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ABSTRACT

Network traffic identification is critical for maintaining network security and further meeting various demands
of network applications. However, network traffic data typically possesses high dimensionality and complexity,
leading to practical problems in traffic identification data analytics. Since the original Dung Beetle Optimizer
(DBO) algorithm, Grey Wolf Optimization (GWO) algorithm, Whale Optimization Algorithm (WOA), and
Particle Swarm Optimization (PSO) algorithm have the shortcomings of slow convergence and easily fall into the
local optimal solution, an Improved Dung Beetle Optimizer (IDBO) algorithm is proposed for network traffic
identification. Firstly, the Sobol sequence is utilized to initialize the dung beetle population, laying the foundation
for finding the global optimal solution. Next, an integration of levy flight and golden sine strategy is suggested
to give dung beetles a greater probability of exploring unvisited areas, escaping from the local optimal solution,
and converging more effectively towards a global optimal solution. Finally, an adaptive weight factor is utilized to
enhance the search capabilities of the original DBO algorithm and accelerate convergence. With the improvements
above, the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,
as so to find the optimal subset for K-Nearest Neighbor (KNN) classification. The simulation experiments use the
CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original
DBO, GWO, WOA, and PSO algorithms. The experimental results show that, compared with other algorithms,
the accuracy and recall are improved by 1.53% and 0.88% in binary classification, and the Distributed Denial of
Service (DDoS) class identification is the most effective in multi-classification, with an improvement of 5.80% and
0.33% for accuracy and recall, respectively. Therefore, the proposed IDBO algorithm is effective in increasing the
efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and
falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for
network traffic identification.
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1 Introduction

As an essential issue in network security, network traffic identification has received widespread
attention. As the Internet develops rapidly, the scale and complexity of Internet traffic [1] continue
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to increase, and network attackers use increasingly complex and covert methods to carry out attacks.
To effectively protect network security, quickly detecting and responding to these threats has become
crucial. Network traffic identification is a critical technology that can identify traffic categories and
detect potential threats and abnormal behaviors by analyzing the characteristic differences of traffic.

Traditional network traffic identification methods mainly rely on port numbers and protocol
information to infer the application type of network traffic. However, with the diversification of
network applications, port-based classification fails to meet practical application requirements. Deep
Packet Inspection (DPI) methods have emerged to overcome the drawbacks of port number-based
classification, which delves into the payload of data packets to understand the information contained
therein. However, with the popularity of encrypted communications, DPI is usually unable to decrypt
encrypted data packets, resulting in false positives or false negatives of encrypted traffic. Traditional
traffic identification methods can no longer identify new applications and services accurately.

Due to advancements in machine learning technology, some researchers have applied it to traffic
identification and achieved good results. For instance, Soysal et al. [2] proved that the machine
learning algorithm solves the traditional method’s dependence on port numbers and can identify
traffic categories like Peer to Peer (P2P). However, conventional machine learning methods demand
the manual selection and extraction of features, which may result in loss of information or improperly
selected features, thus affecting classification performance. How to select appropriate traffic features
has become increasingly important. The deep learning model has powerful feature learning capabilities
and addresses the deficiencies of traditional machine learning in manually selecting traffic features,
but this also means that the process of model classification becomes completely uninterpretable.
Metaheuristic optimization algorithms have been widely applied to effectively identify traffic features
due to their self-organizing nature and adaptability. Our previous work [3–6] involved the integration
of classical metaheuristic optimization algorithms for feature selection. However, traditional meta-
heuristic algorithms suffer from issues such as low searching efficiency and ineffective handling of
high-dimensional problems.

The Dung Beetle Optimizer (DBO) is an emerging meta-heuristic algorithm presented by
Xue et al. [7] in 2022. This algorithm, known for its simplicity and ease of implementation, has been
successfully applied to various engineering design problems. However, achieving optimal solutions
for specific optimization problems remains difficult. Although the DBO algorithm exhibits a strong
capacity for global search and local exploration, it suffers from an unbalance between its global search
and local exploitation capabilities. In the case of high-dimensional problems, the original DBO method
tends to converge slowly and can become stuck in the local optimal solution.

