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ABSTRACT

Considering the variations in imaging sizes of the unmanned aerial vehicles (UAV) at different aerial photography
heights, as well as the influence of factors such as light and weather, which can result in missed detection and false
detection of the model, this paper presents a comprehensive detection model based on the improved lightweight
You Only Look Once version 8s (YOLOv8s) algorithm used in natural light and infrared scenes (L_YOLO). The
algorithm proposes a special feature pyramid network (SFPN) structure and substitutes most of the neck feature
extraction module with the Special deformable convolution feature extraction module (SDCN). Moreover, the
model undergoes pruning to eliminate redundant channels. Finally, the non-maximum suppression algorithm of
intersection-union ratio based on minimum point distance (MPDIOU_NMS) algorithm has been integrated to
eliminate redundant detection boxes, and a comprehensive validation has been conducted using the infrared aerial
dataset and the Visdrone2019 dataset. The comprehensive experimental results demonstrate that when the number
of parameters and floating-point operations is reduced by 30% and 20%, respectively, there is a 1.2% increase in
mean average precision at a threshold of 0.5 (mAP(0.5)) and a 4.8% increase in mAP(0.5:0.95) on the infrared
dataset. Finally, the mAP on the Visdrone2019 dataset has experienced an average increase of 12.4%. The accuracy
and recall rates have seen respective increases of 9.2% and 3.6%.
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1 Introduction

With the rapid advancement of drone technology and computer vision, drones have found
extensive applications in law enforcement, traffic control, surveillance, and reconnaissance. In par-
ticular, unmanned aerial vehicles (UAVs) equipped with infrared imaging cameras have the potential
to mitigate the effects of weather, lighting, and other environmental factors on UAV imaging [1].
Nevertheless, variations in UAV altitude result in differences in imaging dimensions. The absence
of contextual semantic information in the infrared image presents challenges in differentiating the
foreground and background of the target. Additionally, the absence of semantic information in
certain detection targets hinders accurate target identification following the deployment of the UAV
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[2]. Hence, the primary objective of this paper is to streamline the model’s parameter quantity and
complexity, with the aim of enhancing the model’s detection accuracy.

The conventional detection algorithm primarily depends on manual screening of image features
for training, which makes the process cumbersome and results in poor model robustness [3]. Nev-
ertheless, deep learning algorithms have the potential to compensate for this drawback. Currently,
deep learning-based detection algorithms are widely utilized, for instance, in the precise identification
of cattle in animal husbandry [4] and the detection of soybean pests in intricate environments [5].
Numerous classical target detection algorithms rooted in deep learning exist, including multi-stage
algorithms (e.g., Detection Transformer with YOLOv2 [6], Mask convolutional neural networks [7])
and single-stage algorithms (e.g., You Only Look Once [8], Single shot multibox detector (SSD) [9]).
In this paper, the YOLOv8 algorithm has been chosen as the foundational algorithm. The algorithm
considers both accuracy and detection speed, and its overall performance surpasses that of other
algorithms [10]. Extracting semantic features of small targets in dense target scenes while maintaining
a streamlined model has consistently posed a research challenge. Various solutions have previously
been proposed for different application scenarios [11]. For instance, Zhao et al. [12] introduced an
enhanced YOLOv7 model designed to tackle the challenges related to ship detection and recognition
tasks, including irregular ship shapes and size variations. Wang et al. [13] proposed a traffic sign
detection algorithm utilizing residual network, to minimize missed and false detections of traffic signs
in complex environment conditions. Chen et al. [14] introduced a YOLO algorithm-based UAV for the
purpose of detecting the poles and quantifying the distribution network, to improve the efficiency of
post-disaster distribution network repairs.

The paper is structured as follows: Section 2 introduces the current research status of UAV
aerial photography, outlines the existing problems, and presents the proposed methods. Section 3
primarily presents a detailed introduction to our proposed Synthetic Fusion Pyramid Network (SFPN)
structure, Structural Deep Clustering Network (SDCN) module, pruning, and MPDIOU_NMS
algorithm. It also provides a brief overview of the evaluation index and experimental parameter setting.
In Section 4, a brief analysis of the two datasets is presented, followed by a detailed examination of the
ablation experiments, a comparison of different algorithms, and a comparison of different datasets.
The fifth section provides a summary of the paper’s findings.

