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ABSTRACT

Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible
light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios.
However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection
speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian
detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency.
This model employs a spatial attention mechanism to reweight the input visible light and infrared image data,
enhancing the model’s focus on different spatial positions and sharing the weighted feature data across different
modalities, thereby reducing the interference of multi-modal features. Subsequently, lightweight modules with
depthwise separable convolution are incorporated to reduce the model’s parameter count and computational load
through channel-wise and point-wise convolutions. The network model algorithm proposed in this paper was
experimentally validated on the publicly available KAIST dataset and compared with other existing methods.
The experimental results demonstrate that our approach achieves favorable performance in various complex
environments, affirming the effectiveness of the multispectral pedestrian detection technology proposed in this
paper.
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1 Introduction

Multispectral pedestrian detection is a technology that utilizes multispectral image data for
pedestrian detection [1–3]. Its development stemmed from the need to address the performance degra-
dation of traditional pedestrian detection methods in poor lighting and night scenes, leading to the
incorporation of multispectral information to enhance detection accuracy [4,5]. However, when relying
solely on one type of visual sensor, establishing an efficient and accurate pedestrian detection system
that operates effectively under various weather conditions remains challenging. Therefore, the fusion
of visible light and infrared image-based pedestrian detection technology is gradually becoming one of
the key technologies for applications [6] that require round-the-clock operation and monitoring, such
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as autonomous driving and security defense [7,8]. Visible light cameras can generate high-resolution
images with rich color and texture information, making them the primary component in current
pedestrian detection systems. However, in nighttime or low-light environments, relying solely on visible
light images for pedestrian detection may lead to issues such as false positives or false negatives,
posing potential safety risks. With the continuous improvement of infrared detection methods and
the reduction in hardware costs, infrared cameras have gained widespread popularity in applications
such as image capture and intelligent monitoring systems [9–11]. This is attributed to the characteristic
of infrared cameras being insensitive to changes in lighting conditions while highly sensitive to
temperature changes, making them particularly suitable for pedestrian detection tasks in nighttime
traffic scenarios [12]. Integrating infrared cameras into practical applications allows for pedestrian
detection in different time periods and scenarios, addressing the instability of feature extraction in
low-light conditions that visible light cameras may exhibit [13]. This holds significant importance in
establishing all-weather, multi-scenario intelligent monitoring systems. However, compared to visible
light images, infrared images typically have lower resolution and lack fine details such as texture and
color. In conditions with relatively good lighting, the visual information provided by infrared images
is relatively limited. Therefore, by simultaneously utilizing multispectral images acquired from both
visible light and infrared sensors as input, it is possible to fully leverage their complementarity in
pedestrian detection [14]. This approach enables better differentiation between pedestrian targets and
backgrounds, thereby achieving more precise pedestrian target localization. This approach addresses
the limitations of relying solely on visible light images to handle challenges such as lighting variations
and adverse weather conditions, while also overcoming issues associated with using thermal infrared
images that may be affected by other heat sources or light interference. Therefore, the fusion of visible
light and infrared image information in cross-modal pedestrian detection systems enhances robustness
and accuracy, thereby elevating the overall performance of pedestrian detection.

Traditional pedestrian detection methods primarily rely on manually designed features for imple-
mentation. However, these methods are susceptible to external factors such as lighting, viewing angles,
and occlusions when dealing with visible light images [15]. Currently, most pedestrian detection
research focuses on the use of visible light visual sensors, which acquire images by capturing and
synthesizing data from red, green, and blue channels. However, a single sensor is prone to losing its
effective capture capability of pedestrian targets in adverse weather conditions such as poor lighting,
smoke, or dust, which can significantly impact the real-time detection performance. To overcome
these challenges, pedestrian detection research has introduced infrared visual sensors to enhance
the detection technology [16]. Infrared visual sensors, based on the thermal imaging principle, can
effectively distinguish between pedestrian targets and backgrounds and exhibit good performance
even in adverse environments. Therefore, when visible light cameras face limitations in monitoring
and safety in specific scenarios, choosing to use infrared visual sensors to capture infrared images has
become a solution [17]. Although using visible light images and infrared images as input sources in
multispectral pedestrian detection technology can effectively counteract the impact of environmental
conditions on applications like autonomous driving and intelligent video surveillance, our comparative
analysis of pedestrian image information from different modalities in complex environments revealed
that the actual multispectral data results in excessive computational requirements during the fusion
process due to modality differences [18]. Furthermore, a significant increase in parameter calculations
during model detection can result in longer detection times, which can have a substantial impact in
practical applications.

