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ABSTRACT

Scalability and information personal privacy are vital for training and deploying large-scale deep learning models.
Federated learning trains models on exclusive information by aggregating weights from various devices and taking
advantage of the device-agnostic environment of web browsers. Nevertheless, relying on a main central server for
internet browser-based federated systems can prohibit scalability and interfere with the training process as a result of
growing client numbers. Additionally, information relating to the training dataset can possibly be extracted from the
distributed weights, potentially reducing the privacy of the local data used for training. In this research paper, we aim
to investigate the challenges of scalability and data privacy to increase the efficiency of distributed training models.
As a result, we propose a web-federated learning exchange (WebFLex) framework, which intends to improve
the decentralization of the federated learning process. WebFLex is additionally developed to secure distributed
and scalable federated learning systems that operate in web browsers across heterogeneous devices. Furthermore,
WebFLex utilizes peer-to-peer interactions and secure weight exchanges utilizing browser-to-browser web real-
time communication (WebRTC), efficiently preventing the need for a main central server. WebFLex has actually
been measured in various setups using the MNIST dataset. Experimental results show WebFLex’s ability to improve
the scalability of federated learning systems, allowing a smooth increase in the number of participating devices
without central data aggregation. In addition, WebFLex can maintain a durable federated learning procedure even
when faced with device disconnections and network variability. Additionally, it improves data privacy by utilizing
artificial noise, which accomplishes an appropriate balance between accuracy and privacy preservation.
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1 Introduction

Federated learning is a novel technique for training deep learning models that has been developed
primarily in response to increasing concerns surrounding data privacy. Traditionally, deep learning
models are trained by collecting data from various sources into a centralized location. However,
this approach presents significant risks to data privacy because the data from each source becomes
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visible during the aggregation process. Therefore, federated learning introduces a paradigm shift in
the training methodology to overcome these concerns [1]. Instead of centralizing data, this technique
emphasizes the training of models directly at their local data sources. Subsequently, only the model
weights, which are a product of local training, are transmitted to a central server. These weights from
all participating local models are aggregated at the server to produce a comprehensive global model.
This methodology ensures an enhanced level of data protection since it restricts any external entity
from gaining direct insight into or access to the local datasets [2].

Federated learning in browser-based peer-to-peer settings offers an important change in machine
learning, decentralizing the process and allowing various devices to train a model while preserving data
privacy and security. This approach incorporates a wide variety of devices, which improves accessibility
and inclusivity [3]. However, it faces challenges such as device heterogeneity, leading to variable
computational power and network issues, and necessitates strong security measures to safeguard the
integrity of the decentralized model. Additionally, achieving compatibility across different browsers
and managing asynchronous client interactions presents implementation complexities. Despite these
challenges, this form of federated learning is a significant step forward, challenging traditional
centralized models and fostering collaborative, privacy-centric machine learning advancements [4].

Federated learning has been gaining power across various domains due to its ability to train on
decentralized data sources while ensuring data privacy. For instance, in healthcare, federated learning
can be employed to develop predictive models by training on patient data across different hospitals
without directly sharing the sensitive patient information, thus maintaining data confidentiality
[5]. Similarly, in the field of mobile devices, companies such as Google have utilized federated
learning to improve their predictive text functionalities without extracting the raw data from users’
devices. Additionally, in the financial sector, this approach allows banks and financial institutions to
collaborate on fraud detection models without demonstrating individual transaction details. Through
these applications, federated learning shows its potential to sectors by encouraging collaboration
without affecting data security [6].

Federated learning, although an innovative and promising approach to distributed deep learning,
is accompanied by several inherent challenges [7]. Initially, the central server plays a crucial role in
facilitating the coordination and aggregation of model updates. However, a central server failure
or unavailability can disrupt the entire training process and hinder timely update aggregation.
Furthermore, the server’s ability to manage multiple clients concurrently establishes limitations on
the number of active participants during any specific learning session [8]. Additionally, the essential
structure of federated learning introduces significant communication overheads. This is attributed
to the frequent need for data exchange between the central server and client devices which can lead
to pressure on the network bandwidth, consequently decreasing the overall training progression [6].
Lastly, client heterogeneity poses significant challenges, particularly in terms of hardware configu-
rations and compilation environments. Each client device, equipped with varied components such
as central processing units (CPUs), graphics processing units (GPUs), and tensor processing units
(TPUs), requires specific driver installations for optimal performance. The compilation environment,
comprising software tools and libraries, must be compatible with the device’s hardware. Ensuring
compatibility and proper configuration becomes complicated due to the variety of requirements and
variations of different devices [9].

In this paper, we intend to propose an innovative methodology to overcome existing challenges in
federated learning by employing the consistency and availability of web browsers. These web browsers
present remarkable consistency across a variety of edge devices, including smartphones, laptops, and



CMC, 2024, vol.78, no.3 4179

personal computers. Particularly, the proposed framework, WebFLex, utilizes web browsers to train a
convolutional neural network (CNN) on the MNIST dataset. This training process is executed within
a web browser running on heterogeneous devices supported by a virtual reality (VR) headset, which
incorporates the web graphics library (WebGL) to enhance both 2D and 3D graphics rendering. The
framework incorporates WebGL to facilitate graphics acceleration and render complex visualizations
efficiently using the device’s GPU. Therefore, this research presents the main contributions in the
following aspects:

1. We propose a novel framework called WebFLex, which facilitates the construction of federated
learning systems. This framework can train and aggregate models locally on peer nodes
within the federation. As a result, the primary function of the central server is restricted to
coordinating peer-to-peer connections among the peer participants. After the establishment
of these connections, the need for a centralized server is minimized, subsequently reducing
the dependence on a centralized architecture. Therefore, the WebFLex framework enables
decentralized federated learning within web browsers, allowing devices to participate in the
learning process even if they disconnect during training. Moreover, it incorporates local
differential privacy and artificial noise to enhance privacy preservation.

2. A comprehensive performance evaluation of the WebFLex framework is performed across a
range of settings. The analysis of performance accuracy highlights the trade-off between data
privacy and model performance when employing local differential privacy and adding artificial
noise. Additionally, the effectiveness of the WebFLex framework is demonstrated in training a
deep CNN on the widely used MNIST dataset across various devices.

The remainder of this research paper is structured as follows: Section 2 reviews related work, while
Section 3 presents the preliminary concepts to understand the research. The WebFLex framework is
detailed in Section 4, outlining its key features and design principles. Section 5 discusses the experi-
mental results obtained from evaluating WebFLex’s performance. Section 6 provides a comprehensive
discussion, evaluating the advantages and disadvantages of the framework. Section 7 presents the
practical implementation challenges of WebFLex. Lastly, Sections 8 and 9 provide future directions
and conclude this research work, respectively.