2 Related Work

The conventional detection algorithm relies on the manual extraction of target semantic feature
information, followed by transmitting the extracted semantic information to the algorithm network
to produce the detection results [15]. However, these detection algorithms are unsuited for complex
scenes such as small targets and dense target types. On the one hand, the dataset contains numerous
detection targets, while on the other hand, manual feature screening may result in insufficient feature
extraction [16]. However, the target detection algorithm based on deep learning can automatically
filter and extract image features, requiring only the processed images to be directly input into the
network. Therefore, this feature enables it to process large-scale data sets and accommodate more
intricate detection tasks.

To address the inadequate network feature extraction capability issue, Cao et al. [17] introduced an
algorithm for detecting small targets using an improved YOLOv5s model for UAVs, resulting in a 9.2%
increase in mAP(0.5). It is important to note that the analysis needs to fully account for the impact
of factors such as inadequate lighting. Hui et al. [18] introduced a small target detection algorithm
for UAV remote sensing images, which relies on an enhanced Shifted Window Transformer and a
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class-weighted classification decoupling head. However, the algorithm’s parameter size is excessive
for deployment on edge devices. Ali et al. [19] incorporated the Kalman filter into the YOLO
algorithm to enable the detection and tracking of vehicles by drones. Lu [20] introduced a hybrid
CNN-Transformer model for detecting targets in UAV images, utilizing the Cross-Shaped Window
Transformer. However, the model’s parameter count approaches 70 M. To address the issue of model
lightweight, Qian et al. [21] introduced a lightweight YOLO feature fusion network aiming at multi-
scale defect detection. The network demonstrated promising results across three different datasets.
Zhu et al. [22] introduced a lightweight and efficient network target detection network for remote
sensing, capable of achieving an inference speed of 487 frames per second. Zou et al. [23] proposed a
method for lightweight target detection in a coal seam tracking system, utilizing knowledge distillation
and model pruning. The proposed approach achieves a Central Processing Unit (CPU) processing
speed of 45 frames per second.

In summary, this paper primarily addresses the lightweight nature of the model and its limited
feature extraction capability. Consequently, this paper has implemented four enhancements to the
YOLOv8s algorithm. The paper first proposed an SFPN structure to facilitate the comprehensive
exchange of semantic information across each layer. Secondly, the Structural Deep Clustering Network
(SDCN) module is proposed to improve the model’s feature extraction capability. Subsequently,
the model undergoes further pruning to remove redundant channels. Finally, the MPDIOU_NMS
algorithm has been incorporated to mitigate the presence of redundant detection boxes.

3 Materials and Methods
3.1 YOLOv8 Network Structure

The YOLOv8 algorithm framework is depicted in Fig. 1. The network comprises four compo-
nents: data preprocessing, backbone network, neck network, and detection head. First, the detection
image undergoes preprocessing through mosaic data, followed by transmission of the processed image
to the YOLOv8 backbone network. Subsequently, the fused features are sent to the neck network for
further feature extraction. Ultimately, the detection head identifies and distinguishes the target based
on the features extracted from the neck network [24].

Figure 1: YOLOv8 network structure

3.2 L_YOLO Network Architecture

The workflow comparison between the YOLOv8 algorithm and the L_YOLO algorithm is
depicted in Fig. 2. Figs. 2a and 2b depict the flow charts of the YOLOv8 algorithm and the L_YOLO
algorithm, respectively. Compared with the YOLOv8 algorithm, the L_YOLO algorithm primarily
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enhances three aspects, as depicted in Fig. 2b. This paper first improves the network structure. The
light blue rectangle represents the bloated network after pruning, and the light yellow indicates that
the MPDIOU_NMS algorithm is used to assist in verification or testing during the model inference
stage. Compared to the YOLOv8s algorithm, the L_YOLO model demonstrates better detection
performance with approximately 30% fewer parameters.