Currently, there is a growing demand for multi-modal pedestrian recognition and detection models
in various applications. These models need to maintain high accuracy while ensuring that detection
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speed does not decrease or even improves. Therefore, when constructing network models, we must
prioritize both accuracy and detection speed to strike a balance. Our contributions are summarized as
follows:

1. In response to the modality imbalance issue in multispectral pedestrian detection, we propose
a network model that leverages Resnet50, lightweight modules, and attention mechanisms to
address and improve the modality imbalance problem caused by modal inconsistencies.

2. During the feature extraction process, a spatial reweighted attention module is introduced
to enhance the model’s focus on different regions, reinforcing the critical features of the two
modalities and enabling more efficient learning by the model.

3. After incorporating the attention mechanism, the number of parameters and computational
load of the model grow. To address this, we introduce depth-wise separable convolutions,
utilizing channel-wise and point-wise convolutions to reduce the computational load while
maintaining strong feature representation capabilities.

The remaining sections of this paper are organized as follows. In Section 2, we introduce the
relevant work in the field of cross-modal pedestrian detection. Section 3 provides a detailed overview
of the overall structure of our proposed model and the key concepts of its components. Section 4 covers
the introduction of the dataset, evaluation criteria, and experimental results. Section 5 summarizes our
research and discusses its potential significance.

2 Related Works

A significant portion of research in multispectral pedestrian detection builds upon and adapts
object detection as a foundation, as nighttime lighting conditions with low illumination make pedestri-
ans less visible and challenging to detect [19]. However, due to the inherent temperature characteristics
of pedestrians and the sensitivity to temperature in thermal infrared cameras, researchers have
increasingly focused on the use of infrared cameras in conjunction with visible light cameras to acquire
images for pedestrian detection. Lai et al. [20] developed a cross-modal image acquisition system and
designed a set of imaging hardware, including a color camera, a thermal imager, a beam splitter,
and a three-axis camera fixture, to capture visible light and infrared images. They achieved precise
optical registration to obtain pairs of registered visible light and infrared images, creating the largest
publicly available multispectral dataset to date, known as the KAIST dataset. Subsequent researchers
mostly enhanced the input by adding infrared images to the visible light images from this dataset
[21,22], achieving more accurate all-weather pedestrian detection through the fusion of complementary
information in cross-modal images [23,24]. Based on the focus of cross-modal pedestrian detection
research, it can be divided into two categories: 1) studying feature extraction strategies for visible light
and infrared image information. 2) studying strategies for processing cross-modal data of visible light
and infrared images, and enhancing the speed of feature fusion algorithms.

(1) Cross-Modal Information Feature Extraction

Lee et al. [25] designed a cross-modal bidirectional adaptive attention gating fusion module based
on attention mechanisms, which was used to extract information features from different modalities
and gradually recalibrate these feature representations. To enhance the characteristics of the two
modalities and guarantee the modality’s specificity during feature propagation, researchers used a
multi-stage, bidirectional fusion technique. Additionally, this model further enhances robustness to
lighting changes through adaptive interaction. Yang et al. [26] introduced a mixed attention mechanism
that combines local and global key information to enhance the quality of feature fusion between visible
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and infrared images, thereby improving the fine representation ability of multi-modal features. In order
to achieve a balance between accuracy and efficiency in multispectral pedestrian detection models,
a lightweight anchor-free detection pipeline was employed, reducing computational complexity and
thus improving model detection speed. In order to balance accuracy and efficiency in the multispectral
pedestrian detection model, a lightweight anchor-free detection pipeline was employed, reducing com-
putational complexity and thus improving model detection speed. Zuo et al. [27] employed YOLOv4
as the framework, using two identical feature extraction backbone networks to simultaneously extract
relevant features from visible light and infrared photos. In terms of fusion methods, they proposed
a multispectral channel feature fusion to achieve information fusion between the two modalities and
perform predictions. This method achieved satisfactory detection results. However, due to its fusion
method focusing solely on weighted fusion in the channel direction and neglecting spatial regions
of interest, there is still room for improving detection performance. Cao et al. [28] introduced a
method utilizing a multi-layer fusion network, incorporating spatial attention modules and channel
attention modules in the middle section of the network to address the relationships between different
modalities. The role of the channel attention module is to dynamically adjust feature weights through
a self-supervised manner. Zhang et al. [29] proposed a feature enhancement fusion module based on
attention mechanisms to block out ambient noise in various environments. This module can enhance
the semantic and positional information of input images, effectively reducing errors in object detection.
This provides strong data support for object detection algorithms.