To tackle the constraints of the DBO algorithm, address the challenges posed by high-dimensional
traffic data, and achieve accurate identification of network traffic, this article introduces an Improved
Dung Beetle Optimizer (IDBO) algorithm applied specifically to traffic identification. The IDBO
algorithm rapidly identifies the optimal feature subset and employs the K-Nearest Neighbor (KNN)
classification algorithm for feature classification to identify traffic types.

The following are this paper’s primary contributions:

(1) The sobol sequence is introduced for the initialization of the population. It ensures an even
distribution of initial solutions, allowing the population to explore the area more thoroughly.

(2) The levy flight and golden sine strategy integration in the rolling dung beetle stage. This
strategy reduces the impact of light intensity on the dung beetle’s rolling behavior, allowing it to have
different motion trajectories during the rolling process and stay away from the local optimal solution.
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(3) An adaptive weight factor ω is presented during the dung beetle stealing stage. It solves the
trade-off problem between exploration and utilization in different iteration stages and increases the
algorithm’s search efficiency.

(4) A new method for network traffic identification is presented. The method utilizes an IDBO
algorithm to cope with the challenge of high dimensional data in network traffic identification and to
improve the accuracy of network traffic identification.

The subsequent sections of this paper are structured as follows. Section 2 presents the related
work. Section 3 introduces the mathematical preliminaries. Section 4 presents the network traffic
identification method based on the IDBO algorithm. Section 5 provides the simulation experiment
analysis. Section 6 summarizes the research results and future development directions of this article.

2 Related Work

With the continuous evolution of network technologies, DPI has emerged as the mainstream
technique in traditional traffic identification methods. Sen et al. [8] and Moore et al. [9] proposed
identification methods for deep packet inspection using application layer protocol feature fields in 2004
and 2005, respectively. Its identification accuracy surpasses that of the traffic identification method
relying on port number. While traditional traffic identification techniques effectively handle non-
encrypted traffic data, they encounter challenges when dealing with encrypted traffic identification.

To address the challenge of encrypted traffic, the academic community has increasingly
favored the utilization of machine learning techniques with automated training deployment.
Alshammari et al. [10] assessed the robustness of machine learning-based traffic classification,
revealing improved classification performance using machine learning technology. Wang et al. [11]
employed C4.5 to classify P2P traffic, describing the behavioral characteristics of applications.
However, the effectiveness of machine learning in traffic classification largely hinges on manually
selected data flow features by researchers, potentially leading to information loss. Selecting
appropriate traffic characteristics is a pivotal step in traffic identification. Dong et al. [12] proposed
a cost-sensitive Support Vector Machine (SVM) algorithm to address the imbalance issue in network
traffic identification, which employs an active learning multi-class SVM algorithm, dynamically
allocating weights to traffic types to resolve the imbalance problem, ultimately achieving enhanced
classification performance. Additionally, the features of traffic flow are analyzed in [13–16]. The
increase in traffic volume helps to reduce traffic congestion and greatly improves traffic safety. With the
expansion of the Internet of Things (IoT), Wang et al. [17] proposed using an improved Convolutional
Neural Network (CNN) to learn traffic characteristics for Distributed Denial of Service (DDoS)
attack detection, which enhanced the accuracy of classification detection. Khan et al. [18] combined
a Recurrent Neural Network (RNN) and a gated recursive unit to form a new intrusion detection
model, using RNN to learn traffic characteristics to identify anomaly types. Although deep learning
models can autonomously select features, their decision-making processes are difficult to explain.

Metaheuristic optimization algorithms imitate biological evolution and social behavior in nature
and have strong self-adaptive characteristics. Qin et al. [19] presented using the enhanced Salp Swarm
Algorithm (SSA) to automatically choose a feature subset appropriate for the classification algorithm
to classify high-dimensional data. Safaldin et al. [20] presented an intrusion detection model using the
gray wolf algorithm, finding the optimal intrusion detection performance by adding the number of
wolves and improving the model’s overall performance through multi-objective functions.
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However, the No Free Lunch theorem [21] proves that no metaheuristic algorithm is able to solve
every optimization issue. Different application scenarios require the selection of different algorithms
to be better applied in practice.