2 Related Work

In recent years, federated learning has attracted significant advances and attention, leading to
numerous related works that investigate its various aspects to enhance its effectiveness, scalability, and
robustness. This section presents an overview of literature related to the field of federated learning.

Federated learning has witnessed many recent publications on different applications and chal-
lenges across various domains, showing its versatility and potential impact [5,9–11]. Yang et al. [12]
use federated learning to train a model for the detection of credit card fraud. Federated learning
with differential privacy has been used to train an in-hospital mortality prediction model [13]. More
recently, Moshawrab et al. [9] examine federated learning for the prediction of diseases, including
cardiovascular diseases, diabetes, and cancer.

Federated learning presents two distinct settings: The traditional centralized setting and the
decentralized setting. In the traditional centralized setting, the communication is asymmetric, where
a server aggregates local models and shares the training results with all parties. Federate averaging
(FedAvg) [14] is the standard federated learning algorithm, and it is based on deep learning. In FedAvg,
local stochastic gradient descent (SGD) on each client is combined with a central server that performs
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model averaging. This algorithm considerably reduces the cost of communication between the server
and participating devices. However, McMahan et al. [14] suggest that the central server in this setting
may experience communication and computational overhead as a result of the numerous connected
participants. Furthermore, model training may be affected in the case of a central server failure. Thus,
a decentralized federated learning architecture has been proposed as an alternative.

On the other hand, the decentralized setting does not have a central server, and all parties can
communicate directly and update the global model. Lalitha et al. [15] propose a framework for a fully
decentralized federated learning system in which users update their weights by exchanging information
with their one-hop neighbors. They theoretically investigate how participating devices collaboratively
train a model over a network without the need for a central server. Despite the potential benefits of
this approach, an empirical assessment of the proposed framework needs to be demonstrated. Sun
et al. [16] extend the FedAvg algorithm to the decentralized setting, where participants connect to
each other to form an undirected graph.

There are many issues related to the implementation of federated learning in real-world applica-
tions. One important aspect is related to data and system heterogeneity [17,18]. Li et al. [19] propose
decentralized federated learning that incorporates mutual knowledge transfer. This is introduced to
address the degradation of learning performance caused by client-drift in the presence of heteroge-
neous data. Chen et al. [20] introduce a peer-to-peer framework to address the challenges posed by
systems and data heterogeneity in federated learning. The proposed framework involves local clients
iteratively selecting learning pairs for model exchange to optimize multiple learning objectives and
promote fairness while avoiding small-group dominance. Ramanan et al. [21] develop a framework
that utilizes smart contracts on the Ethereum blockchain network to manage model aggregation,
round delineation, and local update tasks. By eliminating the need for a central aggregator, the
proposed framework achieves high scalability while utilizing the decentralized nature of blockchain
technology and operating at a lesser cost as opposed to the centralized alternative on the same network
while achieving similar accuracy. WebFed [22] is a centralized federated learning framework that
addresses the issue of system heterogeneity. It allows for multiple devices to engage in a federated
learning session through web browsers. While local updates occur within the browser, weights are
aggregated at a centralized parameter server and distributed to all clients in the federation. To preserve
local differential privacy, each client adds artificial noise to its local training weights before they
are aggregated at the semi-trusted parameter server. Although WebFed is suited for heterogeneous
participants in terms of configuration requirements, the central parameter server may become a
potential point of failure if it is stressed by requests from multiple clients, potentially disrupting the
federated learning session.

Table 1 provides a comprehensive comparison of various existing federated learning frameworks.
It systemically outlines their key features and characteristics. This includes the communication archi-
tecture of each framework, assessing their compatibility with different systems, scalability potential,
and the privacy methods employed. It also offers insights into significant contributions, datasets
utilized, and their overall performance.

Finally, researchers have explored various aspects of federated learning, including communication
efficiency, data heterogeneity, security, and privacy [14,22–25]. The advancements in these areas have
allowed for the building of more robust, scalable, and privacy-preserving federated learning systems
[2,16,20]. However, several challenges, such as model aggregation techniques, optimization strategies,
and standardization, still remain open research questions, providing exciting opportunities for future
investigations [6,10,11,17].
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Table 1: Features and characteristics of existing federated learning frameworks

Ref. Communication
architecture

Device
compatibility

Scalability Data Priva-
cy/Method

Contribution Dataset Performance

[12] Decentralized
with a central
server to
coordinate
updates

Moderate to
high

High High (uses
encryption for
communica-
tion)

Addresses
data
insufficiency

European
credit card
(ECC)

Outperforms
traditional
models

[13] Centralized and
decentralized

Suitable for
many clients

High High
(differential
privacy)

Enhances
privacy and
bandwidth
efficiency

Electronic
health records
(EHR)

Reduces
bandwidth
consumption

[14] Decentralized Likely high Very high
(over 500,000
clients in one
experiment)

High
(differential
privacy)

Efficient com-
munication
and privacy
preservation

MNIST,
CIFAR-10,
SHAKE-
SPEARE

Reduces com-
munication
rounds

[15] Decentralized High Likely high High
(Bayesian-like
approach)

Novel
decentralized
approach

Generalized
dataset

Collaborative
learning,
reduced
control

[16] Decentralized
(communicate
with their
neighbors only)

Likely high High High Improves com-
munication
efficiency and
privacy

MNIST,
CIFAR-10,
SHAKE-
SPEARE

Reduces com-
munication
cost

[19] Peer-to-peer
decentralized

High High High Enhances
learning
performance

MNIST,
Fashion-
MNIST,
CIFAR-10,
CIFAR-100

Outperforms
baseline
methods

[20] Peer-to-peer
decentralized

High High High Addresses
learning
fairness and
device
heterogeneity

E-MNIST,
CIFAR-10

Improves
fairness in
learning
distribution

[21] Decentralized
(uses blockchain
technology to
avoid a
centralized
aggregator)

High High High Novel model
using
blockchain
technology

NYC taxi
dataset

Reduces
operational
costs and
enhances
privacy

[22] Centralized
(involves a
parameter server)

High
(browser-
based
approach)

High
(browser-
based
approach)

High (local
differential
privacy)

A novel
browser-based
approach with
enhanced
privacy

MNIST Close to
conventional
frameworks
with added
benefits of
privacy and
ease of use
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3 Preliminaries

Federated learning incorporates a decentralized approach to train models across multiple
data sources without the need to share raw data. This approach presents unique challenges and
considerations, particularly in terms of privacy and communication efficiency [2,13,20]. This section
presents a set of preliminary concepts and background information, which helps to understand this
research paper as follows:

1) Diffie-Hellman Key Exchange (DHKE):
DHKE is used to facilitate secure communication between peers in federated learning. This
cryptographic method allows two peers to establish a shared secret key over an insecure channel
without prior knowledge of each other’s presence. By utilizing this method, peers can securely
exchange encryption keys and establish a secure communication channel. In federated learning,
this ensures that data or model parameters transferred between peers remain confidential,
protecting against potential attackers [23]. The key exchange process can be mathematically
represented as:

K = ga.b mod p (1)

where K represents the shared secret key, g is a public base value, p is a public large prime
number, and a and b are the private keys of the two communicating peers.