Figure 2: Comparison diagram of YOLOv8 algorithm and L_YOLO algorithm workflow

The specific improvement is depicted in Fig. 3, the YOLOv8s network structure has undergone
improvements in four key aspects: (a) The original YOLOv8s network’s feature pyramid network does
not fully facilitate the exchange of semantic information between adjacent layers. As a solution, the
SFPN structure is proposed to comprehensively exchange the semantic features of different layers. (b)
An SDCN feature extraction module is proposed. (c) The trained model undergoes channel pruning to
reduce redundant channels and further decrease its overall weight. (d) A MPDIOU_NMS algorithm
is proposed.

3.2.1 SFPN Structure

Considering that the texture characteristics of small targets may diminish or vanish as the network
layers increase, this study proposes a SFPN framework derived from the original FPN (Fig. 4a)
framework [25]. The objective is to facilitate the complete exchange of semantic features across various
detection layers and address the issue of semantic feature degradation resulting from the increased
depth of layers. The primary improvement is depicted in Fig. 4b, where the characteristics of each layer
of the trunk network are incorporated into the 12th feature extraction layer, aiming to comprehensively
integrate semantic information. Furthermore, the characteristics of layer 4 and layer 6 have been
consolidated into layer 21 and layer 24, respectively, thereby enhancing the semantic information
within the network.
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Figure 3: Framework of L_YOLO algorithm

Figure 4: SFPN
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3.2.2 SDCN Module

The original YOLOv8s has limited feature extraction capability for dense and small targets. This
paper introduces the SDCN module to replace the majority of feature extraction modules in the
neck network. The specific replacement is illustrated in Fig. 5. The module exhibits further improved
between the convolution feature extraction module version2 (DCNV2) module [26] and the squeeze
Aggregated Excitation layer (SaElayer) [27]. The DCNV2 module is designed to effectively detect dense
targets. The module primarily enhances the network’s receptive field by stacking multiple deformable
convolution modules and incorporating additional skip connections to achieve a more comprehensive
structure of gradient flow.

Excessive incorporation of the DCNV2 module may result in prolonged training time, while
insufficient incorporation may lead to inadequate feature extraction capability of the model. Conse-
quently, this study introduces a SaElayer module to the output of DCNV2, and the specific structure
of the SDCN module is illustrated in Fig. 5. The SaElayer module combines the squeeze excitation
network module and the dense layer. It also introduces multi-branch fully connected layers with
different branch sizes to enhance the network’s ability to capture global knowledge. Consequently,
incorporating the SaElayer module can enhance the network’s focus on valuable semantic information
and optimize network bandwidth to reduce model training time.

Figure 5: SDCN module
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3.2.3 Channel Pruning

Owing to the constraints of mobile device capabilities, models with excessive parameters cannot
be accommodated, necessitating the pruning of the trained YOLOv8s model [28]. Given the low mAP
of the basic models in both datasets, the approach taken in this study is to reduce model parameters
and complexity while preserving accuracy. In this paper, a Slim pruning method is employed [29],
and its operational principle is depicted in Fig. 6. This method involves three steps to simplify the
initial network. Firstly, the network must undergo sparse training, followed by model pruning, and
ultimately, the pruned model is restored. If the model is multi-channel, the algorithm also generates
supplementary branches.

Figure 6: Pruning flow chart

In this paper, the batch normalization layer (BN) scaling factor in the convolution is initially
utilized as the channel scaling factor γ of the pruning. It is subsequently multiplied by the output
of the channel. Secondly, the network weights and scaling factors are jointly trained, and sparse
regularization is applied to the scaling factors. Following the application of channel-level sparse-
induced regularization during training, a model is derived wherein numerous scaling factors approach
zero. Subsequently, it is possible to eliminate channels with scaling factors close to zero by removing all
inbound and outbound connections, as well as the associated weights. Ultimately, the pruned network
undergoes fine-tuning [29]. The details are shown in Fig. 7.