While the above method can improve the model’s detection accuracy, it is challenging to accurately
determine the weight ratio between different modalities when fusing their features. Because the
importance of modalities may vary depending on the task, this could result in the neglect of valuable
information from certain modalities. Therefore, there is still room for improvement in the process
of extracting features from two modalities. Considering the contributions and importance of each
modality, it is necessary to explore alternative techniques for better cross-modal feature fusion.
Through such improvements, useful information between different modalities can be better utilized
before modal fusion, further optimizing the model’s performance.

(2) Cross-Modal Data Processing

The process of cross-modal data processing aimed at effectively integrating and handling visible
light and infrared image data, as depicted in Fig. 1. Jiang et al. [30] introduced two sub-networks: one
for fusing transformer histograms of daytime images, and another for fusing transformer histograms
of nighttime images. These fused features are subsequently processed through a feature fusion module
to facilitate their combination and interaction. Additionally, by merging the processing streams of
these two modalities into a single stream and utilizing the self-attention mechanism of the Transformer
model, the fusion of information both within and between modalities is achieved. This not only
simplifies computational requirements but also enhances the overall efficiency of the model. In order to
address the issue of positional misalignment between visible light and infrared images, Zang et al. [31]
perceived the cross-modal image’s positional offset and adaptively align regional features for position
calibration. To effectively fuse visible light and infrared features, a multi-modal weighting module is
introduced to focus on more reliable features and suppress irrelevant ones. Simultaneously, researchers
devised an RoI jitter strategy to enhance the scalability of cross-modal pedestrian detection algorithms
across various perception devices and detection system configurations. To achieve the fusion of infor-
mation between different multispectral network hosts, Ryu et al. [32] proposed a method called the
multispectral interactive convolutional neural network. Researchers enforced interaction by adjusting
the weights of feature mappings between multiple spectral networks. The network does not require
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additional parameter learning, modifications to the network structure, or increased computational
burden, thereby enhancing model efficiency while improving dual-stream feature fusion.

Figure 1: Cross-modal data detection pipelines

Despite continuous efforts by researchers to enhance model detection accuracy, this often comes
at the cost of sacrificing some portion of the model’s detection speed. In practical applications,
real-time performance is crucial, and existing methods often fall short of meeting real-time require-
ments. Therefore, it is of utmost importance to improve the model’s detection speed while ensuring
detection accuracy. In response to the aforementioned challenges, we propose a modality balancing
framework for visible-infrared cross-modal applications. This framework addresses how to effectively
leverage cross-modal information when dealing with modality inconsistencies. Additionally, spatial
attention mechanisms and lightweight modules are incorporated into the network architecture. When
predicting relevant feature regions, the model automatically captures crucial region features for
various deformable data, enhancing cross-modal key regions while reducing model parameters and
computational load. This balances the overall detection performance of the model.

3 Method
3.1 Modality Balancing Framework for Cross-Modal

The network architecture is shown in Fig. 2. The model extends the Single Shot MultiBox Detector
(SSD) framework and is primarily composed of a feature extraction module and a feature fusion
module. Initially, the network captures the illumination values of both infrared and visible light images
simultaneously using a miniature neural network. However, infrared images may struggle to reflect
environmental lighting conditions during daytime. To reduce computational complexity, the visible
light and infrared images are scaled to 56 × 56 and fed into the lighting perception module, which
consists of two lightweight convolutional layers and three fully connected layers. Subsequently, taking
advantage of the characteristics of lightweight convolution, feature compression and extraction are
performed using ReLU activation functions and 2 × 2 max-pooling layers. Images are processed
through convolutional layers equipped with batch normalization and ReLU activation functions,
enhancing the network’s non-linear representation capability. Subsequently, lightweight convolutional
layers and pooling layers are used to reduce the network’s parameter count and computational
complexity. This step extracts the primary features from the feature maps. Then, a residual connection
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adds the original input tensor to the feature tensor obtained through the convolutional block, resulting
in a new feature representation.