2) Brokering Server
The brokering server plays an important role as a centralized moderator, coordinating the
collaboration of distributed devices or peers without direct access to their localized data
[25]. This server supports peers to communicate with each other using their unique peer
IDs. Therefore, the primary purpose of the brokering server is to address the challenge of
peers lacking knowledge about each other’s presence. For more information on its operational
processes, when two individual peers seek to establish a connection, they initially lack any
knowledge regarding the presence or attributes of the other. This information gap is filled
by the brokering server. Each peer connects to this server, which recognizes the presence of
both peers. Subsequently, the brokering server initiates the exchange of metadata, including
network location information, between the two peers. This metadata exchange, known as
signaling, enables peers to discover and establish a direct connection for data exchange. Peers
can disconnect from the brokering server once the signaling process is complete if they do not
intend to establish connections with other peers [24]. This process can be represented as:

Mij = Bs(Pi, Pj) (2)

where Bs is the brokering server that acts as a centralized coordinator for peer connections, Pi

and Pj are two peers, and Mij is the metadata that the server facilitates to exchange between Pi

and Pj.
3) Global Model

The global model represents the aggregated weights accumulated from all participating peers in
the federated learning system. After each communication round, local model updates generated
by individual peers are aggregated in a weighted manner to update and refine the global
model. This process involves integrating the contributions of each peer’s localized model.
By integrating these updated weights, the global model enhances to reflect the collective
understanding and knowledge acquired from the distributed peers. Once the global model is
updated, it is transmitted back to the peers, enabling the subsequent rounds of local training
to start based on the updated global model. This iterative procedure guarantees that the
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global model continually improves and matches the collective knowledge and expertise of its
distributed peers [18]. The mathematical representation of global model aggregation from local
models in federated learning can be expressed as:

G = f (L1, L2, . . . . . . ., Ln) (3)

where G is the global model, Li is the local model update of the ith peer, f is the aggregation
function, and n is the number of peers.

4) Local Model
The local model denotes a duplicated version of the global model that is maintained by each
participating peer. This model represents the same architectural design and initial random
weight configuration as the global model. Moreover, the local model enables individual peers
to conduct computations and updates according to their own local data. By incorporating local
data insights, the local models capture the variations and patterns specific to each peer dataset.
Each peer transmits these updates, rather than the raw data, to the brokering server or other
peers. This decentralized approach enables peers to independently learn from their local data
while collectively contributing to the refinement and accuracy of the overall model [20]. The
update process of local model can be represented as follows:

Li = G + Δ(Di) (4)

where G is the global model, Li is the local model update of the ith peer, Di is the local dataset,
and Δ is the function that applies the learning from local data.

5) Communication Round
The communication round is an iterative process to enable the synchronization and collabo-
ration of models across distributed peers. It involves the exchange of information and data
between peers. During each communication round, peers transmit their local model updates
to the brokering server or other peers to generate an updated global model [18].

4 Framework Design: WebFLex

In this work, we propose a novel framework, WebFLex, for building decentralized federated
learning systems within web browsers. The proposed WebFLex framework is designed to prioritize
privacy and scalability. Moreover, it is adeptly capable of handling scenarios in which devices may
disconnect from the federated learning session at any stage of the training process. The WebFlex
framework consists of two main stages: Creating and joining a federation and training models in a
federated learning session. The following subsections present the initialization of peer attributes, the
participation of peers in pair federations, the training models in a federated learning session, and the
overall workflow of the WebFLex framework, which enables training models on web browsers in a
peer-to-peer setting.

4.1 Initialization of Peer Attributes

In the WebFLex framework, the first stage involves creating a federation where multiple peers
can join to participate in the same federated learning task. There are three attributes for each peer
that are initialized before a peer can join or create a federation. These attributes are used as inputs for
facilitating the peer-to-peer federated learning process. The list of peer attributes and their descriptions
are explained in Table 2.
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Table 2: List of peer attributes and descriptions

Attributes Description

Peer unique ID A unique ID is automatically generated from the peer’s MAC address.
Address book A set contains the unique IDs of all peers who are a part of the federation.
Keychain A directory of cryptographic keys [23] that a peer can use to communicate with

other peers in the federation.

4.2 Participation of Peers in Pair Federations

Once the federation is established, the second stage is peer-pair federation participation; each
peer node is automatically considered a member of its own federation. For clarification, let us refer
to the first peer as Peer A and the second peer as Peer B. To facilitate the participation of the pair
in the federation, a series of actions are undertaken. Firstly, Peer B establishes a connection with a
brokering server to enable Peer B to join the Peer A federation. Secondly, an important aspect of
peer pair federation participation requires the establishment of a direct connection between the two
peers, specifically Peer A and Peer B. This connection plays an important role in facilitating direct
communication and interaction between the two peers within the federated network. Through this
connection, Peer A and Peer B acquire the capability to exchange vital information, share models, and
actively participate in collaborative learning processes. Peer A and Peer B respect the attributes of their
own federations, as outlined in Table 2. In the case of Peer B desiring to join Peer A’s federation, it must
first establish a connection with a brokering server. This connection serves as a critical prerequisite for
Peer B to gain access to Peer A’s federation and participate in its collaborative activities. Through this
connection, each peer is enabled to both receive and initiate direct peer-to-peer connections with other
peers within the federated network, as shown in Fig. 1.

Figure 1: Peers connected to a brokering server

After establishing a connection between peers, both peers can disconnect from the connection of
the brokering server to avoid receiving or initiating other connections; this ability is optional for each
peer. The DHKE algorithm is used to ensure communication security as shown in Eq. (1). DHKE
plays a crucial role in enhancing privacy and security in decentralized federated learning. It allows
each peer to create a unique key pair, exchange public keys, and independently generate a shared
secret key that is not transmitted, minimizing interception risks. This shared key encrypts peer-to-peer
communication, preserving the privacy of model updates due to its ability to maintain confidentiality
and support forward secrecy. Once the key exchange process is complete, both Peer A and Peer B
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will add each other’s ID and the corresponding encryption key to their respective address books.
Consequently, both peers will be considered members of each other’s federation. Fig. 2 illustrates the
mutual membership of Peer A and Peer B within their respective federations.

