function
10 B ← Dataloader (B, batchsize, shuffle)
11 return B

4.2 ResNeSt-biGRU

The main inspiration of the ResNeSt-biGRU algorithm originates from various time-influenced
and spatially bound objects and phenomena in the material world. For example, humans, and animals,
among others, are all influenced by time and space, occupying specific locations in the physical world
and existing over a certain period. For instance, considering tree growth:

1. Trees rely on roots in the soil to absorb nutrients and utilize components like leaves, stems, and
other structures to carry out processes such as photosynthesis, reproduction, and propagation. These
tasks require physical space.

2. Trees require time to mature and bear fruit.

The growth and development of trees are influenced by the interaction of time and space,
inspiring me to multidimensional feature extraction. Extracting features from both spatial and
temporal dimensions carries a metaphorical similarity to understanding different aspects of data.
First of all, the dataset itself has spatial and physical characteristics, which differentiate each data.
The process of extracting useful data or information from the dataset naturally involves extracting
features from space. Secondly, feature extraction from the time dimension considers the influence
of the antecedent traffic and the subsequent traffic. In the ResNeSt-biGRU algorithm, ResNeSt
is deployed to extract spatial feature maps, and biGRU is employed to extract temporal feature
maps. This combination allows for an enriched representation of information from the original data,
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enhancing the expressiveness of the original data. Specifically, ResNeSt-biGRU enhances IoT traffic
feature extraction by:

1. Utilizing Split-Attention block in ResNeSt for superior spatial feature discernment.

2. Leveraging biGRU’s ability to integrate temporal context, considering both antecedent and
subsequent IoT traffic in its analysis.

First, in the spatial dimension, the importance of the Split-Attention block and shortcut connec-
tion is emphasized, as Fig. 3 shows. Split-Attention block is a core computational unit. This structure
consists of group convolution and a channel-wise soft attention mechanism. The IoT traffic is divided
into different groups, allowing for feature learning independently across different feature maps. Group
convolution is grouping input IoT traffic by channel dimension twice: cardinality and radix. The
cardinalityk, k ∈ (1, 2, . . . , K) is the number of groups in the grouped convolution and radixr, r ∈ (1, R)

is the branches within each cardinalityk group that will individually undergo convolution (con).

Figure 3: ResNeSt architecture

These separate branches then undergo global average pooling (GP) to capture the holistic
information present before proceeding through a sequence of dense, batch normalization (BN) and
fully connected (FC) layers. This sequence enables the model to learn the feature map. Subsequently,
the softmax function calculates the attention weight for the R feature maps to strengthen the feature
representation ability. The resulting weights from softmax indicate the significance of each feature
group, which in turn informs the model of the prioritized features for the given task. The final
stage involves fusing the soft assignment weights with the corresponding feature map, followed by
concatenating these weighted results along the channel dimension and combining them with the
shortcut connection. This fusion is mathematically executed as outlined in Eqs. (5) and (6).

V k
c =

∑R

i=1
ak

i (r) UR(k−1)+i (5)

Y = V + T(X) (6)

where V k
c represents the weighted fusion of c′th channel, ak

i (r) represents the soft assignment weight of
c′th channel, UR(k−1)+i represents the groups of c′th channel. Y represents the ultimate result, and V is the
concatenated weighted fusion result. Function T is a strided convolution or a combined convolution-
with-pooling and X represents the input IoT traffic.

Second, in the temporal dimension, ResNeSt-biGRU focuses on the relationship between the
previous time, the current time, and the subsequent time. As visualized in Fig. 4, a GRU cell, which
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is employed as the primary functional unit, applies a gating mechanism to discern pertinent data for
retention from that which should be excluded from IoT traffic.