Figure 2: Overview framework of modal balance network

The main idea of this approach is to input the features of both modalities into two separate weight
factor learning networks, thereby generating a weight factor for each modality. These weight factors
are then multiplied with the features to enhance the feature representation of the other modality.
Through this approach, the network is capable of efficiently transferring information from each
modality to the other, resulting in a more enriched and informative output feature. The network
architecture of the model is designed to adapt to machine memory constraints and computational
affordability as much as possible. The structure of the network model is shown in Table 1.

Table 1: Network structure table

Network hierarchy Network layer Output Parameter settings

Layer1 Convolution1 56 × 56 7 × 7, 64, stride 2, padding 3
Layer2 MaxPool1 28 × 28 3 × 3, stride 2
Layer3 Convolution2 × 3 14 × 14 1 × 1, [64, 64, 256], stride 1

padding same
Layer4 BatchNormalization1

Activation1
14 × 14 relu

(Continued)



CMC, 2024, vol.78, no.3 4077

Table 1 (continued)

Network hierarchy Network layer Output Parameter settings

Layer5 Convolution3 × 3 14 × 14 1 × 1, [64, 64, 256], stride 1
padding same

Layer6 BatchNormalization
Activation

14 × 14 relu

Layer7 Convolution4 × 3 14 × 14 1 × 1, [128, 128, 512], stride
2 padding same

Layer8 Activation1 14 × 14 relu
Layer9 Convolution5 14 × 14 1 × 1, 512, stride 1
Layer10 L2Normalization 14 × 14 gamma_init = 10
Layer11 Convolution6 7 × 7 7 × 7, stride 1
Layer12 Fully connect 1 × 1

3.2 Spatial Reweighted Attention Mechanism Module

The purpose of spatial domain attention is to enhance key regional features in an image. It
accomplishes this by effectively reorganizing spatial information from the original image using a
spatial transformation module, mapping it to another space while preserving essential details. To
mitigate the issue of multi-modal feature interference during the fusion of visible and infrared
features, we designed an effective Spatial Reweighted Attention Module (SRAM). This is shown in
Fig. 3. It allows for a focus on significant spatial feature regions during the feature fusion process,
thus reducing interference between different modalities. We added the spatial reweighted attention
module for feature extraction and fusion. By introducing this attention mechanism between different
spatial locations in multispectral data, focusing on different regions and assigning them varying
importance weights, we can more accurately capture subtle image features and spatial relationships.
The extraction and fusion of such feature information contribute to improving the model’s recognition
and classification capabilities in complex environments. The input features are divided into visible
features and infrared features. During the feature extraction process, the SRAM module is introduced.
Each modality obtains feature information extracted by the SRAM module and adds them together
as an intermediate feature map. The intermediate feature map is then subjected to the attention
mechanism once more, and this information is shared between the two modalities. This allows both
modalities to continuously supplement their own information with features from the other modality
during the feature extraction process, ultimately resulting in enhanced feature information.

This module calculates weights for each position in the image and applies these weights to the
original features, thereby reinforcing the representation of specific target regions of interest and
reducing the influence of background areas unrelated to the current task. This approach effectively
performs adaptive adjustments on the spatial level of the image, concentrating the focus to better
emphasize task-relevant information. During the feature extraction stage, a spatial attention module
is integrated to emphasize the more critical feature regions within the input image. This module
will perform element-wise addition with features extracted from another image to compensate for
feature information differences between the two different modalities, enhancing the final fused feature
representation. Subsequently, we apply global average pooling and global max pooling operations
to the features, obtaining two sets of statistical features representing different information for each
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channel. Subsequently, these two sets of statistical features are merged using a convolutional kernel
with a broad receptive field to achieve feature fusion. Finally, weight maps are generated through an
activation function and superimposed onto the original input feature map, enhancing the target region.

Figure 3: Spatial reweighted attention mechanism pipelines

As shown in Fig. 4, during the feature extraction process, features first undergo average pooling
Fs

avg ∈ R1∗H∗W and max pooling Fs
max ∈ R1∗H∗W operations along the channel axis, and then they are

concatenated. A convolution operation is employed to generate a two-dimensional spatial attention
map, which is then added to the original input features. After passing through the sigmoid function,
the output feature G is obtained, and finally, feature emphasis or suppression is achieved through
encoding. As shown in Eqs. (1)–(3), F ∈ RC∗H∗W represents the input features, Ms ∈ R1∗H∗W is the two-
dimensional convolution of the spatial reweighted attention module, and σ is the sigmoid function.