Figure 2: Mutual federation membership between Peer A and Peer B

4.3 Training Models in a Federated Learning Session

After a federation is created and member peers join, the process of deep learning training starts.
Many attributes and weights are employed during the training session. Table 3 shows the global and
local model attributes, including S, R, and weights queue, accompanied by a detailed description. The
distinction between global and local model attributes lies in their scope and impact on the training
process. Global model attributes are typically related to general aspects of the training, while local
model attributes are specific to individual peers or participants in the federated learning setup. These
parameters offer insight into the architecture and operational dynamics of the federated training
session.

Table 3: Global and local model attributes for federated learning

Attributes Description

R It is the number of communication rounds; in each round, S peers will be
selected randomly to perform the training on their local data.

S It determines the number of peers whose weights are aggregated in each
communication round, where the maximum number of peers is the address
book size.

Weights queue It serves as a structured storage mechanism, organizing model weight updates
from various nodes. It ensures orderly processing and aggregation of these
updates, facilitating efficient global model.

To illustrate the utilization of attributes and weights, we consider the practical scenario of Peer
A’s federation, which comprises Peer B, Peer C, and Peer A itself. In this scenario, Peer A initiates the
federated learning session by sharing its model’s weights with the other peers listed in its address book,
as shown in Fig. 3. This step ensures that all peers have a common starting point for model training.
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Figure 3: Distribution of Peer A’s weights to the other federation peers

In federated learning, upon receiving the weights from Peer A, each participating peer, such as
Peer B or Peer C, loads these weights into their respective local models. Subsequently, each peer
conducts training using its own locally available data, as illustrated in Fig. 4. This decentralized
training approach allows for privacy preservation and avoids the need for sharing raw data. The local
model training process typically employs deep learning algorithms that are well-suited for iterative
improvement. Algorithms based on iterative improvement, such as gradient descent, naturally align
with the local update step in the federated learning framework. Each device independently computes
the gradient based on its local data, and subsequently, these gradients are aggregated to update the
global model. The gradient descent process at each peer node can be represented by the following
equation:

W
′
p = Wp − η.∇L(Wp, Dp) (5)

where η is the learning rate, ∇L is the gradient of the loss function L, Wp and W ′
p are the local model

weights of peer p before and after training, respectively, and Dp is the local dataset of peer p.
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Figure 4: Model training of Peers B and C on local data

Upon completion of the local training loop, an essential step is to address privacy concerns related
to potential information leakage about the local datasets used for training. To reduce this risk, artificial
Gaussian noise is introduced to the local model weights before they are transmitted for aggregation,
as defined by:

W "
p = W

′
p + N(0, σ 2) (6)

where N(0, σ 2) represents Gaussian noise with mean 0 and variance σ 2, and W "
p is the local model

weights of peer p after training and the addition of Gaussian noise. Moreover, the addition of Gaussian
noise helps to hide patterns specific to individual datasets, thereby enhancing privacy protection
[26,27]. Then, the locally updated model weights are sent back to the initiating node (in this case,
Peer A) for the aggregation process, as shown in Fig. 5. Aggregation involves combining the weights
received from participating peers to obtain an updated global model as the following:

W
′
global = 1

S

∑S

p=1
W "

p (7)

where W ′
global is the updated global model weight, S is the number of selected peers, and W "

p are the
local model weights of peer p. Once the aggregation is complete, the updated weights are distributed
to all other peers in the federation to ensure uniformity and synchronization, as shown in Fig. 6. This
distribution of weights enables the peers to stay aligned and maintain consistency in the subsequent
iterations of the federated learning session.
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Figure 5: Weights transmission from Peers B and C to Peer A for aggregation

Figure 6: Transmission of aggregated weights from Peer A to Peers B and C
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4.4 Overall WebFLex Workflow

In light of the details presented above, the proposed WebFLex framework is illustrated step-by-
step in Algorithm 1. Moreover, this subsection offers a concise summary of the WebFLex workflow,
outlining its various stages and steps in a detailed manner as follows.

In WebFLex, the initiator peer establishes connections with all peers listed in its address book.
Subsequently, it establishes the parameters such as the total number of communication rounds (R),
participating peers in each round (S), and epochs for each local training phase, and the process enters
the communication loop. During each communication round, the initiator sends its current model
weights to a random subset of peers. Each of these peers employs and loads the received weights into
their respective local training model using their unique datasets. Then, there is a loop for each epoch
of local training where the gradient is computed with the local data and the model is updated via
gradient descent. After local training, to ensure privacy, Gaussian noise is integrated into their model
weights before sending them back to the initiator. At the end of each round, the initiator aggregates the
received weights from all the participating peers. The aggregated weights are then distributed to every
peer listed in the address book. This process iteratively continues until all communication rounds are
completed.

Algorithm 1: WebFLex
Input:
- AddressBook: Set of all peer IDs in the federation
- R: Number of communication rounds
- S: Number of peers sampled per round
- E: Number of epochs for local training per round
Procedure:
1: Initialize at the initiator peer:
2: Connect to peers in AddressBook
3: Set R, S, E
4: for r = 1 to R do
5: SampledPeers = Randomly select S peers from AddressBook
6: for each peer p in SampledPeers do
7: Send current global model weights Wglobal to peer p
8: At peer p:
9: Load received weights Wglobal into local model
10: for e = 1 to E do
11: Compute gradient ∇Wp using local data Dp: ∇Wp = η.∇L(Wp, Dp)

12: Update local model using gradient descent: W ′
p = Wp − ∇Wp

13: end for
14: Add Gaussian noise N(0, σ 2) to local model weights W ′

p: W "
p = W ′

p + N(0, σ 2)

15: Send local model weights W "
p back to the initiator peer

16: end for
17: Back at the initiator peer:

18: Aggregate weights from all sampled peers: W ′
global = 1

S

∑S

p=1 W "
p

19: Update global model: Wglobal = W ′
global

20: Distribute Wglobal to all peers in AddressBook
21: end for
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5 Experimental Results

In this section, a series of experiments are conducted to evaluate the performance and effectiveness
of training models based on the WebFLex framework. The experiments analyze two primary factors:
Initially, the impact of integrating artificial Gaussian noise into the weights of local models, and
subsequently, the performance evaluation of a trained CNN on the MNIST dataset [28]. Furthermore,
this section provides extensive details about the experimental setup, including client device settings,
dataset, and software libraries that are used in the training process, while also offering a comprehensive
analysis of the successfully achieved results.

