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ABSTRACT

Time synchronization (TS) is crucial for ensuring the secure and reliable functioning of the distribution power
Internet of Things (IoT). Multi-clock source time synchronization (MTS) has significant advantages of high
reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the
clock source weight calculation at different timescales, and the coupling of synchronization latency jitter and pulse
phase difference. In this paper, the multi-timescale MTS model is conducted, and the reinforcement learning (RL)
and analytic hierarchy process (AHP)-based multi-timescale MTS algorithm is designed to improve the weighted
summation of synchronization latency jitter standard deviation and average pulse phase difference. Specifically,
the multi-clock source selection is optimized based on Softmax in the large timescale, and the clock source weight
calculation is optimized based on lower confidence bound-assisted AHP in the small timescale. Simulation shows
that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse
phase difference.
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1 Introduction

Time synchronization (TS) is a key pillar of maintaining the secure and stable functioning of
the distribution power Internet of Things (IoT), which enables all devices in the network to keep
the same logical clock [1,2]. With the development of new power systems, massive intelligent devices,
renewable energy devices, and other distributed devices are integrated to the distribution power IoT
[3–6], resulting in an stringent requirement for TS. While distributed IoT devices can operate at the
same time by receiving external high-precision time synchronization signals, such as satellite clock
sources and ground clock sources [7,8], it is not economically feasible to equip all distributed IoT
devices with expensive TS modules [9–11]. Deploying TS power IoT gateways can effectively reduce
costs and improve TS accuracy. The power IoT gateway receives TS signals from multiple satellite clock
sources and ground clock sources processes them, and performs high-accuracy TS for the distributed
IoT devices within its communication range [12–14].
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Multi-clock source time synchronization (MTS) has significant advantages compared with single-
clock source TS. On the one hand, it ensures TS reliability in case a single clock source fails to
function properly [15–17]. On the other hand, a comprehensive calculation method can be used to
assign differentiated weight to each clock source, and the power IoT gateway can calculate a TS signal
that reduces TS delay jitter and pulse phase difference [18]. However, MTS for the distribution power
IoT still faces several challenges.

Firstly, the communication environment between the power IoT gateway and clock sources
changes relatively slowly compared to the time synchronization signals. Hence, the multi-clock source
selection and the clock source weight calculation are required to optimize at different timescales [19].
Multi-clock source selection requires optimization in the large timescale due to the high communi-
cation cost and delay of switching clock sources. In contrast, the pulse phase of the clock source
changes rapidly due to factors such as temperature, pressure, and crystal oscillator operation state.
It is necessary to optimize the clock source weight calculation in the small timescale [20,21]. Secondly,
due to differences in the distance between the clock source and the power IoT gateway, as well as
differences in the communication environment, the arrival time of TS signals varies. To ensure TS
accuracy, simultaneous signal arrival should be achieved as much as possible to reduce TS delay jitter
[22,23]. However, clock sources with low delay jitter may have significant pulse phase differences.
Therefore, the minimization of TS delay jitter and pulse phase difference should be jointly considered.

Currently, there are several works exploring MTS for distribution power IoT [24,25]. In [26],
Wang et al. proposed a precise point positioning time transfer approach via multi-satellites to minimize
TS delays in distribution power IoT. However, this work does not consider the calculation of multi-
clock source weight. Reinforcement learning (RL) allows the agent to learn the optimization decisions
to maximize the expected cumulative reward by interacting with the environment. Therefore, RL
provides a solution to adaptively optimize the TS based on the changing environmental conditions
and communication costs. In [27], Destro et al. designed an RL-assisted TS method, using deep Q-
learning networks and a limited set of predefined actions to learn the TS strategy and minimize the
pulse phase difference between the multi-clock source and local clock source. However, this work
neglected the joint optimization of delay jitter and pulse phase difference. In [28], Lu et al. proposed an
RL-empowered smart route management mechanism to weigh multi-signals of synchronization, and
feedback was provided through RL to eliminate the cumulative error of TS. However, this work did not
optimize the multi-clock source selection and clock source weight calculation at different timescales.