Ms (F) = (
f 7×7([AvgPool (F); MaxPool (F)]

)
(1)

Ms (F) = (
f 7×7(

[
Fs

avg; Fs
max

])
(2)

G = σ (F + Ms (F)) (3)

Figure 4: Spatial reweighted attention mechanism module

As shown in Eq. (4), v represents the visible light image, l represents the infrared image, and
v
(
Cx, Cy

)
and l

(
Cx, Cy

)
represent their corresponding position features, with

(
Cx, Cy

)
being the

coordinates in the image. Fusion of visible light and infrared information is achieved through attention
weights, F

(
Cx, Cy

)
represents the fused features, and α

(
Cx, Cy

)
and β

(
Cx, Cy

)
are the attention weights.

F
(
Cx, Cy

) = α
(
Cx, Cy

) ∗ v
(
Cx, Cy

) + β
(
Cx, Cy

) ∗ l
(
Cx, Cy

)
(4)
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α
(
Cx, Cy

) = soft max
(
θ ∗ Wα ∗ [

v
(
Cx, Cy

)
; l

(
Cx, Cy

)])
(5)

β
(
Cx, Cy

) = soft max
(
θ ∗ Wβ ∗ [

v
(
Cx, Cy

)
; l

(
Cx, Cy

)])
(6)

As shown in Eqs. (5) and (6),
[
v
(
Cx, Cy

)
; l

(
Cx, Cy

)]
represents the concatenation of visible light

and infrared features at position
(
Cx, Cy

)
. Wα and Wβ are learned weight matrices used to map

features into the attention weight space. θ is a hyperparameter that controls the attention distribution.
By enhancing the focus on space, the model can automatically pay attention to more useful features
when fusing visible light and infrared information, thereby improving task performance.

3.3 Lightweight Convolution Module

To enhance the performance of neural networks, the current research trend is inclined towards
constructing deeper and more complex network structures. However, this trend often comes with a
sharp increase in network parameters, resulting in excessively large models. Therefore, in response
to the issue of large parameter sizes, researchers are increasingly focusing on the development of
lightweight networks to seek a balance between performance and model complexity, which has become
a highly prominent research direction. As shown in Fig. 5, conventional convolution is an operation
that involves multiplying the pixel values within the convolution kernel with the corresponding pixel
values in the feature map and then summing all the multiplication results. Unlike previously manually
designed feature extraction methods, in deep neural networks, convolutional kernels no longer have
predefined fixed parameter filters. On the contrary, they can be learned through the backpropagation
algorithm. This means that the network can automatically adjust the parameters of the convolutional
kernels based on the characteristics of the data. For instance, the size of the convolutional kernels
(height and width) can be adjusted as needed, and the number of channels in the kernels is determined
by the depth of the input images or the previous layer’s feature maps to better capture the crucial
information from the input data. Deep neural networks effectively enhance feature extraction through
this learning process.

Figure 5: Image convolution map

In this paper, we introduce the Depthwise Separable Convolution module, which has a very simple
computational process. In fact, it performs a separable convolution operation. In fact, it performs
depth convolution and pointwise convolution operations separately. Unlike traditional convolutional
networks where the number of output channels corresponds to the number of convolutional kernels,
in depth separable convolution, each channel uses an independent convolutional kernel, resulting in
an output channel count of 1 for each channel after the convolution operation. Therefore, the module
generates output feature maps equal in channel count to the input feature maps. As shown in Fig. 6,
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if the input feature map has N channels, each channel is individually processed by an independent
convolutional kernel, resulting in N feature maps, each with a channel number of 1. These N feature
maps are then concatenated in order to form an output feature map with N channels.

Figure 6: Lightweight convolution

As shown in Fig. 7, the left side represents the standard convolutional layer structure with Batch
Normalization and ReLU activation function, while the right side represents the Depthwise Separable
Convolutional layer structure with Batch Normalization and ReLU activation function. From the
figure, it is evident that after performing depthwise convolution and pointwise convolution operations,
batch normalization and ReLU activation are applied to each channel.