5.1 Experimental Setup

A wide variety of devices are illustrated to evaluate the training performance of a CNN. The client
devices consist of two laptops, a smartphone, and a VR headset, which are employed to conduct the
experiments. The hardware and software specifications of these devices, essential for ensuring accurate
evaluation and analysis, are presented in Table 4. The selection of different devices demonstrates the
ability of WebFLex to operate across heterogeneous devices with different types of GPUs, operating
systems, and web browsers. Importantly, WebFLex allows for smooth deployment using the same
codebase, eliminating complex driver configurations. Furthermore, a VR headset is incorporated into a
group of devices to demonstrate the capabilities and versatility of the WebFLex framework. This choice
may initially seem nontraditional because VR headset is usually associated with interactive gaming
and experiences rather than computational tasks such as deep learning. Nevertheless, motivation
stems from the presence of web browsers on VR headset, similar to numerous other devices. This
not only illustrates WebFLex’s compatibility with a wide range of devices, but it also demonstrates
the rapidly changing environment of the Internet of Things (IoT). This flexibility opens the way for
distributed learning in scenarios where data privacy is crucial and traditional data collection methods
are impossible or expensive.

Table 4: Hardware and software specifications of the client nodes used for training

Type Name OS Hardware Browser

PC Lenovo Ideapad Windows 11 NVIDIA RTX 3050 Google chrome
PC Lenovo Thinkpad Windows 10 AMD Radeon Vega 6 Brave browser
Smartphone Oneplus Nord Oxygen OS Qualcomm Adreno 620 Google chrome
VR Headset Meta Quest 2 Android Qualcomm Snapdragon XR2 Meta quest browser

The MNIST dataset is currently available to the public and has gained a common benchmark to
evaluate the performance of different deep learning methods, in particular those employing CNNs.
The MNIST database is comprised of a collection of 70,000 grayscale images of handwritten digit,
subdivided into 60,000 images for training set and 10,000 images for testing set. This grayscale dataset
offers standardized 28 × 28 pixel images representing digits from 0 to 9. The MNIST dataset is a
popular choice for educational purposes in the field of computer vision and deep learning.

This study employs the Tensorflow.js and Peer.js JavaScript libraries to implement a federated
neural network. Tensorflow.js is widely known for its capabilities in the creation, training, and
deployment of deep learning models within web browser environments. On the other hand, Peer.js
facilitates the establishment of peer-to-peer connections, enabling decentralized communication and
coordination between devices by using WebRTC. These libraries enable the development of a federated
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neural network system that facilitates the distributed training process across multiple devices while
ensuring privacy and secure communication.

5.2 Results and Analysis

5.2.1 The Effect of Adding Noise to the Local Model Weights

One of the primary motivations for integrating artificial noise into local model weights is to
achieve local differential privacy. This ensures that the source of the weights, when used for aggregation
at the aggregator client, remains ambiguous, thereby offering plausible deniability. This modification
aids in preventing membership inference attacks, where information about the training dataset can
be extracted from the weights, potentially affecting the privacy of the local data used for training. To
comprehensively analyze the influence of the noise amount added to weights on the performance of
the model, we have conducted multiple training sessions, each characterized by different amounts of
noise. The results of these training sessions are shown in Fig. 7.

Figure 7: Effect of Gaussian noise scale on model accuracy

Fig. 7 presents the complex relationship between the scale of Gaussian noise added to model
weights ranging from 0.00 to 0.06 and the subsequent impact on model accuracy. It represents various
training conditions and shows unique behavioral trends. The accuracy of the noiseless client changes
moderately around the upper accuracy levels, suggesting that the model performs consistently well in
the absence of external noise. In contrast, the accuracy of the noisy client demonstrates more distinct
variations as the noise scale increases, indicating the actual impacts of different noise levels on model
performance. The aggregated impact of noise on model accuracy is clearly demonstrated during data
aggregation from different sources. Finally, at lower Gaussian noise scales of approximately 0.00 to
0.03, the accuracy of all models seems to change moderately. While the noise scale increases, especially
between 0.04 and 0.06, there is a clear decrease in the accuracy of the various models. Therefore, while
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the addition of noise can improve data privacy and protect against potential inference attacks, it comes
at the cost of decreased model accuracy and performance.

Furthermore, adding artificial noise to model weights affects the convergence of deep learning
models as well as its impact on the performance of the aggregated model. To explore this aspect, we
train two distinct models on the same dataset: One without any noise and the other with noise. The
comparative results of these models are shown in Fig. 8.

Figure 8: Noise-free vs. noisy accuracy per communication round (noise scale = 0.047, epochs per
client = 5)

In Fig. 8a, comparative analysis of noiseless vs. noisy accuracy across communication rounds is
presented, utilizing a noise scale of 0.047 and a fixed 5 epochs per client for both scenarios. Beginning
with the noiseless conditions, the accuracy of both clients shows a significant upward trend as the
communication rounds progress. Therefore, the aggregated performance of the noiseless model also
follows a similar slope, indicating efficient aggregated learning from both clients. In contrast to the
noisy conditions, the accuracy of both clients illustrates a slight increase in slope and appears to
slow behind their noiseless equivalents. The impact of noise on individual client models indicates
slower convergence or the need for additional rounds to achieve comparable accuracy. Therefore, the
aggregated noisy accuracy follows a direction slightly parallel to the aggregated noiseless accuracy,
but it remains consistently lower throughout the observed communication rounds. Finally, starting
at round 0.0, noiseless and noisy models show low accuracy in the initial training stages. As rounds
progress, noiseless models outperform noisy ones, illustrating the impact of noise on convergence. The
accuracy of the aggregated noiseless model also increases significantly and outperforms the accuracy
of the aggregated noisy model. After round 2.5, all models display stabilized accuracy growth, but
the gap between noiseless and noisy models remains clear. Therefore, adding noise to local models
can initially reduce model accuracy, but convergence is achievable after a longer training time. Thus,
adjusting the noise amount is essential to align privacy with optimal performance.
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5.2.2 Performance Evaluation of the CNN

In this research, we conduct experiments to evaluate the performance of a CNN trained using
the WebFLex framework on the MNIST dataset. The experimental setup involves four devices to
represent a communication network architecture for training the model, centralized around a broker-
ing server as shown in Fig. 9. Four distinct devices, namely Meta Quest 2, Oneplus Nord, Lenovo
Ideapad, and Lenovo Thinkpad, are interconnected through this server. Meta Quest 2 symbolizes
VR technology, while Oneplus Nord represents a mobile platform, and the two Lenovos denote
conventional computing devices. The primary role of the brokering server in this network indicates its
significance in coordinating tasks, while the direct interconnections or peer-to-peer communication
between certain devices also demonstrate the flexibility and versatility of the system for data sharing
or load distribution.