Figure 7: Pruning comparison diagram

As depicted in Fig. 8, the diagram compares the pruning channels discussed in this paper. The x-
axis denotes the name of each layer in the network, while the y-axis represents the parameter quantity.
The yellow bars indicate the parameter quantity of the primary model channel, whereas the red bars
represent the parameter quantity after pruning. To facilitate the successful completion of pruning,
it is necessary to bypass network layers that are not amenable to pruning. The DCNv2 layer in the
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SDCN feature extraction module is skipped in this paper, as well as specific convolution layers and
Distribution Focal Loss layers in the detection head layer [30]. Given that the primary objective of
this paper is not to achieve absolute lightweight, it is imperative also to consider the trade-off between
precision and model size. The pruned model and the basic model depicted in the figure are not expected
to exhibit significant differences in appearance.

Figure 8: Pruning channel comparison diagram

3.2.4 MPDIOU_NMS Algorithm

Since both datasets fall within the dense target detection category, redundant detection boxes
can impact the model’s final target assessment. Given that the non maximum suppression algorithm
(NMS) of the YOLOv8s algorithm may result in information loss, and the traditional Soft-NMS algo-
rithm [31] could lead to the suppression of detection boxes due to discriminant errors. Consequently,
this paper incorporates the MPDIOU_NMS algorithm in the model verification and testing phase to
eliminate redundant detection boxes.

The MPDIOU loss function [32] is depicted in Eq. (1). Boxes A and B represent two detection
areas, respectively. The coordinates
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This paper introduces a novel MPDIOU-NMS algorithm, which is founded on the MPDIOU
loss function. The formula is presented in Eq. (4). In contrast to the conventional soft-nms algorithm,
this algorithm demonstrates enhanced capability in effectively suppressing redundant detection boxes,
thereby improving the model’s classification and recognition performance.
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Si =
{

Si, MPDIOU (M, bi) < Nt

Si (1 − MPDIOU (M, bi)) MPDIOU (M, bi) ≥ Nt
(4)

Si = Sie− MPDIOU(M,bi)
σ , ∀bi /∈ D (5)

3.3 Experimental Parameters Setting

In the training of the YOLOv8 algorithm, this study employs the stochastic gradient descent
(SGD) algorithm to optimize the loss function. In this study, the batch size was configured as 32,
and the number of threads was set to 16. To achieve the optimal model, 220 training iterations are
required.

Furthermore, the pruning parameter reg is established at 0.0005, and the sparse training count is
specified as 500. In light of the model’s accuracy post-pruning, this study specifies a ‘speed _ up’ value
of 1.5, does not activate the global pruning branch, and conducts 300 rounds of pruning recovery
training. The computer configuration utilized in the experiment is presented in Table 1.

Table 1: Computer configuration

Platform Configuration information

System Ubuntu 20.04
GPU NVIDIA GeForce RTX A5000(24G)
CPU 15 vCPU AMD EPYC 7543 32-Core Processor
Language Python 3.8.0
GPU calculate platform CUDA 11.8
Deep learning framework Pytorch 2.0.0

3.4 Evaluation Indicators

Precision, Recall, and mAP serve as critical metrics for evaluating the accuracy of a network.

Precision = TP
TP + FP

(6)

Recall = TP
TP + FN

(7)

AP =
∫ 1

0

p(r)dr (8)

mAP =
∑N

i=1 APi

N
(9)

where TP is True Positive, FP is False Positive, FN is False Negative, p(r) is the function of the P-R
curve, and K is the number of categories. This paper also uses the number of parameters, and floating
point operations (FLOPS), where FLOPS denotes the amount of computation required by the model.
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4 Results Analysis
4.1 Dataset Analysis

This paper uses a UAV infrared dataset and a Visdrone2019 auxiliary dataset. The analysis of the
detection box size in the UAV infrared dataset is depicted in Fig. 9a. Evidently, the dataset pertains
to the domain of multi-scale target detection and small target detection. The dataset comprising 6996
pictures was gathered by Shandong Yantai Arrow Photoelectric Technology Co., Ltd. (China). There
are six categories: pedestrians, cars, buses, bicycles, trucks, and other targets. This paper’s dataset is
partitioned in a 8:1:1 ratio, specifically 5724:636:636.