Figure 4: GRU cell

Update gate (zt) regulates how much previous state information is retained. A value approaching
1 directs the model to preserve more of the former hidden state, mitigating the vanishing gradient issue
by carrying forward past information. Conversely, a value near 0 induces greater forgetfulness. Reset
gate (rt) influencing the extent to which the model should forget previous state information, allowing
for the discarding of irrelevant data. As the value approaches 0, the network forgets more information
from the previous state information. Candidate hidden state (h′

t) blends current input with past state
details of past candidate hidden state, tempered by tanh non-linearity, thereby managing gradients
and enriching model expressivity. Current hidden state (ht), is a weighted sum of the hidden state at
the previous hidden state and the current candidate hidden state, modulated by the update gate. The
interactions of the update gate, reset gate, candidate hidden state, and current candidate hidden state
are numerically formulated in Eqs. (7)–(10), respectively.

zt = σ (Wzh · ht−1 + Wzx · xt) (7)

rt = σ (Wrh · ht−1 + Wrx · xt) (8)

h′
t = tanh (Whh · (rt 
 ht−1) + Whx · xt) (9)

ht = (1 − zt) 
 ht−1 + zt 
 h′
t (10)

where Wzh, Wzx, Wrh, Wrx, Whh, Whx are weight matrix. t − 1, t stand for the previous moment and
current moment, respectively. The operator 
 represents Hadamard product. σ is a sigmoid active
function.

As depicted in Fig. 5, biGRU comprises four distinct layers: Input layer, forward propagation
layer, reverse propagation layer, and output layer. The forward layer processes the data in sequence—
from the inaugural to the final time step—preserving past data influences and producing a forward
hidden state hft. Conversely, the reverse propagation layer begins with the sequence’s final time step,
progressing inversely to retain future data implications, generating a backward hidden state hbt. At
each sequential step, dual hidden states are generated: One from the forward propagation layer
and another from the reverse. As Eq. (11) shows, the corresponding states are typically combined,
such as through concatenation, ensuring each temporal output integrates preceding and subsequent
information.

ht = hft + hb1 (11)
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Figure 5: BiGRU architecture

Finally, two fully connected layers and a Rectified Linear Unit (ReLU) activation function are
implemented. The fully connected layers map the feature vectors, extracted by ResNeSt-biGRU, to
the label value. Afterward, the activation function classifies based on the probabilities assigned to
each node in the output generated by the fully connected layer. The ReLU activation function, the
mathematical form of which is specified in Eq. (12), features simple computation and rapid execution.
With inputs greater than 0, the derivative of the input remains constant at 1, which effectively prevents
the gradient from diminishing, thereby mitigating the issue of gradient vanishing to some degree [36].
Algorithm 2 shows the flow of the ResNeSt-biGRU algorithm.

f (x) = max(0, x) (12)

Algorithm 2: ResNeSt-biGRU
Input: dataset B; cardinality K; Radix R
Output: H

1 cardinalityk, k ∈ (1, 2, . . . , K) ← divided B in channel dimension
2 radixr, r ∈ (1, R) ← divide each cardinalityk in channel dimension
3 {F1, F2, F3 . . . FG}, G = KR ← each radix block
4 Ui ← Fi (X) , i ∈ {1, 2, 3 . . . G}
5 U ′k ← ∑RK

j=R(k−1)+1 Uj, j ∈ {R (k − 1) + 1, r (k − 1) + 2 . . . RK},U ′kεRX×Y×Z/K , where X × Y × Z are
the block output feature sizes.

6 sk
c ← 1

X × Y

∑X

i=1

∑Y

j=1 U ′k
c (i, j)

7 V k
c ← ∑R

i=1 ak
i (c) UR(k−1)+i, ak

i (c) ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(
θ c

i

(
sk

))
∑R

j=0 exp
(
θ c

i (sk)
) , R > 1

1

1 + exp
(−θ c

i (sk)
) , R = 1

, θ c
i represents the weight of the

radixc determined by sk
c .

8 V ← concat{V1, V2, . . . , VK}, concatenate V along the channel dimension
9 O ← V + T (X), T is a strided convolution or combined convolution with pooling.
10 zft ← σ

(
Wzhf · hft−1 + Wzxf · ot

)
//ot is the information entered at the current time.

11 rft ← σ
(
Wrhf · hft−1 + Wrxf · ot

)
//Wzhf , Wzxf , Wrhf , Wrxf are weight matrices.

12 h′ft ← tanh
(
Whhf · (rft 
 hft−1) + Whxf ot

)
//Whhf , Whxf are weight matrices.