Figure 7: Comparison of Standard Convolution and Depthwise Separable Convolution Structures
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During the computation process of the module, it first receives four input parameters: infrared
tensor, visible light tensor, depth weight tensor, and normalization weight tensor. The input infrared
tensor and visible light tensor are then multiplied by the depth weight tensor and normalization weight
tensor, and they are concatenated along the channel dimension. The concatenated result is continu-
ously subjected to operations of L2 normalization, depthwise convolution, pointwise convolution, and
batch normalization, ultimately yielding the desired output tensor and weighted feature tensor. The
calculation process is shown in Algorithm 1.

Algorithm 1: Lightweight modules
Input: Input rgb tensor rt(xi), depth weight tensor rw, lwir tensor lt(yj), normalization weight tensor lw

Output: output tensor ot(zk), processed rgb tensor rt, processed lwir tensor lt
1: Multiply visible and infrared tensors with weights element by element
2: Use the following methods to calculate the output tensor and the weighted image tensor
3: for i = 1 to Length (rgb tensor) do
4: rt(xi) = rt(xi) ∗ (rw)
5: for j = 1 to Length (lwir tensor) do
6: lt(yj) = lt(yj) ∗ (lw)
7: if i = j then
8: concat = [rt, lt]
9: else
10: continue to next iteration of inner loop
11: end if
12: end for
13: concat = L2Normalize (concat, gamma-init = 10)
14: ot = Activation (BatchNormalization(PointwiseConv2D(DepthwiseConv2D()(concat))))
15: end for
16: return ot, rt, lt

After using depthwise separable convolution, the majority of computations and parameters in
the network model are focused on the 1 × 1 convolutional layer. This design brings the advantage
of parallel computation, allowing the network to perform calculations more efficiently. Convolution
operations are implemented through matrix multiplication. For conventional square convolutional
kernels, we need to rearrange the input features and convolutional kernel parameters, transforming
them into matrix form before computation. In contrast, 1 × 1 convolutional operations do not
require this kind of memory reordering and can directly utilize matrix multiplication to complete
computations. Therefore, lightweight convolution significantly improves the model’s inference speed.
This is highly beneficial for addressing potential latency issues when deploying the model on mobile
devices.

This paper presents a deep learning network model for cross-modal pedestrian detection based on
Resnet50, focusing on the task of cross-modal pedestrian detection. In this model, we fully leverage
the advantages of Resnet50 and integrate multi-modal information to achieve more accurate and
comprehensive pedestrian detection. The model excels in maintaining high resolution and sensitivity.
By integrating different image information within the network, we can capture rich scale information,
enabling the model to effectively handle pedestrians of different sizes and distances. This design also
helps preserve image details, especially in fine-grained image regions, thereby enhancing the model’s
detection accuracy. The model uses a spatial reweighted attention mechanism, effectively addressing
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the complementarity issue among multimodal features. By passing the weighted feature data to
different modal branches, we ensure that each modality can fully utilize its unique information without
being influenced by other modalities. Additionally, through the operation of depth convolution, it
reduces the model’s parameter count, thereby increasing the model’s computational speed without
sacrificing performance. In practical applications, this balance allows the model to run more efficiently
in resource-limited scenarios.

4 Experiments
4.1 Dataset

The multispectral pedestrian dataset provides more valuable information for the generalization
capability of multispectral pedestrian detection.

The KAIST pedestrian dataset comprises a total of 95,328 images, as shown in Fig. 8, with each
image containing two versions: RGB color and infrared images. In total, it includes 103,128 dense
annotations. The dataset was captured during both daytime and nighttime, encompassing various
common traffic scenes such as campuses, streets, and rural areas. The image size is 640 × 480. The
dataset is divided into a total of 12 folders: set00-set11. The first 6 folders constitute the training set,
containing 50,187 images, while the remaining 6 folders make up the test set, comprising 45,141 images.

Figure 8: KAIST dataset presentation image

4.2 Experimental Details

All methods were implemented using the Python programming language in the Tensorflow
(version = 1.14) deep learning framework. The training batch size was set to 8, and the entire
training process was divided into 20 epochs. Weight decay and momentum were set to 0.0005 and
0.9, respectively, and optimization was performed using the stochastic gradient descent algorithm.
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GPUs excel in handling a large number of simple and highly repetitive operations and offer superior
computational capabilities compared to CPUs. The experiments in this paper were conducted on an
NVIDIA TITAN RTX GPU (Cuda 11.2 version).