Figure 9: Dataset analysis

The analysis of the detection box size for the Visdrone2019 dataset is depicted in Fig. 9b. The
AISKYEYE team at Tianjin University collected the data set. The dataset comprises ten categories:
pedestrians, cars, bicycles, and tricycles. Evidently, the Visdrone2019 dataset exhibits greater complex-
ity compared to the infrared dataset.

4.2 Ablation Experiment

Owing to the unique characteristics of certain modules, this study employs the superposition
method to conduct the ablation experiment. This paper focuses on the improvement of four modules,
namely m1 (SPAN module), m2 (SDCN feature extraction module), m3 (pruning the trained model),
and m4 (adding MPDIOU_NMS algorithm). Si represents the combination of various modules mi,
with S0 indicating the absence of any additional improvement module.

As depicted in Table 2, S1 demonstrates an increase in the SFPN structure and a 0.7% increase in
mAP compared to S0. However, its GFLOPS has increased by 7.9. S2 denotes that the SDCN module
is incorporated on the foundation of S1 to augment the model’s feature extraction capability, albeit at
the expense of increased model complexity that can be disregarded. Compared to the four indicators of
S1, there is an average increase of 1.15%. S3 denotes the pruning of redundant channels in the model.
Approximately 30% of the parameters are pruned to uphold optimal model performance. The objective
is to reduce the excessive size of the model and to vary the degree of increase for different indicators,
making them incomparable to other modules. Upon adding the MPDIOU_NMS algorithm to verify
and test the model detection performance, S4 demonstrates a decrease in mAP(0.5) compared to S3,
while other aspects show varying degrees of improvement.



CMC, 2024, vol.78, no.3 3797

Table 2: Ablation experiment

Models m1 m2 m3 m4 mAP(0.5) mAP(0.5:0.95) P R Parameters GFLOPS

S0 0.902 0.595 0.854 0.870 11137096 28.7
S1 1 0.910 0.602 0.858 0.874 10576056 36.6
S2 1 1 0.916 0.616 0.870 0.884 11037676 35.5
S3 1 1 1 0.917 0.624 0.874 0.863 7726636 23.3
S4 1 1 1 1 0.914 0.643 0.872 0.871 7726636 23.3

4.3 Comparison between Different Algorithms

This paper compares four size models (n, s, m, l) in YOLOv5 [33], YOLOv6 [34], and YOLOv8
algorithms, as well as YOLOv7 [35] and YOLOv7x. As depicted in Table 3, YOLOv5l, YOLOv6l,
YOLOv7x, and YOLOv8l exhibit superior performance, and their visualization comparison with
the L_YOLO algorithm is presented in Fig. 10. To emphasize the superiority of this algorithm, the
L_YOLO curve is depicted in red, while the other curves are represented in grey. Evidently, given
that the average number of parameters is nine times lower, the algorithm exhibits a slightly higher
performance than other algorithms on mAP(0.5). It significantly outperforms any other algorithm on
mAP(0.5:0.95).

Table 3: Comparison between different algorithms

Models Precision Recall mAP(0.5) mAP(0.5:0.95) Parameters GFLOPS

YOLOv8n 0.853 0.837 0.884 0.563 3006818 8.1
YOLOv8s 0.854 0.87 0.902 0.595 11137906 28.7
YOLOv8m 0.859 0.878 0.912 0.614 25843234 78.7
YOLOv8l 0.868 0.889 0.920 0.619 43634450 165.4
YOLOv7 0.88 0.869 0.914 0.590 37223526 105.2
YOLOv7x 0.861 0.889 0.922 0.595 70848782 189
YOLOv6n 0.832 0.813 0.863 0.550 4238722 11.9
YOLOv6s 0.86 0.851 0.895 0.591 16298594 44
YOLOv6m 0.861 0.859 0.902 0.593 51998946 161.2
YOLOv6l 0.855 0.873 0.901 0.600 110897810 391.9
YOLOv5n 0.857 0.828 0.884 0.563 2509618 7.1
YOLOv5s 0.872 0.856 0.907 0.596 9113858 23.8
YOLOv5m 0.873 0.865 0.914 0.610 25068590 64.4
YOLOv5l 0.882 0.869 0.916 0.617 53136034 134.7
L_YOLO 0.872 0.871 0.914 0.643 7726636 23.3
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Figure 10: Comparison curves of different algorithms