The analytic hierarchy process (AHP) is widely leveraged in the functioning of distribution power
IoT, which can be applied to solve the problem of MTS [29–31]. The primary concept of AHP
involves breaking down a complicated decision problem into a hierarchical series of structures, and
then transform them into a series of easy-to-handle comparison problems [32–34]. In cases where
there are multiple constraints on the TS scheme, AHP can be used to find the optimal TS scheme
by comparing the combined scores of different schemes. In [35], Wang et al. proposed a multi-source
decision model using AHP to dynamically determine the priority of a multi-clock source. In [36],
Fu et al. used AHP to establish an evaluation model for equipment microenvironment monitoring to
achieve simultaneous real-time monitoring of multiple IoT devimultices. However, the AHP-based TS
optimization algorithms mentioned above did not consider the fluctuation of pulse phase difference.

To solve the above problems, the RL and AHP-based multi-timescale MTS algorithm is designed.
The multi-timescale MTS model for distribution power IoT is first constructed. Then, a minimization
problem for the weighted summation of TS delay jitter standard deviation and average pulse phase
difference is formulated. Finally, the RL and AHP-based multi-timescale MTS algorithm is proposed
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to optimize the multi-clock source selection in the large timescale and the clock source weight
calculation in the small timescale. The contributions of this paper are elaborated below:

• Minimization of synchronization delay jitter standard deviation and average pulse phase difference:
The optimization goal is constructed as the weighted summation of TS delay jitter standard
deviation and average pulse phase difference. It is solved by the proposed RL and AHP-based
multi-timescale MTS algorithm. Specifically, the multi-clock source selection is optimized in the
large timescale to reduce the synchronization delay jitter standard deviation and average pulse
phase difference, and the clock source weight calculation is optimized in the small timescale to
further reduce the average pulse phase difference.

• Large-timescale multi-clock source selection optimization: In the large timescale, the multi-clock
source selection problem is constructed as a multi-armed bandit (MAB) model. The proposed
algorithm adopts Softmax to ensure the fast convergence while maintaining the diversity of
multi-clock selection.

• Small-timescale clock source weight calculation optimization: In the small timescale, the pro-
posed algorithm employs the lower confidence bound-assisted AHP to solve the clock source
weight calculation problem. Considering the fluctuation of pulse phase difference, the fixed
value of the clock source score is replaced by a lower confidence bound to increase the evaluation
precision for TS performances.

The organization of this work is arranged below. Section 2 introduces the multi-timescale MTS
structure for distribution power IoT. Section 3 formulates the problem for improving the weighted
summation of TS delay jitter standard deviation and average pulse phase difference. The proposed
RL and AHP-based multi-timescale MTS algorithm is developed in Section 4. Section 5 provides the
related simulations. Section 6 concludes this paper.

2 System Model

Fig. 1 shows the multi-timescale MTS structure for distribution power IoT, including a clock
source layer, a gateway layer, and an IoT device layer. In the clock source layer, there are N clock
sources. The set is represented as C = {C1, C2, . . . , Cn, . . . , CN}. These clock sources consist of N1

satellite clock sources and N − N1 ground clock sources. The satellite clock source is represented
as Cn, 1 ≤ n ≤ N1, and the ground clock source is represented as Cn, N1 + 1 ≤ n ≤ N. In the
gateway layer, multiple TS signals collected from the clock sources are firstly analyzed by the power
IoT gateway with a local clock source, and M clock sources with valid TS signals are selected. Then,
the weighted summation of the selected clock source is calculated by the power IoT gateway to correct
the time synchronization signal to achieve high-precision synchronization of the local clock source.
In the device layer, the distributed IoT devices in the distribution power IoT are synchronized through
the power IoT gateway with the local clock source.

Considering the high communication cost and delay of clock source switching, and the fast
pulse phase change of the clock source, we model a multi-timescale process of TS. Considering I
optimization periods, expressed as I = {1, 2, . . . , i, . . . , I}. Each period is further divided into T time
slots, expressed as T = {1, 2, . . . , t, . . . , T}. In the large timescale (period), the power IoT gateway
selects M clock sources with low TS delay jitter and receives the TS signals. In the small timescale
(time slot), the power IoT gateway calculates the weights of the valid selected clock sources based on
the pulse phase difference and achieves the TS of the local clock source according to the weighted
summation.
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Figure 1: The multi-timescale MTS structure for distribution power IoT

Denote the multi-clock source selection decision as xn (i), where xn (i) = 1 represents the power
IoT gateway selects the clock source Cn in the period i, and xn (i) = 0 otherwise. In addition,
considering that the power IoT gateway can only select M clock sources in the period i, the clock
source selection decision must meet the constraint

∑N

n=1 xn (i) = M. The TS delay jitter model and
pulse phase difference model are introduced as follows.