In this paper, a comparison will be made with several state-of-the-art methods. These methods are
categorized into three groups: (1) The AR-CNN method [33]. This method introduces a novel aligned
region convolutional neural network to address end-to-end weakly aligned data issues. By constructing
a Region Feature Alignment (RFA) module, it captures positional transformations, enabling adaptive
alignment of region features from two modalities. Furthermore, this method introduces a multimodal
fusion approach and an ROI (Region of Interest) jitter strategy to further enhance performance. (2)
The CFR method [34]. This approach introduces an innovative neural network semi-feature fusion
technique by incorporating a specific module into the network structure, cyclically fusing and refining
each spectral feature. The purpose is to fully leverage the complementarity and consistency among
multispectral features for improved balance and integration. (3) The MSDS-RCNN method [35]. This
method proposes a network fusion structure. By jointly optimizing pedestrian detection and semantic
segmentation tasks, unified learning of the overall network was achieved. This approach aims to tightly
integrate pedestrian detection and segmentation tasks, thereby enhancing the model’s performance.

4.3 Result

The superiority of this method is demonstrated from both the false negative rate and speed
perspectives.

Miss Rate (MR): As shown in Eq. (7), the indicator for describing the miss rate of detection results
in pedestrian detection. TP refers to samples that should be detected by the model and are actually
detected, while FN refers to samples that should be detected by the model but are not detected. The
sum of TP and FN equals the actual number of pedestrians. Recall indicates the detection rate of
annotated pedestrians.

MR = 1 − recall = FN
FN + TP

(7)

Our proposed method, at an IoU threshold of 0.5, achieved lower values on the reasonable subsets
of daytime, nighttime, and the entire day, respectively, compared to the previous best competitor, AR-
CNN. This indicates that our network exhibits significantly better localization accuracy compared
to AR-CNN. As shown in Table 2, to comprehensively assess the detector’s performance, we also
evaluated it across all nine subsets, including pedestrian distance and occlusion levels. As depicted
in Fig. 9, without additional processing, our network model outperforms other methods in handling
small and congested pedestrians in most subsets.

Table 2: Experimental results of different methods on the KAIST dataset

Methods All Day Night Near Medium Far None Partial Heavy

ACF [21] 47.32 42.57 56.17 28.74 53.67 88.20 62.94 81.40 88.02
Halfway fusion [36] 25.75 24.88 26.59 8.13 30.34 75.70 43.13 65.21 74.36
FusionRPN+BF [37] 18.29 19.57 16.27 0.04 30.87 88.86 47.45 0.38 0.41
IAF R-CNN [38] 15.73 14.55 18.26 0.96 25.54 77.84 40.17 48.40 69.76
IATDNN+IASS [39] 14.95 14.67 15.72 0.04 28.55 83.42 45.43 46.25 64.57

(Continued)
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Table 2 (continued)

Methods All Day Night Near Medium Far None Partial Heavy

CIAN [40] 14.12 14.77 11.13 3.71 19.04 55.82 30.31 41.57 62.48
MSDS-RCNN [35] 11.63 10.60 13.73 1.29 16.19 63.73 29.86 38.71 63.37
GAFF [41] 10.62 10.82 10.14 – – – – – –
CFR [34] 10.05 9.72 10.80 – – – – – –
AR-CNN [33] 9.34 9.94 8.38 0.00 16.08 69.00 31.40 38.63 55.73
Ours 8.93 9.16 8.19 0.00 16.62 57.10 28.22 37.25 61.74

Figure 9: Comparison chart of miss detection rates among different methods

Speed: As shown in Table 3, we compared the runtime of our network model with state-of-the-art
methods. Our network directly takes 640 × 512 multispectral images as input without the need for
image upscaling, thereby reducing a significant amount of computational load.

Table 3: Computation speeds of different methods on the KAIST dataset

Methods Platform Speed (s)

ACF [21] MATLAB 2.73
Halfway fusion [36] TITAN X 0.43
FusionRPN + BF [37] MATLABAB 0.80
IAF R-CNN [38] TITAN X 0.21
IATDNN+IASS [39] TITAN X 0.25
CIAN [40] 1080 Ti 0.07
MSDS-RCNN [35] TITAN X 0.22
GAFF [41] 1080 Ti 0.06
CFR [34] 1080 Ti 0.05
AR-CNN [33] 1080 Ti 0.12
Ours TITAN RTX 0.07
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The speed comparison chart, as shown in Fig. 10, illustrates that our method incorporates
an attention mechanism module and introduces a lightweight module while maintaining detection
accuracy to achieve a balance. As a result, the model’s computational speed has been slightly reduced
compared to CFR and GAFF.

