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ABSTRACT

Malware is an ever-present and dynamic threat to networks and computer systems in cybersecurity, and because of
its complexity and evasiveness, it is challenging to identify using traditional signature-based detection approaches.
The study article discusses the growing danger to cybersecurity that malware hidden in PDF files poses, highlighting
the shortcomings of conventional detection techniques and the difficulties presented by adversarial methodologies.
The article presents a new method that improves PDF virus detection by using document analysis and a Logistic
Model Tree. Using a dataset from the Canadian Institute for Cybersecurity, a comparative analysis is carried out with
well-known machine learning models, such as Credal Decision Tree, Naïve Bayes, Average One Dependency Esti-
mator, Locally Weighted Learning, and Stochastic Gradient Descent. Beyond traditional structural and JavaScript-
centric PDF analysis, the research makes a substantial contribution to the area by boosting precision and resilience
in malware detection. The use of Logistic Model Tree, a thorough feature selection approach, and increased focus
on PDF file attributes all contribute to the efficiency of PDF virus detection. The paper emphasizes Logistic Model
Tree’s critical role in tackling increasing cybersecurity threats and proposes a viable answer to practical issues in
the sector. The results reveal that the Logistic Model Tree is superior, with improved accuracy of 97.46% when
compared to benchmark models, demonstrating its usefulness in addressing the ever-changing threat landscape.
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1 Introduction

Malware is a type of malicious code that can affect networks and computer systems. It has become
more common in recent years, making signature-based detection techniques useless [1,2]. Advanced
malware has become increasingly complicated and adaptable over the past ten years, making it difficult
to categorize and identify since it may intelligently conceal or change its code and behavior, making
outmoded detection and classification approaches less effective [3]. As a result, the emphasis now is
on using machine learning to identify and classify malware more accurately.

Cybercriminals frequently utilize infected PDF documents as one of their methods [4]. However,
separating malicious PDFs from huge PDF files is a challenge that makes forensic analysis of
these documents more complex. The complexity of machine learning has allowed for the detection
of malicious PDFs, which helps forensic investigators and improves system security [5]. However,
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advances in adversarial strategies to get around hostile document classifiers have been made. In
particular, adversarial examples based on precision manipulation are carefully designed to cause
misclassifications, which might pose a danger to many machine learning-based detectors [6]. Although
several analysis and detection techniques have been put out to thwart these assaults, the threat posed
by adversarial attacks still needs to be properly addressed.

In academic and industrial contexts, machine learning (ML) based solutions are becoming more
and more common. One area of specialization is the detection of malware concealed in infection
vectors, including malicious PDF files [7]. Research has demonstrated that learning-based systems are
capable of detecting obfuscated assaults, which frequently avoid being detected by basic heuristics. It is
crucial to remember that even while the number of assaults discovered has significantly increased, there
has been doubt about how reliable learning algorithms are against deliberately designed adversarial
attacks [8].

Comparable ideas have been used to create adversarial malware samples, as was first shown in
[9]. These assaults entail precisely calibrated, tiny alterations to malicious samples that have been
accurately recognized, leading to their misidentification as legitimate. As a result, it is now possible to
get around machine learning-based detection more covertly without using intrusive changes like code
obfuscation.

In this research, we offer a novel detection method that can distinguish between malicious and
benign PDF files using document analysis. The Logistic Model Tree (LMT) with ideal hyperparam-
eters is used by the suggested system. The LMT is employed on a PDF malware dataset obtained
from the Canadian Institute for Cybersecurity (CIC)-Evasive-PDFMal20221. The projected model
is compared with state-of-the-art ML models including Locally Weighted Learning (LWL), Credal
Decision Tree (CDT), Naïve Bayes (NB), Average One Dependency Estimator (A1DE), and Stochastic
Gradient Descent (SGD). These models are compared based on standard assessment measures which
are F1-Score, precision, recall, MCC, and accuracy.

The major contributions of this study in the field of PDF malware detection are multifaceted. To
begin, by presenting the LMT, which combines decision trees and logistic regression to successfully
model PDF malware detection, this work presents an innovative and robust technique. This novel
approach can handle a wide range of feature types, including missing values, numeric, nominal, binary,
and multi-class target variables. Furthermore, this study employs four separate approaches for feature
selection, boosting the possibility of uncovering key properties for effective identification. The use of a
consistent dataset from the CIC improves the study’s dependability and repeatability. Finally, this work
emphasizes visible resilience qualities in PDFs, which is a novel and insightful divergence from prior
literature’s main focus on structural aspects or JavaScript code within PDFs. In conclusion, this work
significantly improves the accuracy and resilience of PDF malware detection by adding a novel model
and a comprehensive feature selection approach, all while increasing awareness of the importance of
PDF file attributes in the detection process.