2.1 Time Synchronization Delay Jitter Model

When clock source Cn sends TS signal to the gateway in the slot t of the period i, the transmission
rate is given by

Rn (i, t) = Bn log2

(
1 + Pnhn (i, t)

σ 2
n

)
(1)

Here, Bn represents the bandwidth of clock source Cn, Pn represents Cn’s transmission power,
hn (i, t) represents the transmission gain between clock source Cn and power IoT gateway, and σ 2

n

represents the Gaussian noise power.

Define the size of synchronization packet sent by Cn as Un (i, t). The TS delay from Cn to the power
IoT gateway is given by
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Dn (i, t) = Un (i, t)
Rn (i, t)

(2)

The range of TS delays of M selected clock sources is denoted as the TS delay jitter, i.e.,

ΔD (i, t) = max {xn (i) Dn (i, t) , ∀Cn ∈ C} − min {xn (i) Dn (i, t) , ∀Cn ∈ C} (3)

where max {xn (i) Dn (i, t) , ∀Cn ∈ C} is the maximum TS delay, and min {xn (i) Dn (i, t) , ∀Cn ∈ C} is the
minimum TS delay.

The degree of TS delay jitter in the period i is measured by the standard deviation for all time slots
within the period, which is expressed as

SD (i) =
√√√√ 1

T

T∑
t=1

[ED (i) − ΔD (i, t)]2 (4)

where ED (i) is the average TS delay jitter in the period i, i.e.,

ED (i) = 1
T

T∑
t=1

ΔD (i, t) (5)

A greater value of SD (i) reflects a larger fluctuation of TS delay. Therefore, SD (i) should be
minimized through multi-clock source selection optimization.

2.2 Pulse Phase Difference Model

Define the pulse phase difference as the difference between Cn and the local clock source of power
IoT gateway in the slot t of the period i, which is given by

�pn (i, t) = τn (i, t) − τ0 (i, t) (6)

where τn (i, t) and τ0 (i, t) are the timestamps of the clock source Cn and the local clock source at the
beginning of the slot t of the period i, respectively.

Define the weighted summation of the pulse phase differences of the selected clock sources as

Δp (i, t) =
N∑

n=1

xn (i) ωn (i, t) Δpn (i, t) (7)

where ωn (i, t) is the weight for the clock source Cn in the slot t of the period i. ωn (i, t) meets the
constraint

∑N

n=1 xn (i) ωn (i, t) = 1.

The average pulse phase difference in the period i is expressed as

Ep (i) = 1
T

T∑
t=1

|Δp (i, t)| (8)

A greater value of Ep (i) represents a larger average pulse phase difference and lower TS accuracy.
Therefore, Ep (i) should be minimized through clock source weight calculation optimization.
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3 Problem Formulation

Based on the above system model, we aim to improve the weighted summation of TS delay jitter
standard deviation and average pulse phase difference by jointly optimizing the multi-clock source
selection in the large timescale and the clock source weight calculation in the small timescale. The
problem is modeled as

min
{xn(i)},{ωn(i,t)}

I∑
i=1

[
SD (i) + VEp (i)

]
s.t. c1 : xn (i) ∈ {0, 1} , ∀Cn ∈ C, ∀i ∈ I

c2 :
N∑

n=1

xn (i) = M, ∀i ∈ I

c3 :
N∑

n=1

xn (i) ωn (i, t) = 1, ∀i ∈ I, ∀t ∈ T (9)

Here, V is the weight of the average pulse phase difference. c1 and c2 represent the constraints of
M selected clock sources. c3 represents the constraint of clock source weight.

4 RL and AHP-Based Multi-Timescale MTS Algorithm

In this section, the RL and AHP-based multi-timescale MTS algorithm is designed to address
the joint optimization problem of the multi-clock source selection in the large timescale and the
clock source weight calculation in the small timescale, which is shown in Algorithm 1. Specifically,
the proposed algorithm employs Softmax to address the large-timescale multi-clock source selection
problem, and lower confidence bound-assisted AHP to address the small-timescale clock source weight
calculation problem. Among them, the execution of the small-timescale lower confidence bound-
assisted AHP requires multi-clock source selection result on the large timescale, and the weight
calculation result of the multi-clock source on a small timescale will affect the reward of Softmax
on a large timescale.