To provide a more comprehensive representation of the model’s performance, this study improves
the model to three dimensions for comparative analysis, as illustrated in Fig. 11. The abscissa and
ordinate denote the mAP(0.5:0.95) and the mAP(0.5), respectively. The area of the circle corresponds
to the floating point operation, with a larger area indicating a more complex model. The study
concludes that the L_YOLO model is positioned closer to the upper right corner than others, indicating
its superior comprehensive performance.

Figure 11: Performance comparison

4.4 Comparison between Different Datasets

In this paper, two data sets are selected, with Fig. 12a representing the infrared dataset and
Fig. 12b representing the Visdrone2019 dataset. The red curve in the figure illustrates the compar-
ison of two datasets based on mAP(0.5), while the blue curve depicts the comparison based on
mAP(0.5:0.95). The solid line represents the L_YOLO algorithm, while the dotted line corresponds
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to the YOLOv8s algorithm. Evidently, the L_YOLO algorithm outperforms the YOLOv8s algorithm
in both datasets, particularly in the Visdrone2019 dataset. The specific data is presented in Table 4.
The L_YOLO algorithm enhances the mAP(0.5:0.95) by 4.8% on the infrared dataset and the mAP
by an average of 12.9% on the Visdrone2019 dataset. The frames per second (FPS) of the L_YOLO
algorithm on two datasets is much lower than that of the YOLOv8 algorithm, primarily because the
underlying code of the MPDIOU_NMS algorithm is written in Python. However, the FPS of the
L_YOLO algorithm exceeds 25 on both datasets, meeting basic industrial requirements and ensuring
suitability for daily use.

Figure 12: Comparison between different datasets

Table 4: Different datasets

Dataset Modules mAP(0.5) mAP(0.5:0.95) P R GFLOPS FPS Parameters

Visdrone2019 YOLOv8s 0.39 0.232 0.507 0.384 28.50 426 11129454
L_YOLO 0.519 0.351 0.600 0.420 23.03 29.3 7720770

Infrared YOLOv8s 0.902 0.595 0.854 0.870 28.70 521 11137906
L_YOLO 0.914 0.643 0.872 0.871 23.30 31.6 7726636

This paper also presents the heatmap visualisation for the two datasets using the YOLOv8s
algorithm and the L_YOLO algorithm, respectively. The first two images are from the infrared dataset,
and the last two are from the Visdrone2019 dataset. Obviously, the L_YOLO algorithm pays more
attention to useful semantic information than the YOLOv8s algorithm. The details are shown in
Fig. 13.
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Figure 13: Comparison of UAV infrared image feature visualization results

5 Conclusion

Aiming at the different imaging of UAV aerial photography at different altitudes and the
constraints of low light conditions at night make it challenging for operators to discern the target
accurately. This paper presents an L-YOLO algorithm designed to address a series of problems. This
paper primarily enhances YOLOv8 in the following ways. Initially, the PAN structure of YOLOv8
was substituted with the SPAN structure, followed by the replacement of the neck network feature
extraction module with the SDCN module. Subsequently, the model was further pruned. Finally,
the MPDIOU_NMS algorithm is added to assist the model in verification and testing. It has
achieved good results on infrared datasets and Visdrone2019 datasets. Nevertheless, it is necessary
to acknowledge that there are still numerous shortcomings in contemporary work. In the subsequent
investigation, the following issues require resolution: (1) There is a need to enhance the speed of model
inference further, for instance, by optimizing the NMS algorithm [36]. (2) Further pruning of the
module, such as module pruning, can be implemented by utilizing group-level pruning [37], ensuring
that no part of the network layer is skipped.
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