Figure 10: Speed comparison chart among different methods

4.4 Ablation Study

To demonstrate the effectiveness of the proposed spatial reweighted attention mechanism and
lightweight module, this paper conducted ablation experiments on the KAIST dataset. We will present
experimental results and provide detailed analysis in this section. In Table 4, it can be seen from
the experimental results that solely adding the attention module leads to an increase in the model’s
computational time. After incorporating the lightweight module, model computation speed can be
further improved without significantly sacrificing computation accuracy. The final experimental
results demonstrate that the simultaneous inclusion of both the attention module and lightweight
module achieves the best pedestrian detection performance.

To validate the algorithm’s effectiveness, we will compare detection examples of the spatial
reweighted attention module and the lightweight module on the KAIST multispectral pedestrian
detection dataset for a more intuitive evaluation. As shown in Fig. 11, the experimental detection
results of the model on the KAIST dataset are presented from left to right. The first two columns
display the detection results with the sole inclusion of the attention module in the network structure,
marked with green rectangular boxes. The middle two columns show the detection results with only
the inclusion of the lightweight module in the network structure, marked with red rectangular boxes.
The last two columns display the detection results with both the attention module and the lightweight
module added to the network structure, marked with yellow rectangular boxes. The first two rows
consist of visible light images in daytime environments and their corresponding infrared images. The
last two rows contain visible light images in nighttime environments and their corresponding infrared
images. From the detection results, it can be observed that when only the attention module or the
lightweight module is added to the network structure, there are erroneous detections in both daytime
and nighttime scenes, resulting in incorrect detection boxes around pedestrian instances. However,
when these two modules are combined, the model shows a significant improvement in pedestrian
detection performance. In visible light images, some pedestrian instances have complex backgrounds.
including pedestrians under shadows, unclear boundaries between different pedestrians, or instances
where pedestrians are partially occluded. However, there is no noticeable change in detection results
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between daytime and nighttime scenes. This is because the algorithm proposed in this paper merges
detailed and semantic information from both modalities into a fused feature with a relatively small
modality gap, enhancing the model’s generalization ability. The model can better adapt to various
scenarios, such as challenging lighting conditions or background occlusion. Therefore, the algorithm
in this paper can avoid incorrect detections, resulting in more accurate detection results.

Table 4: Experimental results for various network design choices

Component choice
Spatial reweighted attention mechanism √ √
Depth separable convolution √ √

MR (%)

Day 10.60 10.60 9.16
Night 7.60 8.13 8.19
All 9.51 9.71 8.93
Medium 16.76 16.30 16.62
Far 57.92 56.48 57.10
None 28.53 27.95 28.22
Partial 37.65 36.98 37.25
Heavy 62.28 62.08 61.74

Speed (s) 0.11 0.06 0.07
Parameters (×106) 12.89 9.68 10.82

Figure 11: Comparison chart of different module selections

5 Conclusion

Accuracy and speed are both crucial in visual task applications. This paper proposes a deep
learning network model for multimodal pedestrian detection, effectively combining spatial reweighted
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attention mechanisms with lightweight modules. This enhances the model’s attention to various spatial
locations while improving the detection speed in multispectral pedestrian detection tasks, balancing
the model’s accuracy and efficiency. Experimental results indicate that our detection method achieved
superior performance on the KAIST multispectral pedestrian dataset compared to other pedestrian
detection methods. The experiments demonstrate that the improvement strategy is correct and
effective. The overall performance of the improved model is more favorable for terminal deployment
applications, achieving a relative balance between detection accuracy and speed to a certain extent.
Our research findings can also provide technical support and a basis for studies in related fields such
as video data analysis and multi-scene analysis.

Although this paper has made some progress in multispectral pedestrian detection tasks, there
are still some challenges and issues that need to be addressed. These include issues related to
position offset caused by weak alignment between visible light and infrared images, as well as
effectively integrating feature information from different modalities. In the future, we will explore more
reasonable multimodal alignment schemes and feature fusion mechanisms to more effectively utilize
bimodal features, contributing valuable insights to the development of multispectral applications.
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