4.1 Large-Timescale Multi-Clock Source Selection Optimization Based on Softmax

The proposed optimization problem is non-convex and hard to be addressed by traditional convex
optimization methods. MAB provides a powerful methodology to solve this kind of problem in an
online fashion. In the MAB problem, the agent needs to make a decision among multiple choices, each
of which corresponds to an “arm”. It can help us make optimal choices in large time scales to maximize
the cumulative rewards. Q1-3: Therefore the multi-clock source selection problem is constructed as an
MAB problem in the large timescale [37,38]. Softmax is adopted to ensure fast convergence while
maintaining the diversity of multi-clock source selection. Compared with ε-greedy, Softmax not only
guarantees fast convergence to the arm with high reward through the Boltzmann distribution but also
preserves the diversity of arm selection [39,40]. According to MAB, the main elements are defined as
follows.
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Algorithm 1: RL and AHP-based multi-timescale MTS algorithm
Input: C, I, T , N, M, V , λ, θ , {Bn}, {Pn}.
Output: {xn (i)} and {ωn (i, t)}.
1. Large-timescale multi-clock source selection optimization based on Softmax
1: Initialize Lk (i) = 0, rk (i) = 0, and yk (i) = 0.
2: For i = 1, 2, · · · , I
3: Estimate qk (i) based on (13).
4: Calculate Qk (i) based on (14).
5: Generate random value q0, and optimize yk (i) according to Qk (i).
2. Small-timescale clock source weight calculation optimization based on lower confidence bound-assisted
AHP
6: Initialize φn (i, t) = 0, Hn (i, t) = 0, Δpn (i, t) = 0, and ωn (i, t) = 0.
7: For t = 1, 2, · · · , T
8: Check the validity of the selected clock source and calculate J (i, t) based on (17).
9: If J (i, t) = 0
10: Stop the optimization process in the current slot and execute the validity check
again in the next slot.
11: Else
12: Calculate Δpn (i, t) based on (6).
13: Construct G (i, t) based on (18) and (19).
14: Calculate wn (i, t) based on (20) and (21).
15: Update φn (i, t) based on (22)–(27).
16: EndIf
17: EndFor
18: Get the reward rk (i) based on (12).
19: Update Lk (i) based on (15) and update rk (i) based on (16).
20: EndFor

• Player: Denote the player as the power IoT gateway in the distribution network.
• Arm: Denote the arm as the combination of M clock sources selected by the power IoT gateway

from the total of N clock sources, i.e.,

K = N!
M! (N − M) !

(10)

Define the k-th clock source combination as Ak ⊂ C, k = 1, 2, · · · , K

• Action: Denote the action as the clock source combination selection decision, which is denoted
as yk (i) ∈ {0, 1}. When the power IoT gateway selects clock source combination Ak in the period
i, set yk (i) = 1, and set yk (i) = 0 otherwise. The relationship between xn (i) and yk (i) is given by

xn (i) =
{

1, yk (i) = 1 and Cn ∈ Ak

0, otherwise (11)

• Reward: Denote the reward for selecting action yk (i) as the negative of the weighted summation
of TS delay jitter standard deviation and average pulse phase difference, which is given by
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rk (i) = − (
SD (i) + VEp (i)

)
(12)

The implementation process of large-timescale multi-clock source selection optimization contains
three phases below.

Phase 1: Initialization

1. Initialize the temperature coefficient as λ > 0. A larger value of λ represents that the arm with
the higher average reward will be selected. When λ approaches 0, the arm with the lower average reward
will be selected, and the power IoT gateway tends to explore. When λ approaches to positive infinity,
and the arm with the higher average reward is selected, the power IoT gateway tends to exploit.

2. Define the times that the power IoT gateway selects Ak as Lk (i), and the corresponding average
reward as rk (i). Initialize Lk (i) = 0 and rk (i) = 0, ∀Ak ⊂ C.