In contrast to previous research, this study adopts a comprehensive approach that not only
acknowledges the prevalence of malware in PDF documents but also systematically addresses the chal-
lenges posed by adversarial attacks on machine learning-based classifiers. The novel and robust model
introduced in this study, the LMT, demonstrates the versatility of LMT in handling various feature
types, such as missing values, numeric, nominal, binary, and multi-class variables. It is noteworthy that
the emphasis has shifted from structural elements or JavaScript code to attributes of apparent resilience

1https://www.unb.ca/cic/datasets/pdfmal-2022.html.
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in PDFs, offering a new angle on the detection procedure. To sum up, this work is noteworthy for its
novel technique, which highlights the significance of model robustness and provides a thorough and
perceptive approach to improving the precision and robustness of PDF malware detection. This study
is important in the real world as it addresses the growing cybersecurity issues related to malicious PDF
files. With the increasing sophistication of cyber threats, particularly via damaged PDF documents, the
suggested LMT model offers a workable solution by utilizing machine learning to increase detection
precision. The objectives of cybersecurity stakeholders are aligned with the emphasis on resilience
characteristics, forensic analysis improvement, and dataset dependability. All things considered, this
work develops machine learning-based methods for detecting PDF malware, tackling important
security issues for businesses that depend on safe online communication and document exchange.

The rest of this paper is organized as: Section 2 presents the literature study. Section 3 describes
the research design and procedure, Section 4 presents the result analysis and discussion, and finally,
Section 5 concludes this study.

2 Literature Study

Numerous research studies have been conducted to investigate the detection of PDF malware
using various machine learning (ML) and deep learning (DL) models. Reum et al. [10] provided a
detailed examination of JavaScript content and structure within XML-embedded PDFs, elucidating
the use of the Portable Document Format. They created a wide range of configuration and metadata
features, such as file size, keywords, versions, and content features, as well as encoding schemes, such
as keywords, names, and JavaScript-readable strings. The intricacy of these properties, along with the
resistance of machine learning algorithms to slight changes, makes creating hostile samples difficult.
To reduce the danger of adversarial assaults, they created a recognition model that uses black-box-style
models that take into account both structural and content aspects.

A comparative study of machine learning methods for identifying malware in PDF files is carried
out by B. Khan and colleagues [6]. K-Nearest Neighbor (KNN) beats other models with an amazing
99.8599% accuracy in 10-fold cross-validation, according to the study, which uses a dataset from the
Canadian Institute for Cybersecurity. The research provides important insights for the creation of
reliable cybersecurity solutions and highlights the efficacy of ML in precisely detecting and combating
PDF malware. An innovative deep learning-based malware detection method that combines the
benefits of static and dynamic analysis was presented in a different work by Shaukat et al. [8].
The strategy surpasses state-of-the-art algorithms by 16.56%, achieving 99.06% accuracy on the
Malimg dataset. It addresses the problems of unbalanced data and provides the defense sector with a
scalable, affordable answer. Using deep learning and feature selection approaches, Alomari et al. [11]
provided a high-performance malware detection system that tackles the problems posed by huge and
high-dimensional data. The work uses two different malware datasets and correlation-based feature
selection to achieve significant feature dimension reductions without sacrificing performance. The
suggested technique is effective in preserving detection accuracy, as evidenced by the various reduction
ratios of 18.18% to 42.42% for the first dataset and 81.77% to 93.5% for the second dataset. The results
show varying performance variations.

ML approaches have been used in several projects to create classifiers for PDF malware. Previous
attempts, such as Wepawet [12] and PJScan [13], focused on harmful JavaScript hidden in PDF
malware, offering classifiers for recognizing malicious JavaScript and tools for extracting its code.
Because not all PDF malware has embedded JavaScript and malware authors use a variety of strategies
to conceal JavaScript scripts, more recent PDF malware classifiers have turned their attention to the
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structural elements of PDF files [14]. The goal of this project is to create sophisticated classifiers using
structural characteristics.

Chen et al. [15] demonstrated how to use observable robustness characteristics to build robust PDF
malware classifiers. For example, regardless of how many innocuous pages are added to the document,
their technique assures that a classifier consistently detects PDF malware as a danger. They provided
a thorough evaluation of a malware classifier’s worst-case behavior in terms of particular resilience
features.