3 Mathematical Preliminaries

This section mainly introduces the DBO algorithm [7], which is derived from the social behaviors
observed in populations of dung beetles in nature, categorizing these populations into rolling, breeding,
small, and thief dung beetles. It executes global exploration and local exploitation based on the location
update equations for each population subset.

3.1 Rolling Dung Beetles

Dung beetles tend to roll feces into a ball and transport it to a secure storage location. During the
ball rolling, dung beetles employ celestial cues to guide their way around. The updated formula for
the position is described below:

xi (t + 1) = xi (t) + α × k × xi (t − 1) + b × �x (1)

� x = ∣∣xi (t) − X worst
∣∣ (2)

where xi (t) represents the position information of the i th beetle during the t th cycle. α represents
a natural coefficient, k is the deviation coefficient, b represents a constant in the range (0, 1), X worst

denotes the worst position, and �x imitates changes in illumination. When encountering obstacles
during the dung ball rolling process, dung beetles ascend onto the dung ball to perform a dancing
behavior, determining their movement direction. The location update equation is described below:

xi (t + 1) = xi (t) + tan (θ) |xi (t) − xi (t − 1)| (3)

where θ ∈ [0, π ]. The position is not updated when θ = 0, π/2 and π .

3.2 Breeding Dung Beetles

In the natural world, the female dung beetle rolls the dung ball to a secure and appropriate
location for spawning, laying balls of eggs to reproduce their offspring. Dung beetle spawning is strictly
confined within the spawning zone, and spawning occurs only when breeding dung beetles are within
the safe area for spawning. The equation for updating locations is outlined below:

Xi (t + 1) = X ∗ + b1 × (Xi (t) − Lb∗) + b2 × (Xi (t) − Ub∗) (4)

Lb∗ = max (X ∗ × (1 − R), Lb) (5)

Ub∗ = min (X ∗ × (1 + R), Ub) (6)

where Xi (t) is the position of breeding dung beetles, X ∗ represents the current local optimal location,
b1 and b2 are random vectors whose magnitude is 1 × D, D is the dimensionality of the problem. Lb∗

and Ub∗ represent the spawning area’s lower and upper boundaries, respectively, R = 1 − t/Tmax and
Tmax means the upper limit for the number of iteration, Lb and Ub denote the optimization problem’s
lower and upper bounds, respectively.

3.3 Small Dung Beetles

Some mature dung beetles come out of underground to forage for food, and they are called small
dung beetles. Their foraging activities are strictly confined within the ideal foraging region. The small
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dung beetles begin to forage when they are in the area. The formula for the updating of positions is
described below:

xi (t + 1) = xi (t) + C1 × (
xi (t) − Lbb

) + C2 × (
xi (t) − Ubb

)
(7)

Lbb = max
(
X b × (1 − R), Lb

)
(8)

Ubb = min
(
X b × (1 + R), Ub

)
(9)

where X b denotes the global optimal location, Lbb and Ubb denote the lower and upper boundaries of
the foraging zone, respectively, xi (t) represents the location information of the i th small dung beetle
during the t th iteration, C1 is a random number that follows a normal distribution, and C2 is a random
vector belonging to (0, 1).

3.4 Thief Dung Beetles

Certain dung beetles engage in the natural phenomenon of pilfering dung balls from fellow beetles.
Thief dung beetles will engage in stealing behavior when they are in the vicinity of an optimal food
source, and their positional update formula is described below:

xi (t + 1) = X b + S × g × (|xi (t) − X ∗| + ∣∣xi (t) − X b
∣∣) (10)

where xi (t) denotes the location of the i th thief dung beetle during the t th iteration, g denotes a
random vector of size 1 × D obeying a normal distribution, and S represents a constant.

4 Network Traffic Identification Based on IDBO Algorithm

This section is divided into two parts. The first part describes how to improve the DBO algorithm,
and the second part introduces how to apply the IDBO algorithm to traffic identification.