3. Set the action yk (i) = 0, ∀Ak ∈ C.

Phase 2: Multi-clock source selection

1. According to the Boltzmann distribution, the probability of selecting Ak is estimated as

qk (i) =
exp

[
rk (i)

λ

]
K∑

v=1

exp
[

rv (i)
λ

] (13)

2. Calculate the cumulative distribution function as

Qk (i) =
k∑

v=1

qv (i) (14)

3. Generate a random value q0 ∈ [0, 1]. If Qk−1 (i) ≤ q0 < Qk (i), the power IoT gateway selects Ak

and sets yk (i) = 1. Specially, if q0 < Q1 (i), the power IoT gateway selects A1 and sets y1 (i) = 1.

Phase 3: Large-timescale information updating

1. Perform the action yk (i), and get the reward rk (i) based on (12).

2. Update Lk (i) and rk (i) as

Lk (i) = Lk (i − 1) + yk (i) (15)

rk (i) = rk (i − 1) + yk (i)
rk (i) − rk (i − 1)

Lk (i)
(16)

4.2 Small-Timescale Clock Source Weight Calculation Optimization Based on Lower Confidence
Bound-Assisted AHP
In the small timescale, the clock source weight calculation problem is solved by the lower

confidence bound-assisted AHP. Traditional AHP uses the fixed clock source score to measure and
quantify the empirical judgment, and a great value of clock source score represents large importance.
However, due to the fluctuation of pulse phase difference, traditional AHP cannot achieve accurate
evaluation for TS performances. Therefore, the lower confidence bound-assisted AHP is proposed
in this section to address the above problem. By replacing the fixed clock source score with a lower
confidence bound according to the average clock source weight and the number of times the clock
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source has been selected for TS, it can improve the evaluation accuracy for TS performances, optimize
the clock source weight calculation, and reduce the pulse phase difference.

The hierarchical model of lower confidence bound-assisted AHP is shown in Fig. 2, which is
described as follows:

• Goal level: The goal is to improve the weighted summation of the pulse phase differences, which
is denoted as Δp (i, t) and calculated by (7).

• Criteria level: The optimization criteria is the pulse phase difference, which is denoted as
Δpn (i, t).

• Option level: The optimization option is the clock source weight, which is defined as ωn (i, t).

The implementation process of small-timescale clock source weight calculation optimization
contains five phases, which are described as follows.

Figure 2: The hierarchical model of lower confidence bound-assisted AHP

Phase 1: Initialization

1. Define the clock source score as φn (i, t) to measure the TS performance of Cn, and initialize
φn (i, t) = 0, ∀Cn ∈ C.

2. Define the number of times that Cn participates in MTS up to the slot t of the period i as Hn (i, t),
and define the corresponding average pulse phase difference as Δpn (i, t). Initialize Hn (i, t) = 0, and
Δpn (i, t) = 0, ∀Cn ∈ C.

3. Set ωn (i, t) = 0, ∀Cn ∈ C.

Phase 2: Validity check of the selected clock sources

1. Check the validity of the selected clock sources, which may be unavailable due to packet loss
or abnormalities in the TS signal. Define the validity indicator variable as zn (i, t), where zn (i, t) = 1
represents the selected clock source Cn is valid, and zn (i, t) = 0 otherwise.

2. Calculate the number of valid selected clock sources, i.e.,

J (i, t) =
N∑

n=1

xn (i) zn (i, t) (17)

If there exists a valid selected clock source, i.e., J (i, t) > 0, define the set of valid selected clock
sources as Cv (i, t), and perform the following process. Otherwise, stop the optimization process in the
current slot and execute the validity check again in the next slot.
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Phase 3: Judgment matrix construction

1. Calculate the pulse phase difference Δpn (i, t) based on (6) for the valid selected clock source
Cn ∈ Cv (i, t).

2. Calculate the pulse phase score of the valid selected clock source Cn as

sn (i, t) = exp (φn (i, t))
|Δpn (i, t) | (18)

3. Construct the judgment matrix G (i, t) = (gnn′ (i, t))N×N, whose element gnn′ (i, t) is given by

gnn′ (i, t) =
⎧⎨
⎩

sn (i, t)
sn′ (i, t)

, if Cn, Cn′ ∈ Cv (i, t)

1, otherwise
(19)

Here, Cn′ is the n′-th clock source in Cv (i, t).