Smutz et al. [16] used information collected from document metadata and file structure to detect
counterfeit PDF files using a PDF parser and a random forest classifier. They looked at 202 options,
including /Font and /JavaScript. However, according to Liu et al. [17], existing safeguards against
malicious PDFs are weak, prone to evasion, and computationally costly for online use. They suggested
using both static and runtime characteristics to recognize JavaScript in context. A software engineering
method was used to detect fraudulent documents, concentrating on behavioral discrepancies across
different systems since a PDF document acts similarly across all platforms, but a malicious one displays
platform-specific variances [18].

Previous research has focused on the analysis of JavaScript code in PDFs. Khitan et al. [19] defined
attributes of JavaScript scripts based on their functions, constants, objects, methods, keywords, and
lexical characteristics. Zhang [20] used PDF structural components, entity characteristics, metadata
information, content statistics, and JavaScript features like the number of objects, pages, and stream
filtering information. Liu et al. [17] proposed a context-aware method based on the fact that malicious
JavaScript functions behave differently from lawful ones. By supplying the original code as input to
the “eval” function, this approach analyzes PDF files while detecting suspicious activity.

The limitations of current harmful detection techniques that depend on external extraction
tools that follow the Acrobat standard for JavaScript extraction were highlighted by Li et al. [21].
Furthermore, Scofield et al. [22] emphasized the paucity of studies identifying the minimal dataset
size necessary for reaching high detection accuracy and contended that growing the training dataset
does not always result in better detection. Consequently, a dynamic analysis-based detection approach
was presented in their study.

2.1 How This Study Is Different from Other Studies?

This study differentiates significantly from the previous literature on PDF virus detection by
taking a holistic approach. It employs four separate feature selection methods: Greedy Stepwise,
Best First, Evolutionary, and Particle Swarm Optimization, displaying a rigorous technique to ensure
feature identification. Furthermore, the use of a dataset obtained from the Canadian Institute for
Cybersecurity strengthens the research’s legitimacy and usefulness. This methodology is strength-
ened by an emphasis on observable robustness features, which provide constant malware detection
regardless of harmless material. Specifically, this study proposes an LMT for PDF malware detection,
which combines the benefits of decision trees with logistic regression. Finally, the thorough assessment
technique used in this study, which includes several measures such as F1-Score, accuracy, precision,
MCC, and recall, ensures a full knowledge of the model’s performance. This work makes a unique
and useful contribution to the field of PDF virus detection by offering this diversified and thorough
methodology.
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3 Research Design and Procedure

This study aims to propose an LMT-based model for PDF malware detection. Fig. 1 presents the
entire study approach. First, a dataset was obtained from the Canadian Institute for Cybersecurity
(UNB CIC) at the University of New Brunswick. The dataset may be accessed at https://www.unb.ca/
cic/datasets/pdfmal-2022.html. First, missing values are handled, then, features that have a high degree
of connection between them and include a significant amount of information are found and kept
using feature selection procedures. To guarantee robustness and generalization, several ML models are
trained via a 10-fold cross-validation method after feature selection. Next, these models’ performance
is assessed using recognized evaluation standards, such as F1-Score, accuracy, precision, MCC, and
recall. Using a PC with a Core i5 CPU and 12 GB of RAM, the experiments are carried out on a
Windows 10 operating system environment, guaranteeing that the computing capabilities are sufficient
for the job at hand.

Figure 1: Workflow for PDF malware detection methodology with feature selection and model training

3.1 Dataset Acquisition and Preprocessing

The dataset used in this study has been taken from the Canadian Institute for Cybersecurity (UNB
CIC) at the University of New Brunswick available at: https://www.unb.ca/cic/datasets/pdfmal-2022.
html. The dataset consists of 10017 instances and initially 31 attributes. Nonetheless, it is important to
recognize certain inherent limits in the dataset. There might be issues with the dataset’s representative-
ness, which could affect how well the model applies to a range of real-world situations. The temporal
element of the dataset prompts questions about how well it matches current malware patterns, which
might restrict the model’s capacity to identify new and developing threats. Furthermore, the robustness
and generalizability of the machine learning model may be impacted by the dataset’s size, makeup,
and the imputation of missing information. Even though the suggested LMT-based model shows
encouraging results in the dataset, these issues must be resolved if the model is to be used and reliable in
actual malware detection situations. Firstly, the preprocessing step is applied to the dataset to handle
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all the missing values using the mean method. The steps for handling missing values are presented in
Algorithm 1.

Algorithm 1: Replacing Missing Values with Mean
Function ImputeMissingWithMean(dataset):

For each feature (column) in dataset:
If the feature has missing values:

// Calculate the mean of the non-missing values in the feature

mean =
∑

available values
count of available values

For each row in the feature:
If the value is missing (e.g., marked as NA or null):

// Replace the missing value with the calculated mean
Set value to mean

Return the dataset with missing values imputed with means

The procedures to impute missing values with the mean for every feature in the dataset are
described in this pseudocode. The process iterates over every feature, finds the mean of the non-missing
values, and substitutes the mean for the missing values.