13 hft ← (1 − zft) 
 hft−1 + zft 
 h′ft //output from the forward layer
14 zbt ← σ (Wzhb · hbt−1 + Wzxb · o1) //σ is the sigmoid activation function

(Continued)
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Algorithm 2 (continued)
15 rbt ← σ (Wrhb · hbt−1 + Wrxb · o1) //Wzhb, Wzxb, Wrhb, Wrxb are weight matrices.
16 h′bt ← tanh (Whhb · (rbt 
 hbt−1) + Whxbo1) //Whhb, Whxb are weight matrices.
17 hbt ← (1 − zbt) 
 hbt−1 + zft 
 h′bt //output from backward layer
18 ht ← concat{hb1, hft}
19 H ← {h1, h2, . . . , ht}
20 return H

5 Experiment and Analysis of the Proposed Scheme

In this section, some experiments are conducted to evaluate the performance of the proposed
ResNeSt-biGRU.

5.1 Datasets

Two datasets are used to validate the model: The N-BaIoT and the PreIoT dataset. The N-BaIoT
dataset is well-known in IoT intrusion detection. The PreIoT dataset is captured using Wireshark.

5.1.1 N-BaIoT

The dataset comprises traffic from 9 different IoT devices, recording both normal and botnet
traffic. Table 2 details the amount of traffic for each set.

Table 2: The traffic selection from the N-BaIoT dataset

Normal flows Botnet flows

Train set 40,000 360,000
Test set 10,000 90,000

5.1.2 PreIoT

The PreIoT dataset is collected by the Wireshark tool from a total of four IoT devices, including
a rice cooker, printer, smart switch (controlling devices like a projector, a curtain lift in a computer
classroom), and a camera. The PreIoT traffic is categorized into four types: Normal traffic (BenTra),
sensitive directory scanning (SenTra), sniffing hosts or services (SniTra), and botnet traffic (BonTra).
Sniffing hosts or services and sensitive directory scanning are the prevalent techniques for information
gathering.

Over the span of one hour, a total of 2,916,560 traffic flows were collected using the Wireshark
tool. From these captured data, 41 features are extracted using the Tshark tool from the original
pcapng (Packet Capture Next Generation) format file. Table 3 shows the traffic numbers of each set.
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Table 3: The traffic selection from the PreIoT dataset

Normal flows SniTra SenTra BonTra

Train set 48,000 120,000 80,000 40,000
Test set 13,000 30,000 19,000 10,000

5.1.3 UNSW-NB15

The original UNSW-NB15 dataset consists of a hybrid of real modern normal activities and
synthetic contemporary attack behaviors. It covers nine attack types, with each instance comprising
47 feature attributes and a single label attribute. Considering the challenges in comparisons, primarily
binary or selective type classification, we have tailored our comparative dataset to align with the attack
types used in the most recent relevant study [37]. Consistent with work [37], our dataset includes five
categories: Normal traffic along with four attack traffic types. Among these four categories of attacks,
Dos and Reconnaissance represent more prevalent attacks, while Shellcode and Worms are indicative
of the rarer attacks. The specifics of the dataset utilized in our study are delineated in the Table 4 below.

Table 4: The traffic selection from the UNSW-NB15 dataset

Normal Dos Reconnaissance Shellcode Worms

Train set 56,000 12,000 12,000 1,200 120
Test set 1,000 1,000 1,000 300 50

5.2 Evaluation Method

To evaluate the effectiveness of the method objectively from multiple perspectives, four evaluation
indicators are employed in this paper, which are accuracy, precision, recall, and F1 score.

In binary classification, accuracy (acc) represents the proportion of records in the total sample
where the model’s classification results match the true labels. Precision (pre) signifies the probability
of correctly predicting intrusion instances among all samples predicted as an intrusion. Recall indicates
the probability of correctly predicting intrusion instances among all true intrusion samples. The F1
score is used to calculate the Harmonic mean of precision and recall. The False Positive Rate (FPR)
is the proportion of incorrect intrusion traffic predictions out of all the actual benign traffic. The
calculation formula of accuracy (acc), precision (pre), recall, and F1 score are shown in Eqs. (13)–
(17), respectively. In multi-classification, taking PreIoT as an example, when calculating metrics for
the BenTra class, the other three classes are considered collectively, and so forth.

acc = TP + TN
TP + FP + TN + FN

(13)

pre = TP
TP + FP

(14)

recall = TP
TP + FN

(15)
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F1 score = 2 ∗ pre ∗ recall
pre + recall

(16)

FPR = FP
FP + TN

(17)

where TP, TN, FN, and FP represent true positives, true negatives, false negatives, and false positives,
respectively.