4.1 Improvement Strategies of IDBO Algorithm

4.1.1 Sobol Sequence Strategy for Initialization Population

The DBO algorithm initializes its population using a random distribution method, resulting in
an uneven distribution of individuals in the initial phase, thereby restricting the population’s search
range. Sobol sequence [22], a deterministic and low-discrepancy sequence, is particularly suitable for
generating random numbers in high-dimensional spaces. This study utilizes the Sobol sequence to
initialize the DBO population, enhancing the diversity within the population. The expression for
generating a population using the sobol sequence is described below:

xi = Lb + Sn × (Ub − Lb) (11)

where xi represents the population location, Lb and Ub are the search space’s lower and upper bounds,
and Sn ∈ [0, 1] is the random numbers produced by the sobol sequence.

Assume that in a two-dimensional space, the population number is N = 500. The distribution
of random sequence-generated populations and sobol sequence-generated populations in the range of
[0, 1] is shown in Fig. 1.

From the comparison in Fig. 1, it is found that the sobol sequence has a more homogeneous
population distribution and makes full use of the solution space, which increases the diversity of dung
beetles in the search space.
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Figure 1: Comparison of Random Sequence and Sobol Sequence Distributions

4.1.2 Integration of Levy Flight and Golden Sine Strategy to Update Location of Rolling Dung Beetles

In the DBO algorithm, the ball-rolling behavior is easily affected by illumination and the global
worst position, which in certain scenarios can limit the algorithm’s global search ability, potentially
requiring more iterations to achieve the global optimal solution. This paper introduces the integration
of levy flight and golden sine strategy in the rolling dung beetle stage, embedding it within the
DBO algorithm. This integration aims to balance the algorithm’s global search and local exploration
abilities, consequently enhancing the efficiency of global search.

Levy flight [23] is a random walk based on Levy distribution to generate step lengths, differing
from conventional random walks where step lengths are typically represented by power-law distribu-
tions Levy (S) ∼ |S|−1−β

(0 < β < 2), where S is the size of the step and Levy (S) is the probability
when the step S is moved. Because of the complexity of the levy distribution, the Mantegna algorithm
is commonly employed to simulate it.

S = θ

|ω|1/β
(12)

θ and ω follow a normal distribution.

θ ∼ N
(
0, σ 2

u

)
, ω ∼ N

(
0, σ 2

v

)
(13)

σu =
{

τ (1 + β) sin (πβ/2)

2(β−1)/2τ [(1 + β)/2] β

}1/β

, σv = 1 (14)

where τ is the normal gamma function and β typically has a value of 1.5 [23].

The Golden Sine Algorithm (Gold-SA) is a novel metaheuristic algorithm proposed by
Tanyildizi et al. [24] in 2017, exhibiting strong global search capabilities. It incorporates the golden
ratio in the position update process to narrow down the solution space, enabling thorough exploration
of local regions and thus balancing global and local search abilities. The updating formula for the
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golden sine is outlined below:

xi (t + 1) = xi (t) |sin (r1)| + r2 sin (r1) |c1xi (t − 1) − c2xi (t)| (15)

c1 = ah + b (1 − h) (16)

c2 = a (1 − h) + bh (17)

where xi (t) represents the position information. r1 and r2 are random numbers in (0, 2π) and (0, π),
respectively. c1 and c2 are the coefficients that are obtained by introducing a golden section number,

which is an irrational number with the formula h =
(√

5 − 1
)
/2, a and b represent the initial values

of the golden section coefficients, and a = −π , b = π [24].

The position update formula for embedding an integration of levy flight and golden sine strategy
in a rolling dung beetle is described below:

xi (t + 1) = Levy (S) xi (t) |sin (r1)| + r2 sin (r1) |c1xi (t − 1) − c2xi (t)| (18)

The integration of levy flight and golden sine strategy for ball-rolling behavior can offer several
advantages. It aids in reducing the impact of light intensity on dung beetles’ rolling behavior, thereby
enhancing algorithmic diversity and helping to avoid local optima. Simultaneously, it frees the dung
beetles’ rolling behavior from the influence of the global worst position, somewhat expanding the
search space, thereby enhancing the algorithm’s exploratory capabilities and facilitating the discovery
of superior solutions.