3.2 Feature Selection

The feature selection process in the context of PDF malware detection was tackled methodically
using four various strategies, including Greedy Stepwise, Best First, Evolutionary, and Particle Swarm
Optimization (PSO) searching techniques. The following are the precise values of the control param-
eters used in the research study for the PSO and Evolutionary searches: PSO and the evolutionary
algorithm have 50 and 100 population sizes, respectively. Ten independent runs for PSO and twenty for
the Evolutionary algorithm are described. Furthermore, for the PSO and Evolutionary algorithms, the
number of iterations each run is fixed at 100 and 200, respectively. Throughout the study’s trials, these
parameter values were used in the corresponding algorithms. Notably, all four techniques consistently
converged on the same set of characteristics, highlighting the resilience and dependability of the found
features for PDF virus detection. The selected features are addressed in Table 1.

Table 1: Description of each selected feature

Attributes Position Description

Metadata size 3 The metadata area contains information about the PDF file that can be
used to incorporate hidden material.

Images 9 A PDF file may include one image or many images.
Text 10 Malicious PDF files may include less text because their goal is not to

convey material.
Trailer 17 How many trailers are included in the PDF?
Startxref 18 The number of keywords that include “startxref,” which indicates the

beginning of the Xref table.
JS 22 The number of objects with Javascript code.

(Continued)
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Table 1 (continued)

Attributes Position Description

Javascript 23 This indicates how many objects include Javascript code, which is the
characteristic that is most frequently exploited, as is clear.

OpenAction 25 Specifies what should happen when the PDF file is opened. Javascript
and this functionality together have been found in most common
malicious PDF files.

a. Greedy Stepwise Search: The Greedy Stepwise feature selection technique is a heuristic method
for choosing a subset of features from a larger feature set [23]. It operates by adding or eliminating
features repeatedly depending on a certain assessment criterion. In your case, the purpose is to choose
a subset of characteristics from the UNB CIC PDF malware collection. The Greedy Stepwise feature
selection method is presented in Algorithm 2.

Algorithm 2: Function Greedy Stepwise Features Selection
Initialize an empty set of selected features: S = {}
Initialize the best performance metric value: bestPerformance = 0
While (size(S) < m) AND (bestPerformance improvement is significant OR size(S) <

stoppingCriterion):
For each feature “i” not in S:

// Evaluate the performance with the feature “i” added to the selected set
newPerformance = EvaluateModel(dataset, S + i, evaluationMetric)
// If the new performance is better, update the best feature and performance
If newPerformance > bestPerformance:

bestFeature = i
bestPerformance = newPerformance

// Add the best feature to the selected set
S = S + {bestFeature}

// Optional: Perform feature removal based on post-selection analysis
Return the selected feature set S

This pseudocode repeatedly adds the feature to the selected set S that produces the greatest
substantial improvement in the evaluation measure. When either the required amount of features
(stoppingCriterion) or no meaningful performance gain can be obtained by adding further features,
the process terminates.

b. Best First Search: The Best First feature selection technique, also known as Best First Search,
is a feature selection heuristic search algorithm [24]. It investigates feature subsets by deciding on
the optimal feature to add at each stage based on a predetermined assessment criterion. Algorithm 3
describes the step-by-step process of Best First search for feature selection.
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Algorithm 3: Best First Features Selection
Initialize an empty set of selected features: S = {}
Initialize the best performance metric value: bestPerformance = 0
While (size(S) < m) AND (bestPerformance improvement is significant):

For each feature “i” not in S:
// Evaluate the performance with the feature “i” added to the selected set
newPerformance = EvaluateModel(dataset, S + i, evaluationMetric)
// If the new performance is better, update the best feature and performance
If newPerformance > bestPerformance:

bestFeature = i
bestPerformance = newPerformance

// Add the best feature to the selected set
S = S + {bestFeature}

// Optional: Perform feature removal based on post-selection analysis
Return the selected feature set S

The method in this pseudocode iteratively picks the feature that delivers the greatest substantial
improvement in the evaluation measure and adds it to the chosen collection S. When either the required
amount of features (stoppingCriterion) or no meaningful performance gain can be obtained by adding
further features, the algorithm terminates.

c. Evolutionary Search: Evolutionary search is a heuristic optimization strategy that looks for
the best solutions within a wide solution space by simulating the process of natural evolution [25].
When utilized in malware detection feature selection. The step-by-step process of evolutionary search
is described in Algorithm 4.