5.3 Experimental Results and Analysis

5.3.1 Comparation 1: PreIoT dataset

To demonstrate the effectiveness of the hybrid ResNeSt-biGRU scheme in improving detection
accuracy, this paper conducts a comparative analysis, comparing it with its component architectures—
ResNeSt and GRU—as well as with the enriched variant, biGRU. To ensure the fairness of the
comparisons, identical training and testing datasets are utilized for each model.

The PreIoT dataset categorizes network traffic into four types for more accurate identification of
potential security threats, including, but not limited to, traffic associated with widely-used information
gathering techniques such as sensitive directory scanning, which aims to discover potential vulnera-
bilities in network services or applications, and sniffing hosts or services, often malicious, intended
to identify active hosts or services within the network, which could result in the collection of further
detailed information. The early detection of such malicious activities is crucial as it often signifies the
initial preparation work of potential security threats. Therefore, the capabilities provided by the PreIoT
dataset in recognizing traffic related to information gathering are vital for defense systems, playing a
significant role in defending against future security incidents, as well as providing proactive protection
by analyzing and understanding patterns of attack. Table 5 shows the results on PreIoT. The ResNeSt
model shows high performance, with a 98.35% accuracy rate, 97.91% precision, 98.44% recall, and
98.10% F1 value. GRU obtains an accuracy of 95.33%, precision of 94.72%, recall of 94.51%, and F1
value of 94.36%. BiGRU achieves higher accuracy than GRU at 95.60%, with corresponding precision,
recall, and F1 values of 94.99%, 94.96%, and 94.73%, respectively. The proposed scheme yielded the
highest metrics of 99.90% accuracy, 99.86% precision, 99.90% recall, and 99.88% F1 value.

Table 5: The experiment results on PreIoT

Method Acc (%) Pre (%) Recall (%) F1 value (%) FPR (%) Time (s)

ResNeSt 98.35 97.91 98.44 98.10 1.65 117
GRU 95.33 94.72 94.51 94.36 4.67 114
biGRU 95.60 94.99 94.96 94.73 4.40 139
Proposed scheme 99.90 99.86 99.90 99.88 0.11 180

Although the proposed model requires 180 s to process, it achieved an impressive accuracy rate
of 99.90%. For the vast scope of IoT network traffic data, completing the training and testing of
a 360,000-entry dataset within this timeframe is acceptable. Moreover, FAR is a critical metric in
evaluating security system performance. High FPR not only triggers unnecessary alarms, affecting
user trust and satisfaction, but also burdens system administrators with additional verification tasks.
In environments with numerous IoT devices, this can be especially problematic. The proposed achives
FPR of 0.11%, significantly lower than the others.
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The outstanding performance of the proposed scheme can be attributed to a thorough method-
ology that includes traffic preprocessing and model construction. The traffic preprocessing ensures
the quality of the data, decreases computational complexity, avoids the risk of overfitting, and
transforms the data to better suit the needs of the model. The model combines ResNeSt and
BiGRU to significantly advance its ability to fit and represent underlying patterns. ResNeSt is
capable of effectively extracting feature maps from traffic data through the use of convolution layers,
pooling, and activation functions, employing Split-Attention mechanisms to capture diverse patterns
in the data via nonlinear transformations. BiGRU, particularly suited for processing sequential data,
enhances context comprehension by considering information in both forward and reverse directions.
The combination of ResNeSt and biGRU within ResNeSt-biGRU, combining the strengths of the
aforementioned models, facilitates the extraction of more diverse features, leading to improved model
accuracy as Table 4 shows. This confirms the efficacy of integrating these two robust neural network
architectures for the task of intrusion detection in IoT networks.