4.1.3 Adaptive Weight Factor Strategy to Update Location of Thief Dung Beetles

The location update strategy of thief dung beetles usually relies on the information of surrounding
dung beetles and the solution space, causing the algorithm to be overly sensitive to neighborhood
information. If the neighborhood information is insufficient or misleading, it will affect the iteration
speed of the algorithm. This paper introduces an adaptive weight factor update strategy in the thief
dung beetle stage, which can automatically adjust the individual location according to the iteration
count, thus enhancing the search and development performance of the dung beetle optimization
algorithm, which can be achieved in “exploration” and “exploitation”. The balance between them
speeds up the convergence performance of the algorithm. The adaptive weight factor ω [25] has the
following mathematical expression:

ω = sin
(

π × t
2 × Maxiteration

+ π

)
+ 1 (19)

where t signifies the ongoing iteration count, Maxiteration denotes the upper limit for the number of
iterations. After introducing an adaptive weight factor, the location update equation for the thief dung
beetles is described below:

xi (t + 1) = ω × (
X b + S × g × (|xi (t) − X ∗| + ∣∣xi (t) − X b

∣∣)) (20)

where xi (t) denotes the location of the i th thief dung beetle during the t th iteration, g is a 1 × D size
random vector obeying a normal distribution, and S is a constant.

According to Eq. (20), it can be seen that the adaptive weight factor is maximum at the beginning
of the search iteration, which can motivate the dung beetle to focus more on exploiting known
solutions. As the iterations progress, the adaptive weight factor fluctuates up and down between 0
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and 2, which can motivate the dung beetle to explore more to discover the possible global optimal
solution and enhance the convergence speed.

Fig. 2 displays the flowchart of the IDBO algorithm.

Figure 2: Flowchart of IDBO algorithm

As shown in Fig. 2, the steps of the IDBO algorithm suggested in this paper are described below.

Step 1: Set the appropriate initial values for the population size N, the maximum number of
iterations T, and other relevant parameters.

Step 2: Use sobol sequence Eq. (11) create the initial population in the search space, and calculate
each dung beetle’s fitness value.

Step 3: The IDBO algorithm is used to update the individual location in the dung beetle
population. If the individual dung beetle belongs to the rolling dung beetle, the position of the dung
beetle is updated by Eq. (18) or Eq. (3); if the individual dung beetle belongs to the breeding dung
beetle, the position of the dung beetle is updated by Eq. (4); if the individual dung beetle belongs to
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the small dung beetle, the position of the dung beetle is updated by Eq. (7); if the individual dung
beetle belongs to the thief dung beetle, the position of the dung beetle is updated by Eq. (20).

Step 4: Calculate the fitness value of individual dung beetles after the position update by the fitness
function Eq. (21). Compare these new fitness values with the previously found optimal fitness value
and optimal position to determine whether the current population fitness and position need to be
updated to obtain the optimal fitness value and optimal position.

Step 5: Judge whether the algorithm reaches the largest iteration count, if so, stop the iteration,
and the global optimal location and fitness value are output; otherwise, jump to Step 3 for the next
iteration of optimization.

4.2 Network Traffic Identification Process

The core of the proposed method for network traffic identification in this paper lies in utilizing the
IDBO algorithm for feature selection, determining the feature subset that has the greatest information.
Subsequently, this feature subset is utilized to train a KNN classifier for achieving accurate network
traffic classification and identification. These two crucial components work in synergy to enhance the
network traffic identification method’s accuracy and performance.

Fig. 3 illustrates the flowchart of network traffic identification based on the IDBO algorithm.

Figure 3: Flowchart of network traffic identification based on IDBO algorithm

As demonstrated in Fig. 3, the precise steps in the execution of the network traffic identification
method based on the proposed IDBO algorithm are as follows:

Step 1: Preprocess the data, equalize the data stream sample set, and divide it into training and
testing sets.

Step 2: Perform IDBO algorithm flow to find the global optimal solution.

Step 3: The optimal subset of features obtained in Step 2 is classified using the KNN algorithm.
Evaluate the identification accuracy of the method based on various criteria, including the number of
selected features, accuracy, fitness values, and other relevant indicators.