Algorithm 4: Evolutionary Search for Feature Selection
Initialize population:
For each individual in the population:

Create a random binary string where each bit represents a feature (0: exclude, 1: include)
Define the fitness function:
For each individual in the population:

Train a classifier using the selected features
Evaluate the classifier’s performance on a validation dataset
Set the individual’s fitness score based on the classifier’s performance

Main loop:
Repeat for a specified number of generations or until convergence criteria are met:

Select parents for the next generation:
For each pair of parents:

Use tournament selection, roulette wheel selection, or other selection methods to choose two
individuals based on their fitness scores

Perform crossover:
For each pair of parents:

Perform one-point or two-point crossover to create two children by swapping bits between
the parents

(Continued)
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Algorithm 4 (continued)
Perform mutation:
For each child:

With a certain probability, flip some randomly selected bits in the child’s feature string
Evaluate the fitness of the new individuals:
For each child:

Train a classifier using the selected features
Evaluate the classifier’s performance on a validation dataset
Set the child’s fitness score based on the classifier’s performance

Select survivors:
Combine the current population and the new children
Select the top individuals based on their fitness scores to form the next generation’s population

Return the best individual in the final population based on their fitness score

A basic evolutionary method for feature selection in a dataset is described in this algorithm. The
fitness function, crossover, and mutation techniques would need to be modified depending on your
unique dataset and machine learning model, and the hyperparameters would need to be adjusted.

d. Particle Swarm Optimization: PSO is an algorithm for population-based optimization that
imitates fish or bird social behavior. Regarding the feature selection process [26,27]. The overall process
is discussed through Algorithm 5.

Algorithm 5: Particle Swarm Optimization for Features Selection
Initialize PSO parameters:
- population_size
- max_iterations
- inertia_weight
- cognitive_weight
- social_weight
Initialize particle swarm:
For each particle in the population:

Initialize random binary feature subset
Initialize random velocity for each feature
Set the particle’s best-known position to the initial random subset
Evaluate the fitness of the particle’s subset and set it as the best-known fitness
Update the global best position if this particle’s subset is the best so far

Main PSO loop:
For iteration = 1 to max_iterations:

For each particle in the population:
For each feature in the particle’s subset:

Update the velocity of the feature:
velocity = inertia_weight ∗ current_velocity

+ cognitive_weight ∗ random_value() ∗ (best_known_position_for_particle -
current_position) + social_weight ∗ random_value() ∗ (global_best_position - current_position)

Update the position of the feature:
current_position = current_position + velocity

(Continued)
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Algorithm 5 (continued)
Evaluate the fitness of the particle’s new subset:
Set the particle’s best-known position to the new subset if it has better fitness
Update the global best position if this particle’s subset is the best so far

Return the global best position as the selected feature subset

For PDF malware detection, this technique performs feature selection using PSO. PSO param-
eters, such as population size, the maximum number of iterations, and weights for inertia, cognitive,
and social components, are first initialized. Next, a population of particles, each representing a binary
feature subset, is created using the method. Based on the global best-known position and the particles’
past performance, iteratively updates the positions and velocities of the particles. A classifier is used
to assess each particle’s feature subset’s fitness. After a predetermined number of rounds, the particles
adjust their subgroups as the algorithm progresses. Ultimately, the outcome is returned as the global
best position, which represents the feature subset that was chosen.

3.3 Model Training and Performance Evaluation

Data splitting for model training is an important part of any ML-based research study. To this
end, this study uses the 10-fold cross-validation to split the data for training and testing purposes. By
testing the model on several data subsets, it reduces the possibility of overfitting [6].

Another important aspect of any research study is to test the performance of employed models. To
this end, this study focuses on standard assessment measures including F1-Score, accuracy, precision,
MCC, and recall [28–30]. These measures can be calculated as:

Precision = TP
TP + FP

(1)

Recall = TP
TP + FN

(2)

F1 − Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

MCC = (TN ∗ TP) − (FN ∗ FP)√
(FP + TP)(FN + TP)(TN + FP)(TN + FN)

(4)

Accuracy = TP + TN
TP + TN + FP + FN

(5)

where the rate of true negative values (TN), true positive values (TP), false positive values (FP), and
false negative values (FN) are expressed by the equations.