Fig. 6 offers the ResNeSt-biGRU confusion matrix. The “true_0”, “true_1”, “true_2”, and
“true_3” represent BenTra, SenTra, SniTra, and BonTra, respectively. Corresponding predicted labels
are “pred_0”, “pred_1”, “pred_2”, and “pred_3”. Out of 72,000 instances, 71,925 instances of IoT
traffic are correctly classified. It achieves 100% accuracy in BenTra and BonTra, 99.62% accuracy
in SenTra, and 99.99% accuracy in SniTra. Despite the model’s overall high precision, it shows a
relative weakness in identifying SenTra, as 71 out of 75 misclassified instances pertain to SenTra;
this indicates a challenge in differentiating it from BenTra due to variable directory paths with no
apparent pattern, such as “/config.php”, “/FCKeditor/”, “/password.log” among others. In general,
the proposed scheme demonstrates high predictive accuracy and shows promise for practical IoT
security application deployment.

Figure 6: The confusion matrix on the PreIoT dataset by ResNeSt-biGRU

5.3.2 Comparation 2: N-BaIoT Dataset

In this section, we conduct a comparative analysis of our proposal against four recent methodolo-
gies evaluated on the N-BaIoT dataset, a common comparison framework employed by most studies.

Table 6 presents the results of the scheme proposed in this paper along with the methods described
in references [21,22,28,30] as mentioned in the Related Work section. Reference [21] boasted an
impressive accuracy of 99.88% through semi-supervised methods, yet the lack of precision, recall,
and F1 score data limits a comprehensive evaluation. High accuracy indicates strong reliability, but
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without full performance metrics, methodological robustness cannot be fully ascertained. Reference
[22] found that the Random Forest model had the best performance out of 23 different models,
achieving a noteworthy accuracy of 99.92%. This can be attributed to its decision tree aggregation
capabilities, which capture complex feature relationships effectively. Yet, as with the prior method, the
absence of additional performance metrics constrains full evaluation. The recall of reference [28] is
slightly lower than other metrics, indicating that some positive samples are misrecognized. Reference
[30] showed optimal performance, with perfect precision, recall, and F1 value, but the accuracy is
lower than this paper’s proposed scheme by 0.01%. This paper’s proposed scheme achieves marginally
superior accuracy in these references at 99.99%, coupled with robust precision, recall, and F1 scores
of 99.96%, 99.98%, and 99.97%, respectively. This can be attributed to its effective combination of
ResNeSt for robust spatial feature extraction and biGRU for proficient handling of sequential data.
This combination allows the model to accurately identify complex patterns typical in IoT intrusion
scenarios.

Table 6: The experiment results on the N-BaIoT dataset

Method source Acc (%) Pre (%) Recall (%) F1 value (%)

Reference [21] 99.88 – – –
Reference [22] 99.92 – – –
Reference [28] 99.45 99.34 98.49 99.47
Reference [30] 99.98 100.00 100.00 100.00
Proposed scheme 99.99 99.96 99.98 99.97

The confusion matrix of ResNeSt-biGRU is displayed in Fig. 7. Rows are labeled with predicted
labels, while columns correspond to true labels. The “true_0” and “pred_0” represent normal traffic,
while “true_1” and “true_1” represent botnet traffic. Out of 100,000 instances, 99,989 instances of
IoT traffic are correctly identified. For normal traffics, the model achieves an accuracy of 99.97%,
with only 3 samples misclassified as botnet traffics. In the case of botnet traffics, the proposed scheme
achieves an accuracy of 99.99%, with only 8 samples misclassified as normal traffics. affirming notably
high-performance metrics of ResNeSt-biGRU and its capability to discriminate between normal and
botnet traffic effectively.

Figure 7: The confusion matrix on the N-BaIoT dataset by ResNeSt-biGRU
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5.3.3 Comparation 3: UNSW-NB15 Dataset

Furthermore, we compare the performance of TMG-IDS [37] and MAGENTO [38], alongside
the proposed scheme, on the imbalanced UNSW-NB15 dataset. Both TMG-IDS and MAGENTO
are intrusion detection methods that have improved their performance by incorporating data aug-
mentation in the preprocessing phase. The experimental outcomes are presented in Table 7.