5 Experimental Simulation and Analysis

This section is divided into three sections. The first section describes the data selection and
processing process of this article, the second section is the performance analysis of the IDBO
algorithm, and the third section verifies its traffic identification effect on the CICIDS2017 dataset.
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The experimental environment used in this paper is a Windows 10 operating system with Intel (R)
Core (TM) i7-8550U CPU @ 1.80 GHz and 12 GB of RAM. The simulation software is MATLAB.

5.1 Dataset Selection and Processing

The simulation experiments utilized the CICIDS2017 dataset to validate the performance of
network traffic identification based on the IDBO algorithm proposed in this paper. This dataset
contains 15 traffic categories, but the BENIGN traffic category is quite large, while the other traffic
categories are relatively scarce.

In binary traffic identification, BENIGN denotes benign traffic, encoded as 0 using One-Hot, and
the remaining 14 types denote abnormal traffic, coded as 1. To avoid the method bias towards one type
of traffic during traffic identification, it is undersampled to balance the benign and abnormal traffic.
The dataset was also preprocessed to remove dirty data, and all data were mapped between 0 and 1
using min-max normalization. From the processed data, 5000 pieces of data are randomly selected to
form a new data sample.

In multi-classification traffic identification, the dataset was first preprocessed to eliminate the
dirty data, and all data were mapped using min-max normalization between 0 and 1. Simultaneously,
to balance the sample size of each category, a few categories with similar features and behaviors are
merged to form a new category during preprocessing, while Infiltration and Heartbleed data with too
few samples are ignored. The resulting seven categories are Benign, Botnet, Brute Force, DDoS, DoS,
PortScan, and Web Attack, with 1000 randomly extracted data points from each category to form the
dataset sample.

5.2 Performance Analysis of IDBO Algorithm

To validate the improved optimization capability of the IDBO algorithm proposed in this paper,
a set of common optimization algorithms, such as Particle Swarm Optimization (PSO) [26], Grey
Wolf Optimization (GWO) [27], Whale Optimization Algorithm (WOA) [28], and the original DBO
algorithm, were chosen for comparative analysis against the IDBO algorithm in the simulation
experiments. To keep the article from becoming too long, six different types of benchmark functions
were chosen for the experimentation of the algorithms, namely unimodal test functions (f1; f2; f3) and
multimodal test functions (f4; f5; f6). Table 1 shows the details of the test functions.

Table 1: Test functions

Type Function Dim Range Min

Unimodal test
functions

f1 (x) = ∑n

i=1 x2
i 30 [−100, 100] 0

f2 (x) = ∑n

i=1 |xi| + ∏n

i=1 |xi| 30 [−10, 10] 0
f3 (x) = ∑n

i=1

(∑i

j=1 xj

)2
30 [−100, 100] 0

Multimodal test
functions

f4 (x) = −∑n

i=1

[
xi sin

(√|xi|
)]

30 [−500, 500] −418.982 ∗ Dim

f5 (x) =∑n

i=1

[
x2

i − 10 cos (2πxi) + 10
] 30 [−5.12, 5.12] 0

(Continued)
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Table 1 (continued)

Type Function Dim Range Min

f6 (x) = −20 exp

(
−0.2

√
1
n

∑n

i=1 x2
i

)

− exp
(

1
n

∑n

i=1 cos (2πxi)

)
+ 20 + e

30 [−32, 32] 0

Considering that the algorithms have randomness, the above five algorithms were run indepen-
dently and repeatedly 30 times. The mean and standard deviation of the 30 optimization results were
computed and recorded in Table 2. Figs. 4 and 5 display the convergence curves for the five methods
on benchmark functions.