3.4 Logistic Model Tree

LMT is an ML technique that combines decision trees and logistic regression to generate
prediction models that are particularly successful for binary outcomes such as PDF virus detection.
It builds “logistic model trees,” with the leaves representing logistic regression functions. LMT can
handle missing values, numeric and nominal features, as well as binary or multi-class target variables,
making it useful for a wide range of jobs [29,31]. The LMT was chosen over other viable models
in our research due to its numerous features, which collectively position it as the best option for
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PDF virus detection. LMT’s unique combination of decision trees and logistic regression gives it the
capacity to capture complicated data connections inside the PDF malware dataset. This property
improves the model’s ability to recognize subtle linkages and patterns, which contributes to its
improved accuracy in classification tasks. Furthermore, the adaptability of LMT is demonstrated
by its strong handling of the many feature types included in our dataset, which includes missing
values, and nominal, numeric, and binary variables. The model’s resilience to missing data is very
important for real-world applications in situations where datasets may contain partial information,
ensuring that LMT retains its performance integrity. Importantly, the logistic regression functions at
the tree’s leaves highlight LMT’s applicability for binary outcome tasks such as malware detection,
allowing probabilistic predictions and improving result interpretability. The experimental findings
confirm LMT’s constant outperformance over benchmark models in accuracy, recall, F1-Score, and
Matthews Correlation Coefficient, highlighting its ability to properly detect both harmful and benign
occurrences while minimizing false positives and false negatives. Furthermore, the use of four separate
feature selection methodologies in tandem with LMT demonstrates a painstaking consideration for
effective identification, cementing its position as an innovative and resilient solution for accurate PDF
malware detection. The step-by-step process of LMT for PDF malware detection is presented through
Algorithm 6.

Algorithm 6: LMT_PDF_Malware_Detection
Input: Labeled dataset with features (PDF_files, Labels)
Output: LMT model for PDF malware detection
Function BuildLMT(dataset):

if StoppingCriteria(dataset) then
return CreateLeafNode(dataset)

else
feature, threshold = ChooseFeatureAndThreshold(dataset)
left_data, right_data = SplitDataset(dataset, feature, threshold)
left_subtree = BuildLMT(left_data)
right_subtree = BuildLMT(right_data)
return CreateInternalNode(feature, threshold, left_subtree, right_subtree)

Function CreateLeafNode(dataset):
# Logistic Regression Model
model = TrainLogisticRegression(dataset)
return model

Function StoppingCriteria(dataset):
# Check if stopping criteria are met (e.g., max depth or min samples)
return ...

Function ChooseFeatureAndThreshold(dataset):
# Select feature and threshold for data splitting
return feature, threshold

Function SplitDataset(dataset, feature, threshold):
# Split dataset into left and right branches
left_data = [data for data in dataset if data[feature] <= threshold]
right_data = [data for data in dataset if data[feature] > threshold]
return left_data, right_data

(Continued)
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Algorithm 6 (continued)
Function TrainLogisticRegression(dataset):

# Train a logistic regression model using dataset
model = LogisticRegressionTrain(dataset)
return model

LMT_model = BuildLMT(PDF_files)
return LMT_model

# Logistic Regression Function
Function LogisticRegressionTrain(dataset):

Initialize coefficients (β0, β1, β2, ..., βn) with zeros
Initialize learning rate and maximum iterations
repeat for each iteration until convergence:

for each data point in the dataset:
Calculate logistic function using coefficients and features
Compute the gradient of the log-likelihood
Update coefficients using gradient and learning rate

return coefficients

The algorithm describes the technical process of creating an LMT for detecting PDF malware. It
starts with a labeled dataset of PDF files and their labels. The build LMT function repeatedly builds
the tree, making decisions based on feature selection and data splitting and led by parameters such as
halting conditions and feature threshold selection. Using a basic logistic regression training function,
leaf nodes train logistic regression models to predict the likelihood of a PDF file being harmful. The
Logistic Model Tree combines the advantages of decision trees with logistic regression to produce
a model capable of categorizing PDF files as benign or malicious, taking into account extracted
attributes and maximizing the chance of accurate predictions.

3.5 Other Employed Models

The main aim of this study is to propose LMT for PDF malware detection. However, the proposed
model is compared with some standard ML models that are referenced in Table 2.

Table 2: List of ML models employed in this study as benchmark compared with LMT

S. no. Model References

1 Locally weighted learning (LWL) [32]
2 Credal decision tree (CDT) [28,33]
3 Naïve Bayes (NB) [34,35]
4 Average one dependency estimator (A1DE) [28,30]
5 Stochastic gradient descent (SGD) [36,37]