Table 7: The experiment results on the UNSW-NB15 dataset

TMG-IDS MAGENTO proposed scheme

pre recall F1 value pre recall F1 value pre recall F1 value

normal 0.9935 0.9498 0.9711 0.9919 0.9492 0.9701 1.0000 0.9940 0.9970
Dos 0.7944 0.9129 0.8496 0.8103 0.9139 0.8590 0.8514 0.9970 0.9185
Recon-naissance 0.6995 0.8616 0.7721 0.7111 0.8581 0.7777 0.9895 0.8510 0.9151
Shell-code 0.4527 0.7090 0.5526 0.3877 0.7354 0.5078 0.9966 0.9667 0.9814
Worms 0.6410 0.5682 0.6024 0.3962 0.4773 0.4330 0.9412 0.6400 0.7619
Macro- 0.7162 0.8003 0.7496 0.6594 0.7868 0.7095 0.9557 0.8897 0.9148

The findings highlight the F1 value is higher when the training samples are abundant but decreases
when the sample size is reduced. For normal traffic conditions with approximately 56,000 real samples,
TMG-IDS, MAGENTO, and the proposed scheme perform nearly identically, boasting precision
rates over 99% and F1 scores above 97%. This result demonstrates that, with a sufficient number
of training samples, all three models are capable of learning robust features of normal traffic and
accurately applying these characteristics to predict new samples. In contrast, as the sample size
contracts to roughly 12,000, a noticeable decrement in model performance is observed, as presented
by the results from Dos and Reconnaissance attacks. Although the characteristics of Dos attacks
and Reconnaissance traffic can be learned to some extent from a relatively smaller sample set, the
models’ generalization capabilities are affected as the number of samples decreases. The decline in
model efficacy is most severe when addressing Worm attacks, where only about 120 real samples
are available. The suggested model accurately ascertained a mere 32 of 50 instances, accentuating
the quandary confronted by models in extrapolating from negligible datasets. However, under the
conditions of Shellcode attack traffic, despite having only 1,200 real training samples, the proposed
solution achieves an unexpectedly high F1 score of 98.14%. This surprising result may be due to the
nature of Shellcode attacks, where the series of actions attackers take to gain the highest privileges
after obtaining execution control of the shell are highly similar, exhibiting significant consistency in
intrusion behavior. This consistent and distinctive characteristic allows for the creation of accurate
detection models even with a limited number of samples through learning these clear attack pattern
features. If the attack exhibits highly consistent and identifiable patterns, then excellent detection
performance can be achieved through proper data processing and model design, even with a smaller
sample size.

6 Conclusion

With the rising complexity and frequency of network attacks, IDS has become crucial for
safeguarding computer networks and systems from unauthorized access and damage. In this paper,
we introduce an IoT intrusion detection model based on ResNeSt and biGRU. This model leverages
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the spatial feature extraction capabilities of ResNeSt to discern valuable spatial features of IoT device
data, while the biGRU component efficiently processes sequential data to analyze dependencies based
on preceding and subsequent traffic. The incorporation of these technologies allows the proposed
ResNeSt-biGRU model to significantly enhance the accuracy of abnormal traffic detection within
IoT environments. Additionally, we present PreIoT, a dataset comprising traffic from the “information
gathering” phase, which includes two prevalent types of network probes. Utilizing PreIoT, the model
is positioned to monitor potential attacks proactively. Experimental results validate that our ResNeSt-
biGRU model surpasses existing detection methods on various standard IoT security datasets,
exhibiting a notably high detection rate and a low false-positive rate on both PreIoT and N-BaIoT
datasets.

Currently, thresholds of some intrusion detection systems might depend too heavily on subjective
assessment, which introduces variability and uncertainty. To overcome this issue, future research
might concentrate on developing objective standardization of threshold determination, effectively
diminishing the subjectivity and enhancing the dependability of the IDS feature selection. Moreover,
to reduce the higher rate of false positives associated with particular types of attacks, such as SenTra
of PreIoT, it would be important to refine the detection algorithms. Enhancing these algorithms will
ensure they are adaptable to discern varying traffic patterns and minimize instances of false positives.
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