Phase 4: Weight calculation

1. Determine the geometric average for each element in the matrix G (i, t)’s rows as

ω̂n (i, t) =
{[∏N

n′=1 gnn′ (i, t)
] 1

J(i,t) , if Cn ∈ Cv (i, t)
0 , otherwise

(20)

2. Normalize ω̂j (i, t), and get the weight of the valid selected clock source, i.e.,

ωn (i, t) = ω̂n (i, t)
N∑

n′=1

ω̂n′ (i, t)
(21)

3. According to the optimized clock source weight ωn (i, t), calculate the weighted summation of
the pulse phase differences based on (7), and realize the TS.

Phase 5: Small-timescale information updating

1. When 1 ≤ t < T , update Hn (i, t) and Δpn (i, t) as

Hn (i, t + 1) =
i−1∑
u=1

T∑
v=1

xn (u) zn (u, v) +
t∑

v=1

xn (i) zn (i, v) (22)

Δpn (i, t + 1) = 1
Hn (i, t + 1)

[
i−1∑
u=1

T∑
v=1

xn (u) zn (u, v) |pn (u, v)| +
t∑

v=1

xn (i) zn (i, v) |pn (i, v)|
]

(23)

When t = T , update Hn (i, t) and Δpn (i, t) as

Hn (i + 1, 1) =
i∑

u=1

T∑
v=1

xn (u) zn (u, v) (24)

Δpn (i + 1, 1) = 1
Hn (i + 1, 1)

i∑
u=1

T∑
v=1

xn (u) zn (u, v) |pn (u, v)| (25)

2. When 1 ≤ t < T , update φn (i, t) as the lower confidence bound of the average pulse phase
difference, which is given by
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φn (i, t + 1) = −Δpn (i, t + 1) − θ

√
ln ((i − 1) T + t + 1)

Hn (i, t + 1)
(26)

When t = T , update φn (i, t) as

φn (i + 1, 1) = −Δpn (i + 1, 1) − θ

√
ln (iT + 1)

Hn (i + 1, 1)
(27)

where θ is an adjustment coefficient.

5 Simulation Result

The TS scenario with a multi-clock source for distribution power IoT is considered for simulations,
including three satellite clock sources and four ground clock sources. The power IoT gateway selects
M = 3 clock sources at each period. The related parameters [41,42] are introduced in Table 1.

Table 1: Simulation parameters

Parameter Value Parameter Value

I 200 T 100
N 23 N1 3
M 3 V 0.5
P1 − P3 27W P4 − P7 1W
Bn 2-3 MHz Un (i, t) 10-20 kbits
λ 5 θ 2

We set two algorithms for comparison. The first one is the multiplex error compensation-assisted
multi-clock source adaptive TS algorithm (MECTS) [43], which minimizes the pulse phase difference
by analyzing the quality and validity of TS signals. MECTS sets the dynamic priority for multi-clock
sources and corrects the TS signal with the maximum priority according to the quantization error of
all valid clock sources. The second one is the RL-based multi-timescale MTS algorithm (RLMTS),
which minimizes the TS delay and the pulse phase difference by optimizing the clock source selection
based on RL in the large timescale and calculating the weighted summation of pulse phase difference
according to the preset priority in the small timescale.

Fig. 3 demonstrates the weighted summation of TS delay jitter standard deviation and average
pulse phase difference vs. period. Compared to MECTS and RLMTS, the proposed algorithm reduces
the weighted summation by 54.26% and 35.71%. The proposed algorithm effectively reduces the
weighted summation through the joint optimization of the multi-clock source selection in the large
timescale and the clock source weight calculation in the small timescale. MECTS only minimizes the
pulse phase difference by multiplexing error compensation, but cannot reduce the TS delay jitter.
RLMTS minimizes weighted summation of TS delay and pulse phase difference based on RL and
preset priority, but cannot reduce the TS delay jitter.
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Fig. 4 shows the TS delay jitter standard deviation and average pulse phase difference vs. V .
With V increases from 0.1 to 1.1, the TS delay jitter standard deviation increases by 60.50%, and the
average pulse phase difference decreases by 16.23%. The proposed algorithm is more biased towards
optimizing the average pulse phase difference rather than the TS delay jitter standard deviation. By
dynamically adjusting V , the proposed algorithm achieves the balance between TS delay jitter and
average pulse phase difference to meet the differentiated TS requirements of distributed IoT devices.