4 Results Analysis and Discussion

This section discusses the overall outcomes of the study. A new LMT-based model is presented
for PDF malware detection. LMT and other benchmarked models are evaluated using standard
assessment measures which are accuracy, recall, precision, F1-Score, and MCC. The outcome for
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each measure is obtained using the confusion matrix, which is a table used in machine learning to
evaluate the effectiveness of a classification model. It summarizes the numbers of TP, TN, FP, and
FN. Table 3 summarizes the classification performance of the used ML models in the context of
PDF malware detection, with “Malicious” and “Benign” as the two classes. The number of cases
identified as “Malicious” or “Benign” by the corresponding model is represented by each cell in the
table. Notably, the table shows that, while the LWL and CDT models perform similarly in correctly
classifying both “Malicious” and “Benign” instances, the NB and A1DE models perform better in
correctly classifying “Malicious” instances with fewer false negatives, but with a slightly higher number
of false positives for “Benign” instances. The SGD and LMT models, on the other hand, emphasize
accuracy, as indicated by low false positive counts for “Benign” occurrences and a somewhat greater
number of false negatives for “Malicious” examples. These contrasts emphasize the trade-offs between
accuracy and recall, emphasizing the importance of model selection in PDF virus detection settings.

Table 3: Confusion matrix values achieved through each employed model

Model Class Malicious Benign

LWL
Malicious 4747 804
Benign 329 4137

CDT
Malicious 5049 502
Benign 328 4138

NB
Malicious 5322 229
Benign 95 4371

A1DE
Malicious 5332 219
Benign 74 4392

SGD
Malicious 5410 141
Benign 133 4333

LMT
Malicious 5408 143
Benign 111 4355

Fig. 2 depicts the TPR and FPR values for several ML models used to identify PDF malware. TPR
is the percentage of real “Malicious” occurrences accurately categorized as such, reflecting the model’s
ability to detect true positive cases. Notably, all models have high TPR values, with the LMT model
having the highest (0.975), demonstrating their efficiency in detecting fraudulent PDF files. FPR, on
the other hand, represents the proportion of genuine “Benign” cases that were wrongly labeled as
“Malicious,” emphasizing the incidence of false alarms. The models, particularly the A1DE, SGD, and
LMT, have low FPR values (0.027, 0.028, and 0.025, respectively), demonstrating their ability to reduce
false positives, which is important in the context of PDF malware detection to minimize excessive
security warnings. The results show that these models have a fair mix of sensitivity and specificity,
making them useful tools for robust virus detection in PDF files.
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Figure 2: True positive rates (TPR) and false positive rates (FPR) of PDF malware detection models

Fig. 3 shows precision, recall, and F1-Score values for various ML models used to identify PDF
malware. Notably, the LMT performs well, with a precision of 0.975, recall of 0.975, and F1-Score of
0.975. This outstanding performance can be ascribed to the distinct qualities of LMT. LMT combines
decision trees and logistic regression to efficiently capture extensive data interactions. Furthermore,
the flexibility of LMT to handle missing values, nominal and numeric properties, and binary or multi-
class target variables makes it an excellent candidate for detecting PDF malware. Because of these
characteristics, LMT outperforms other models in terms of precision and recall, making it the best
choice for effectively recognizing fraudulent PDFs.

Figure 3: Precision, recall, and F1-Score of PDF malware detection models

A detailed summary of the MCC values for the employed ML models used in PDF malware
detection is shown in Fig. 4. With the highest MCC score of 0.949 among these models, the LMT
stands out as having an excellent capacity to distinguish between malicious and benign PDF files.
Since the MCC metric takes into account both true and false positives as well as negatives, it is a very
useful measure of a model’s prediction ability when working with unbalanced datasets. The better
MCC score of LMT can be attributed to its improved handling of missing data, intricate feature
interactions, and the combination of logistic regression and decision tree approaches. These findings
highlight the applicability of LMT in big data analysis for sound decision-making in complicated
commercial marketplaces as well as its adaptability for precise risk prediction in the context of software
needs.

Fig. 5 depicts the accuracy of the models used in the detection of PDF malware. Among the
models, the LMT performs best, with an accuracy of 97.46%, suggesting its ability to reliably categorize
PDF files as harmful or benign. LWL, on the other hand, has the lowest accuracy of 88.69%, indicating
relatively poor performance. The accuracy disparities can be ascribed to the LMT’s unique technique
of merging decision trees with logistic regression, which allows it to capture complicated relationships
within the dataset, whereas LWL appears to struggle in successfully distinguishing between malicious
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and benign samples. Furthermore, the performance of LMT is enhanced by its capacity to handle
missing values, different feature types, and binary or multi-class target variables, making it a more
robust alternative for PDF malware detection than other models. These findings emphasize the
significance of model selection and point to LMT as a possible method for improving the accuracy of
PDF virus detection.