Figure 9: Distribution of devices in the WebFLex training process

To ensure effective training, we utilize a sampling rate of 0.5, meaning that during each communi-
cation round, two out of the four devices are randomly selected for training the CNN on a local subset
of the MNIST dataset stored on each device. We set the number of epochs per communication round
to 10, allowing for iterative improvement of the model parameters over 5 communication rounds. The
results of this training session are analyzed and presented in Fig. 10 and Table 4.
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Figure 10: Accuracy rate in each communication round

Fig. 10 defines the accuracy rate over five communication rounds, from R1 to R5. The first client
shows a sharp and significant initial increase in accuracy until it reaches its peak at R3, achieving an
accuracy of just over 70%. However, between R3 and R5, the accuracy rises very slowly, achieving
an accuracy of just over 80% by R5. This can be due to model overfitting, changes in the nature of
the data, or perhaps effects resulting from the addition of noise. While the second client starts at just
over 40% accuracy, model performance increases steadily, exceeding 85% at the R4 peak. However, it
is interesting that the model sees a drop from R4 to R5 until the accuracy reaches 80%, indicating a
possible challenge in data quality or model adaptation in the final stages. In contrast, the aggregated
accuracy starts just above 60% and shows a consistent increase across the communication rounds, with
a minor inflection between R3 and R4, reaching close to 90% by R5. This demonstrates the power of
aggregating individual client models to improve performance.

Table 5 offers the interactions observed over five distinct communication rounds within a fed-
erated learning framework. It illustrates the specific clients selected for each round, identifies their
corresponding training durations, and provides individual accuracies, which subsequently lead to the
aggregated model accuracy. Firstly, the frequent selection of the Lenovo Ideapad can be observed
during the first two communication rounds. This device registers a training time of 35 s in the first
round and shows a small decrease to 28 s in the second round. Concurrently, Lenovo Thinkpad
becomes the second client, with training times of 71 and 52 s in the first and second rounds, respectively.
The accuracy of the first client remains relatively stable at around 40%, while the second client shows a
significant improvement from 40.96% to 63.72%, but its training time is relatively longer. Furthermore,
the aggregated model accuracy in the first two rounds improves from 62.98% to 71.47%, indicating an
effective aggregation of individual client performances.
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Table 5: Summary of accuracy rate in each communication round

Communication
round

Selected
client 1

Client 1’s
training
time (s)

Selected
client 2

Client 2’s
training
time (s)

Client 1’s
accuracy
(%)

Client 2’s
accuracy
(%)

Aggregated
model
accuracy (%)

1 Lenovo
Ideapad

35 Lenovo
Thinkpad

71 41.57 40.96 62.98

2 Lenovo
Ideapad

28 Lenovo
Thinkpad

52 46.15 63.72 71.47

3 Meta Quest
2

56 Oneplus
Nord

173 68.73 73.76 87.04

4 Meta Quest
2

67 Oneplus
Nord

158 78.74 87.92 90.76

5 Meta Quest
2

65 Lenovo
Ideapad

26 85.98 79.02 92.06

In the third and fourth communication rounds, there is a clear shift in the client setting with the
use of Meta Quest 2 and Oneplus Nord. Meta Quest 2 demonstrates a relatively consistent training
duration of 56 to 67 s. In contrast, the Oneplus Nord presents a significantly longer training time,
peaking at 173 s in the third round. Despite the increased training duration, the Oneplus Nord
demonstrates extremely high accuracy, rising from 73.76% in the third round to 87.92% in the fourth
round. The aggregated model accuracy reflects this upward trend, registering a jump from 87.04% to
90.76% across these rounds.

The fifth and final round introduces an interesting contrast: Meta Quest 2 remains consistent
in its role, while Lenovo Ideapad reappears as the second client. The Lenovo Ideapad requires just
26 s for training, aligning with its initial efficiency. Accuracies for both clients remain around the high
70 s to mid-80 s, with the aggregated model further combining its robustness at 92.06%.

Therefore, the results of Table 5 demonstrate the difficulties related to federated learning, high-
lighting the interconnected relationship between device capabilities, training durations, and resultant
accuracies. The variety of clients, including laptops, VR devices, and smartphones, confirms the het-
erogeneous nature of real-world distributed training environments. Moreover, the consistent increase
in aggregated model accuracy, even between the different individual client performances, provides
evidence of the robustness and possibility of collaborative model training within federated systems.

5.2.3 Comparative Analysis

According to the comprehensive experimental results presented and related works [5–7,11,16,
18,22], the WebFLex framework can be critically compared to the general characteristics of tradi-
tional centralized and decentralized federated learning frameworks. The comparison focuses on key
aspects such as communication architecture, deployment, compatibility, scalability, privacy, accuracy,
disconnectivity, and convergence speed. Additionally, Table 6 provides a comprehensive comparison
of the features and characteristics of each framework to facilitate a detailed analysis.
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Table 6: WebFLex vs. traditional federated learning frameworks

Feature/Aspect WebFLex framework Centralized framework Decentralized
framework

Communication
architecture

Decentralized Centralized Decentralized
Hybrid peer-to-peer
and central server for
coordination

All communication goes
through a central server

Peer-to-peer
communication
without a central
server

Deployment ease High Low High
Due to utilizing web
browsers

Due to server and
maintenance

Due to peer-to-peer
communication setup

Device compatibility High Low High
Uses heterogeneous
devices via web
browsers

Requires specific
infrastructure

Adaptable to various
devices

Scalability High Low High
Due to decentralized
and absence of central
server

Due to resource limited
by server capacity

Due to peer-to-peer
architecture

Privacy preservation High Low High
Due to noise addition
and peer-to-peer
connection

Due to central server Due to peer-to-peer
connection

Model accuracy Medium to high High Medium to high
Initially reduced due to
noise, increases over
time

Beneficial from
centralized and
consistent data

Depending on
network structure
and device
capabilities

Robustness to
disconnection

High Medium High
Maintains session
continuity despite peer
disconnections

May face challenges if
the central server is
hacked

Robust to individual
peer disconnections

Model convergence
speed

Slow Fast Slow
Due to noise, requires
more rounds for
convergence

Due to centralized
control

Due to decentralized
nature, more rounds
may be needed

The WebFLex framework presents a competitive approach in the domain of federated learning,
demonstrating notable strengths and some limitations when compared to traditional centralized
and decentralized frameworks. The communication architecture is decentralized, incorporating both
peer-to-peer communications and a central server for task coordination. This architecture offers a
balance between the flexibility of decentralized frameworks and the structured oversight of centralized
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frameworks. This hybrid framework ensures effective communication and collaboration across het-
erogeneous nodes while maintaining a level of centralized coordination. The ease of deployment is
a significant advantage of WebFLex, which uses the accessibility of web browsers for cross-platform
compatibility. The WebFLex framework contrasts sharply with the traditional centralized framework,
which requires specific server setups and ongoing maintenance. Decentralized frameworks, similar to
WebFLex, also benefit from a high degree of deployment ease due to their reliance on peer-to-peer
communication setups.