Table 2: Experimental results of test functions

Function Type PSO GWO WOA DBO IDBO

f1 Mean 2.39E+00 1.21E−27 3.78E−76 3.05E−109 0.00E+00
Std 8.95E−01 1.14E−27 1.29E−75 1.67E−108 0.00E+00

f2 Mean 4.52E+00 9.41E−17 2.39E−51 1.37E−57 0.00E+00
Std 1.07E+00 7.71E−17 6.12E−51 6.85E−57 0.00E+00

f3 Mean 1.76E+02 1.27E−05 4.60E+04 3.10E−63 0.00E+00
Std 5.24E+01 2.85E−05 1.44E+04 1.70E−62 0.00E+00

f4 Mean −6.46E+03 −5.70E+03 −1.04E+04 −8.19E+03 −1.26E+04
Std 1.11E+03 7.18E+02 1.79E+03 1.38E+03 7.76E+00

f5 Mean 5.82E+01 2.99E+00 3.79E−15 6.97E−01 0.00E+00
Std 1.88E+01 3.79E+00 2.08E−14 3.81E+00 0.00E+00

f6 Mean 2.17E−01 9.94E−14 4.35E−15 4.44E−16 4.44E−16
Std 4.64E−01 1.66E−14 2.16E−15 0.00E+00 0.00E+00

Figure 4: Convergence curves for unimodal test functions
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Figure 5: Convergence curves for multimodal test functions

The test results in Table 2 indicate that, compared to other algorithms, the IDBO algorithm
exhibits smaller mean values and standard deviations for unimodal and multimodal functions.
Although for f6, the IDBO algorithm’s mean value and standard deviation are equal, its convergence
speed is faster, allowing it to find the global optimal more rapidly. Observing the convergence curves in
Figs. 4 and 5, it is proven that the IDBO algorithm outperforms other algorithms. Its performance is
superior, with higher convergence accuracy and speed when compared to the four different algorithms.
Therefore, the IDBO algorithm, which is improved by the strategy presented in this research, has faster
convergence during the iterative optimization search for different benchmark functions, and it has
better stability and robustness than other algorithms.

5.3 Performance Analysis of Network Traffic Identification Based on IDBO Algorithm

5.3.1 Evaluation Function

In network traffic identification, the fitness function value reflects the effectiveness of the method’s
identification. Its value is mainly related to the quantity of chosen features and identification accuracy.
As a result, the fitness function in this work is designed as follows [4]:

F (i) = accuracy (i)
1 + η · n (i)

(21)

where F (i) is the fitness value of the i th individual, accuracy (i) means identifying the correct ratio,
n (i) is the quantity of chosen features, and η is the weighting coefficient, set to η = 0.01 in this paper.

5.3.2 Network Traffic Identification Using the CICIDS2017 Dataset

To further evaluate the network traffic identification performance based on the IDBO algorithm,
binary and multi-classification network traffic identification was conducted on the CICIDS2017
dataset. Given the high feature dimension and redundancy in the dataset, feature selection was per-
formed. The preprocessed CICIDS2017 dataset was split into a training set (70%) for feature selection
evaluation and a testing set (30%) for verifying the network traffic identification results. Various
comparative algorithms were set with the same experimental parameters, including a population size
(N) of 30, and a maximum number of iterations (T) of 50. The experiments were independently
repeated 30 times to compare the accuracy, recall, precision, and F1 score for different traffic
categories.
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The experimental results for binary traffic identification are displayed in Table 3, and the
comparison diagram of evaluation indicators for each category is shown in Fig. 6. The results of multi-
classification network traffic identification experiments are introduced in Table 4 and Fig. 7.

Table 3: Experimental results of binary traffic identification

Dataset Indicators IDBO DBO GWO WOA PSO

CICIDS2017 Accuracy (%) 97.3333 95.8000 95.8000 94.1333 94.2000
Precision (%) 99.4778 98.4190 97.4194 96.9577 96.9617
Recall (%) 95.4887 93.6090 94.6115 91.8546 91.9800
F1 score (%) 97.4425 95.9538 95.9949 94.3372 94.4051
Subset 3 5 24 3 15

Figure 6: Comparison of each algorithm in binary classification

Table 4: Experimental results of multi-classification traffic identification

Index (%) Benign Botnet Brute force DDoS DoS PortScan Web attack

IDBO

Accuracy 90.2985 94.4625 96.3899 99.0066 90.2821 98.7097 93.3993
Precision 96.8801 94.9664 97.0909 99.3355 93.8111 99.3506 94.7735
Recall 93.6533 99.6564 99.2565 99.6667 96.0000 99.6753 98.9510
F1 score 94.0239 96.0951 98.1618 99.5008 94.8929 99.6743 96.5870