Figure 4: Matthews correlation coefficient (MCC) scores for machine learning models in PDF malware
detection

Figure 5: Accuracy comparison of machine learning models for PDF malware detection

The study presents a novel LMT-based model for PDF malware detection and performs a thor-
ough comparison analysis against well-known benchmark models using industry-standard assessment
criteria including as accuracy, precision, recall, F1-Score, and MCC. The findings clarify the models’
ability to classify across “Malicious” and “Benign” classes, and they are displayed in a comprehensive
confusion matrix (Table 3). LMT demonstrates a high level of competence in distinguishing between
the two groups. Analyzing TPR and FPR values (Fig. 2) reveals that all models have persistently
high TPR values, while LMT is the best at minimizing FPR. The remarkable performance of LMT
is highlighted by its recall, precision, and F1-Score values (Fig. 3), which may be attributed to its
skill in managing a variety of data sources and identifying complex connections. The accuracy of
LMT in differentiating between malicious and benign PDF files is confirmed by the MCC scores
(Fig. 4). Notably, the accuracy visualization (Fig. 5) emphasizes the resilience of LMT in PDF malware
detection by showcasing its pinnacle accuracy of 97.46%. Because of its unique features, especially the
way it incorporates logistic regression and decision trees, and because it can work with a variety of
data types, LMT is a viable option for improving the detection accuracy of PDF viruses. These results
highlight how important careful model selection is, thus proving that LMT is a powerful method for
accurate PDF malware detection in the field of large-scale data analysis, which is essential for well-
informed decision-making in complex business environments.

However, there are certain drawbacks to this study report. To begin, the suggested LMT is largely
examined in the context of PDF malware detection, which may limit its application to more generic
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malware detection tasks. Furthermore, the benchmark models in the study may not cover the complete
range of existing ML models, potentially leaving out more sophisticated or specialized methods.
While the research focuses on hostile assaults, it does not cover the entire spectrum of potential
antagonistic techniques, potentially leaving vulnerabilities unmet. Finally, while the study focuses on
feature selection approaches and metrics, it may ignore other crucial issues such as computing resource
needs and model training timeframes, which might be critical in real-time detection settings.

4.1 Ablation Study for PDF Malware Detection

In this technical ablation study for PDF malware detection, we carefully evaluate the different
components and methodologies that support the research. We investigate the impact of several
feature selection algorithms on overall model performance, including Greedy Stepwise Search, Best
First Search, Evolutionary Search, and PSO. We identify and quantify the unique impact of each
benchmark model, such as LWL, CDT, NB, A1DE, and SGD. We investigate the importance of
dataset provenance and size, looking at how these affect model efficacies. Furthermore, we examine the
model’s resilience features and its capacity to survive adversarial assaults, as well as its interpretability
and robustness in the face of class imbalance. Finally, we investigate the model’s scalability in real-
world scenarios. The thorough examination of these components and approaches elucidates their
unique contributions to PDF malware detection as well as their overall influence on the research’s
conclusion.

5 Conclusion

In the ever-changing world of cybersecurity, combating malware has become increasingly dif-
ficult, needing creative defense tactics. Malware has gotten increasingly complex over time, with
the capacity to adapt, disguise, or alter its code and behavior, leaving traditional signature-based
detection approaches ineffective. This work focused on the specific problem of malware hidden within
PDF documents, a popular channel for thieves, and addressed adversarial tactics that aim to defeat
ML-based detectors. We wanted to improve the accuracy and robustness of malicious PDF file
identification by developing a unique technique based on the LMT and applying document analysis.
This study thoroughly compared the performance of LMT to that of existing machine learning
models such as LWL, CDT, NB, A1DE, and SGD, and assessed them using standard metrics. This
study produced significant advances, such as an original model, extensive feature selection methods,
the utilization of consistent datasets, and an emphasis on PDF file properties. Finally, our findings
show that the LMT model is capable of differentiating between malicious and benign PDF files.
LMT outperforms other models in precision, recall, F1-Score, MCC, and accuracy, achieving 97.5%
precision, recall, F1-Score, MCC, and correctness. These findings highlight the importance of new
models like LMT in efficiently combatting malware threats, improving the accuracy and resilience of
PDF malware detection, and bolstering the cybersecurity community’s skills in the face of emerging
threats.

5.1 Future Work

Future objectives for this research include investigating advanced ML and DL algorithms to
improve the accuracy of PDF virus detection. Combining static analysis with behavioral and anomaly
detection technologies may boost system efficacy even more. Countering adversarial attacks on ML
models customized for PDF virus detection is critical. Collaboration with industry professionals and
threat intelligence groups will improve system capabilities by providing real-time threat data and



CMC, 2024, vol.78, no.3 3661

insights. Furthermore, continual research into novel evasion tactics and attack channels is required
to keep up with increasing cybersecurity threats.
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