Regarding device compatibility and scalability, WebFLex stands out due to its ability to integrate
heterogeneous devices through web browser compatibility. This attribute is notably limited in central-
ized systems due to their reliance on specific infrastructure. The previous feature of WebFLex aligns
with the current trend towards the IoT, where various devices with different capabilities are required to
be accommodated in learning networks. Scalability is another area where WebFLex succeeds, due to its
decentralized nature and the absence of a central server that could become a bottleneck. This aspect
is in sharp contrast to centralized frameworks, which often have difficulties scaling due to resource
limitations imposed by server capacity. Decentralized frameworks share this advantage with WebFLex,
benefiting from their inherent peer-to-peer architecture that naturally supports scalability.

However, the trade-offs in the WebFLex framework become evident when considering aspects
such as model accuracy and convergence speed. The integration of noise for privacy preservation,
while enhancing the privacy aspect of the framework, initially reduces model accuracy. This accuracy
does improve over time with continued training, but it highlights the inherent balance between privacy
and performance in such systems. Centralized frameworks generally exhibit higher model accuracy
due to the consistency and quality of the centralized data. In contrast, decentralized frameworks
show a variable range of model accuracy dependent on network structure and device capabilities.
The convergence speed of models in the WebFLex framework is slower due to the added noise
and the need for more rounds of communication for convergence, a common characteristic shared
with decentralized frameworks. Centralized systems, on the other hand, benefit from faster model
convergence owing to their centralized control and uniform data processing. This comparison analysis
highlights the significance of carefully considering the specific requirements and constraints of a
learning task when choosing between these federated learning frameworks.

A comparison of the WebFLex and TFF (TensorFlow Federated) frameworks is shown in Fig. 11.
It shows the comparison with and without artificial noise added over several communication rounds
to improve local differential privacy. Initially, it is clear that both noiseless frameworks of WebFLex
and TFF show a relatively steady and rapid rise in accuracy as the number of communication rounds
increases, with TFF noiseless maintaining a slight advantage over WebFLex noiseless.

However, when noise is introduced, we observe a noticeable difference in the performance of
both frameworks. The TFF noisy framework demonstrates a significantly changing accuracy rate,
with a significant drop occurring in the middle of the communication rounds. This suggests that the
mechanism for integrating noise in TFF may introduce a level of uncertainty or instability in the
training process, which impacts the ability to learn consistently over time. In contrast, the WebFLex
noisy framework’s accuracy, while starting lower than its noiseless counterpart, shows a more gradual
and stable increase in accuracy without significant variations. This can indicate a more effective
strategy within WebFLex for dealing with the noise or a more robust architecture that reduces the
effects of noise on performance and further improves privacy.
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Figure 11: Comparative analysis of noisy and noiseless Federated Learning frameworks

Finally, as the number of communication rounds increases, the noisy frameworks begin to
converge towards higher accuracy levels. The convergence is more clear in the WebFLex framework
compared to TFF, indicating a potential for the WebFLex framework to better adapt to the noise over
time. Therefore, WebFLex demonstrates a desirable balance between privacy and performance, with
a promising convergence pattern that suggests effective adaptation to privacy constraints over time.

6 Discussion

In this section, we discuss a number of significant findings that offer valuable insights into the
performance and efficacy of the WebFLex framework. The comprehensive analysis of performance
accuracy enables us to evaluate the influence of the WebFLex framework, facilitating a deeper
understanding of the framework’s effectiveness in training models using decentralized data sources.

On the one hand, the results of this study provide implications for adding artificial noise to
enhance privacy through local differential privacy. It is evident that while the addition of noise brings
advantages in terms of privacy preservation, it negatively affects the performance of the model.
Although the noiseless model demonstrates higher accuracy in the short term, the model employing
local differential privacy tends to converge over time, even if it takes a longer training period. Therefore,
it is critical to carefully adjust the amount of noise when using WebFLex to understand and balance
the trade-off between data privacy and model performance.

On the other hand, this study demonstrates the effectiveness of utilizing the WebFLex framework
for training deep CNNs across a different range of devices in a peer-to-peer manner. The results
indicate that the computational power of each device significantly influences the efficiency of the
training process. It is worth noting that when a smartphone is randomly selected as a training node,
it takes longer training times to complete 10 epochs in each communication round. This variation in
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computational power acts as a bottleneck, negatively impacting the overall performance and training
time of the session. The longer training times may result in increased latency and slower convergence
rates. Consequently, it becomes essential to carefully manage the distribution of training tasks among
devices to optimize the training process and minimize the impact of computational variation.

The proposed WebFLex framework offers several advantages for constructing federated learning
systems. These advantages are detailed as follows:

1) Cross-Platform Compatibility and Ease of Setup:
WebFLex utilizes the inherent cross-platform compatibility of web browsers, eliminating the
need to deal with compatibility issues across different devices. Furthermore, the framework
utilizes WebGL, which allows the utilization of a device’s graphics processing card without
demanding complex driver setup processes. This feature not only simplifies the deployment of
the framework but also enhances its performance by using the computational capabilities of
the device’s graphics card.

2) Robustness to Peer Disconnection:
WebFLex framework ensures the continuity of federated learning sessions even though some
participating peers go offline during the session. This is achieved through the implementation
of event-driven gossip communication, which enables reliable correspondence between peers
in cases where direct communication cannot be guaranteed. By allowing peers to continue
their participation even in the absence of certain peers, WebFLex enhances the robustness and
flexibility of the federated learning process.

3) Decentralized Communication and Scalability:
The decentralized communication architecture is another advantage of the WebFLex frame-
work. While a central server is employed for establishing initial connections between peers over
a network, it is not involved in aggregating model weights from multiple clients or acting as a
relay point for communication between clients. This decentralization enables easy scalability
without concerns about overloading the central server. It allows efficient communication
between many clients, facilitating the scaling of federated learning systems to accommodate
a growing number of participants.

4) Simplified Distribution and Participation:
WebFLex further simplifies the distribution of the federated learning framework. Participants
only need to download the required HTML and JavaScript files from a content delivery
network to join a federation. This simplified distribution process reduces the limitations on
entry and enables broader participation in federated learning. It enhances accessibility and
facilitates the adoption of the WebFLex framework across various devices and platforms.