DBO

Accuracy 85.2290 89.5765 96.3504 91.4110 81.1912 99.3506 85.4103
Precision 94.9013 94.5017 98.1413 91.9753 93.1655 100 86.7254
Recall 89.3189 94.5017 98.1413 99.3333 86.3333 99.3506 98.2517
F1 score 92.0255 94.5017 97.4359 95.5128 89.6194 99.3506 92.1311

GWO

Accuracy 87.6692 92.4837 95.0000 93.2039 86.8750 93.8051 93.0000
Precision 96.8439 94.7712 96.0289 96.9697 93.2886 93.3131 95.2218
Recall 90.2477 99.6564 99.2565 96.0000 92.6667 99.3506 97.5524
F1 score 93.4295 97.1524 98.1413 96.4824 92.9766 96.3893 96.3731

WOA

Accuracy 90.2985 91.9355 95.3571 88.0878 80.8642 98.0583 93.0693
Precision 96.1844 93.7500 96.0432 93.6667 91.6084 99.6711 94.3144
Recall 91.4861 97.9381 99.2565 93.6667 87.3333 98.3766 98.6014
F1 score 94.9020 95.7983 97.6234 93.6667 89.4198 99.0196 96.4103

(Continued)
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Table 4 (continued)
Index (%) Benign Botnet Brute force DDoS DoS PortScan Web attack

PSO

Accuracy 84.3284 94.1558 94.0141 87.6133 78.6585 90.9910 90.3654
Precision 95.9253 94.4625 94.6809 90.3427 90.2098 92.3780 94.3333
Recall 87.4613 97.2509 99.2565 96.6667 86.0000 98.3766 95.1049
F1 score 91.4980 96.9900 96.9147 93.3977 88.0546 95.2830 94.9389

Figure 7: Comparison of each algorithm in multi-classification

According to the experimental results in Table 3 and the comparative chart of various category
metrics in Fig. 6, in binary classification, the IDBO algorithm effectively reduces redundant features
and exhibits higher accuracy, recall rate, precision, and F1 score across all categories compared to
other algorithms. This suggests that the network traffic identification based on the IDBO algorithm
generally makes correct classification decisions in most scenarios. It not only effectively distinguishes
between BENIGN and abnormal traffic but also minimizes false positives and false negatives, thereby
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significantly enhancing traffic identification efficiency and ensuring the normal operation of the
network.

It is evident from Table 4 that the network traffic identification method based on IDBO can
identify different traffic categories with over 90% accuracy, precision, recall, and F1 score. As can
be seen from Fig. 7, the recognition effect of the DDoS class and DoS class is the most obvious. The
DDoS category accuracy rate increased by 5.80%, and the DoS category accuracy rate increased by
3.41%.

The experimental findings validate that the IDBO algorithm for network traffic identification
proposed in this paper can overcome the issues of slow convergence and susceptibility to the local
optimal solution that the original DBO algorithm faces when handling high-dimensional problems,
thus enhancing data traffic identification efficiency.

6 Conclusion

A crucial component of network security and performance optimization is network traffic
identification. To address the issue of the slow convergence speed of the original DBO algorithm
which may trap in a local optimal solution in complex network traffic identification tasks, the IDBO
algorithm is proposed. First, the population is initialized through the sobol sequence to enhance
the global search ability of the algorithm. Secondly, the integration of levy flight and golden sine
strategy is introduced to balance the algorithm’s global search and local exploration abilities. Finally,
an adaptive weight factor enhances the convergence accuracy of the algorithm. The performance of
the IDBO algorithm is verified through 6 different types of benchmark function tests. The results
of the simulation on the CICIDS2017 dataset demonstrate that the IDBO algorithm can effectively
reduce redundant features when handling high-dimensional problems. Compared with the original
DBO, GWO, WOA, and PSO algorithms, it has a better convergence speed and solves the problem
of traditional algorithms in traffic identification. However, this paper only uses the KNN classifier to
evaluate the traffic identification effect. In the future, multiple classifiers can be compared to find the
most suitable network traffic identification classifier for the IDBO algorithm.
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