Figure 3: Weighted summation of TS delay jitter
standard deviation and average pulse phase dif-
ference vs. period

Figure 4: TS delay jitter standard deviation and
average pulse phase difference vs. V

Figs. 5 and 6 show the TS delay jitter standard deviation and average pulse phase difference vs.
period, respectively. Compared to MECTS and RLMTS, the proposed algorithm outperforms the
standard deviation by 74.21% and 45.89% and respectively reduces the average pulse phase difference
by 27.57% and 29.37%. In the large timescale, the proposed algorithm optimizes the multi-clock
source selection based on Softmax, which not only guarantees fast convergence but also maintains
the diversity for multi-clock source selection. The proposed algorithm can learn and find the multi-
clock source selection with smaller TS delay jitter and pulse phase difference. In the small timescale,
the proposed algorithm realizes the clock source weight calculation optimization based on lower
confidence bound-assisted AHP. Replacing the fixed clock source score with a lower confidence bound
according to the average clock source weight and the number of times the clock source participated
in TS, improves the evaluation accuracy for TS performances. For periods less than 50 in Fig. 6,
MECTS minimizes the pulse phase difference by dynamically adjusting the priority, so the pulse
phase difference of MECTS is smaller. But MECTS cannot learn the multi-clock source selection with
smaller synchronization delay jitter and pulse phase difference. RLMTS learns the multi-clock source
selection to minimize synchronization delay and pulse phase difference, but cannot further reduce the
pulse phase difference because the pulse phase difference is calculated based on the preset priority.



CMC, 2024, vol.78, no.3 4465

Figure 5: TS delay jitter standard deviation vs.
period

Figure 6: Average pulse phase difference vs.
period

Fig. 7 shows the probability distribution and cumulative probability distribution of TS delay jitter
for the proposed algorithm, MECTS, and RLMTS, respectively. The black solid line represents the
cumulative probability distribution function curve. For the proposed algorithm, most of the time
synchronous delay jitter, e.g., 80%, is less than 11.26 ms, while that of MECTS and RLMTS are
22.87 and 13.37 ms, respectively. Compared to MECTS and RLMTS, the proposed improves the TS
delay jitter standard deviation for all I × T time slots by 42.52% and 11.44%. Through learning and
optimizing the multi-clock source selection and improves its performance effectively, the proposed
algorithm minimizes the TS delay jitter standard deviation. MECTS and RLMTS do not consider the
optimization of TS delay jitter standard deviation, resulting in a large distribution range.

Figure 7: Probability distribution and cumulative probability distribution of pulse phase difference for
the (a) Proposed algorithm, (b) MECTS, and (c) RLMTS

Fig. 8 shows the probability distribution and cumulative probability distribution of pulse phase
difference for the proposed algorithm, MECTS, and RLMTS, respectively. For the proposed algo-
rithm, most of the pulse phase difference, e.g., 80%, is less than 21.67 ns, while that of MECTS
and RLMTS are 28.93 and 32.99 ns, respectively. Compared to MECTS and RLMTS, the proposed
reduces the average pulse phase difference for all I × T time slots by 15.56% and 21.64%, respectively.
The proposed algorithm minimizes the average pulse phase difference by learning the multi-clock
source selection in the large timescale and optimizing the clock source weight calculation in the small
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timescale. MECTS cannot optimize the average pulse phase difference by learning, while RLMTS only
calculates pulse phase differences based on the preset priority.

Figure 8: Probability distribution and cumulative probability distribution of pulse phase difference for
the (a) Proposed algorithm, (b) MECTS, and (c) RLMTS

6 Conclusion

This work aims to solve a multi-timescale MTS problem for distribution power IoT. The RL
and AHP-based multi-timescale MTS algorithm is designed to improved the weighted summation
of TS delay jitter standard deviation and average pulse phase difference by the joint optimization of
the multi-clock source selection in the large timescale and the clock source weight calculation in the
small timescale. Compared to MECTS and RLMTS, the proposed algorithm improves the weighted
summation by 54.26% and 35.71%. Future works will further focus on the high-precision TS problem
between power IoT gateway and massive distributed IoT devices using power line communication.
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