Although there are several advantages that support the performance and efficiency of the
WebFLex framework, it also presents some limitations and challenges, which are discussed as follows:

1) Vulnerability to Model-Inversion Attacks:
One notable disadvantage of the WebFLex system is its dependence on trusted peers to prevent
vulnerabilities to model-inversion attacks. Due to the nature of the framework, where any peer
can initiate a federated learning session, there is a potential risk of exposing model weights
generated by other peers during the local update step. To reduce this risk, it is necessary to
ensure the integrity and reliability of participating peers to prevent unauthorized access and
the potential limitation of sensitive information.
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2) Limitations of Network Address Translation (NAT) Firewalls:
While WebRTC enables serverless peer-to-peer connections between browsers within the same
local network, it encounters limitations when attempting to establish connections between
devices on different networks over the internet. NAT firewalls commonly found in routers
restrict connections from external devices. To overcome this limitation, the use of session
traversal utilities for NAT (STUN) or traversal using relays around NAT (TURN) servers
becomes necessary. This dependence on external servers introduces additional complexity and
potential points of failure in the WebFLex system.

3) Susceptibility to Model Degradation:
Peers in the WebFLex framework are susceptible to model degradation if they are not
consistently online or active participants in the federated learning process. As the WebFLex
framework relies on collaborative updates from multiple peers, the absence of certain peers for
extended periods can lead to a degradation in model performance over time.

4) Latency Issues:
A primary limitation of WebFLex is latency, especially in real-time applications. Federated
learning is decentralized, which can delay data transmission and model updates, reducing
learning efficiency.

5) Network Robustness and Reliability:
The dependence on network connectivity can be a bottleneck. Interruptions or inconsistencies
in network quality can adversely affect the learning process.

The broader impact of the WebFLex framework extends significantly into various real-world
scenarios, particularly where data privacy and decentralized processing are extremely important. In
the healthcare sector, for instance, WebFLex can facilitate collaborative research and data analysis
while maintaining patient confidentiality. By enabling different healthcare providers to train models
on local datasets without sharing sensitive patient information, WebFLex ensures a high level of
data privacy. This approach could revolutionize medical research, allowing for the development
of more accurate diagnostic tools and personalized treatment plans based on a diverse range of
data sources. Furthermore, in the world of smart cities and IoT environments, WebFLex could be
instrumental in processing vast amounts of data generated by various devices. By distributing the
computation load across numerous nodes, the framework can efficiently process and analyze data for
urban planning, environmental monitoring, and resource management, while ensuring that individual
data sources retain their privacy. Similarly, in the finance and retail sectors, WebFLex could enable
businesses to harness decentralized data sources for predictive analytics without compromising user
confidentiality. The WebFLex framework’s ability to operate across different devices and platforms
also holds significant promise for applications in remote education and collaborative research, where
participants can contribute to collective learning endeavors irrespective of their hardware capabilities.

WebFLex could significantly influence the development of decentralized learning systems. Its
approach to handling heterogeneous devices and its robustness against connectivity issues make it
a template for creating flexible and scalable learning networks. Moreover, the emphasis on privacy
and security in the WebFLex framework aligns with the growing global concern for data protection,
potentially setting a new standard for privacy-preserving distributed computing. In essence, WebFLex
stands as a harbinger for a new era in federated learning, where the balance between data utility
and privacy is meticulously maintained, inspiring future frameworks to adopt a similarly nuanced
approach to decentralized learning.
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7 Practical Implementation Challenges of WebFLex

The practical implementation of the WebFLex framework presents several challenges that are
critical to address for its successful deployment. These challenges primarily stem from the complexities
inherent in a web-based, decentralized learning environment, and the diverse nature of the devices and
platforms involved, as follows:

1) Browser Compatibility: A fundamental challenge lies in ensuring consistent functionality
across different web browsers. Given the diversity in browser architectures and their interpreta-
tion of web standards, particularly for complex JavaScript operations, WebFLex must maintain
compatibility without affecting performance. This necessitates rigorous testing and adaptation
to various browser behaviors, especially when using advanced libraries like TensorFlow.js and
Peer.js.

2) Device Heterogeneity: The operational versatility of the WebFLex framework across diverse
devices, such as laptops, smartphones, and VR headsets, introduces the complexity of device
heterogeneity. This variety, although beneficial for inclusivity and accessibility, leads to differ-
ences in computational power and processing speeds. These differences can lead to inconsistent
training times and possible bottlenecks, especially when less powerful devices are utilized in the
federated learning network.

3) Network Reliability and Connectivity: It is essential to guarantee stable and secure peer-to-peer
connections, particularly when dealing with varying network conditions. The framework must
be robust against changes in internet connectivity and capable of handling data transmissions
efficiently across potentially unstable or slow connections.

4) Security and Privacy Concerns: While WebFLex aims to enhance data privacy through decen-
tralized learning, it still faces challenges in safeguarding against potential security breaches,
such as model-inversion attacks. Protecting sensitive data during transmission and ensuring
the integrity of participating peers are ongoing critical concerns.

5) Scalability and Performance Optimization: Ensuring scalability while preserving performance
is an important challenge as the network expands. Balancing the load across diverse devices,
optimizing training times, and ensuring efficient aggregation of learning models are key aspects
that need continuous refinement.

8 Suggestions for the Future

This section provides some recommendations for innovative and impactful research in the field
of federated learning. It is essential to address latency issues, especially in real-time applications,
where delays in data transmission and model updates may limit process efficiency. Improving data
compression techniques and optimizing network protocols are key areas of focus. Enhancing network
robustness and reliability is also vital, as the learning process is sensitive to network quality changes.
Developing more resilient network architectures and fault-tolerant systems is necessary.

Scalability remains a challenge in managing large and diverse networks. Future studies should
investigate scalable architectures and algorithms that can handle synchronization, resource allocation,
and model aggregation effectively. Additionally, the diversity and varying quality of the data pose
challenges for consistent model training. Advanced data preprocessing and innovative training
techniques need exploration to accommodate this heterogeneity.

Security and privacy are paramount, with risks of data leakage and breaches present. Research
should investigate advanced cryptographic techniques and secure computation methods to strengthen
these aspects. Energy efficiency is another concern, especially in mobile and IoT contexts. Developing
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energy-efficient learning algorithms and system optimizations is critical for reducing energy
consumption.

9 Conclusion

This paper introduces WebFLex, a novel framework for training deep neural networks that utilizes
browser-to-browser peer-to-peer connections to enhance the decentralization of the federated training
process. WebFLex allows for increased scalability and flexibility in the training process because it does
not rely on the need for an external server beyond establishing the initial peer connection. Moreover,
the WebFLex framework depends on direct connections between peers, allowing for easy distribution
and compatibility across different platforms. The study highlights the trade-off between data privacy,
achieved through artificial noise via local differential privacy, and model performance within the
WebFLex framework. Despite initial superior accuracy from noiseless models, those incorporating
differential privacy converge over long periods. Device computational power distinctly influences
training efficiency, with variations causing bottlenecks, longer training times, and latency. Thus, careful
task distribution across devices is essential to improve training and reduce computational variances.
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