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ABSTRACT

Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather.
Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series
forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution,
causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input
sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem
in time series has not been adequately solved. To address the first problem, we propose a subsequence-based
dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring
subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence
rather than a single element. Ultimately, the receptive field of each output element can cover the whole input
sequence. To address the second problem, we propose a difference and compensation method (DCM). The method
reduces the discrepancies between and within the input sequences by difference operations and then compensates
the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct
a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The
experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime,
compared with state-of-the-art models and vanilla TCN.
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1 Introduction

Inferring the future state of data based on past information [1], time series forecasting can help
make current decisions, and it has important applications in weather [2], transport [3], finance [4],
healthcare [5], and energy [6]. In recent years, research on time series forecasting has evolved from
traditional statistical methods and machine learning techniques to forecasting models based on deep
learning [7,8].

As a common type of deep learning model for time series modeling, temporal convolutional
networks (TCNs) have been widely used in current research on time series forecasting. When dealing
with long sequences, TCNs are not as prone to gradient disappearance problems as recurrent neural
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networks (RNNs). Compared with transformers, TCNs have advantages in memory consumption
[9] and do not use the permutation-invariant self-attention mechanism [10], which may lead to
temporal information loss. These advantages make TCNs excellent modeling methods for time series
forecasting.

Dilated causal convolution plays an important role in TCNs [11], and the structure of dilated
causal convolution is shown in Fig. 1. It is essentially a pyramidal-like process of aggregating
and learning sequence information. TCNs with dilated causal convolution have excellent memory
capabilities [9].

Figure 1: Dilated causal convolution with dilation factors of d = 1, 2, 4 and a filter size of k = 2

However, for time series forecasting, it is unnecessary to employ causal convolution to prevent
future information leakage into the past, as the input sequence is solely past information compared
to the predicted sequence. Worse still, causal convolution leads to the following problems. On the one
hand, in dilated causal convolution, the earlier an input element is located, the greater its effect on
the output sequences. For example, in Fig. 1, x1 affects o1, o2, . . . , ot, while xt only affects the output
ot. Nevertheless, the model should focus more on recent elements of the inputs, as recent elements
are closer to the time series to be predicted. On the other hand, only the last element ot can receive
the information from the whole long sequence, and using this single element instead of a sequence
to extract the whole input sequence information may result in serious information loss. Due to the
limitations of causal convolution for time series forecasting, we decided to abandon causal convolution
and design a new dilated convolution method. Since using a single convolutional filter per layer
for dilation convolution tends to lose a lot of information, we use multiple convolutional filters to
generate different elements that share the receptive field and form these elements into subsequences.
By continuously convolving different subsequences, each final output element can share the receptive
field covering the entire input sequence. This is an improvement over the dilated causal convolution in
which only the last output element captures the entire input sequence information.

In addition, the problem of distribution shift exists widely in time series, which significantly
reduces the performance of forecasting models. The distribution shift problem is that the statistical
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properties (such as the mean) of the time series may change over time, which may lead to the distri-
bution shift between training and test data. For example, in Fig. 2, there are significant differences in
the time series across various time periods. Previous work mainly focused on eliminating discrepancies
between the input sequences of the test and training datasets. However, in a long input sequence, the
statistical properties vary considerably in different parts of the sequence, thus the discrepancies within
an input sequence also need to be addressed. Since differencing can help stabilize the mean of a time
series and eliminate trend and seasonality, we use differencing to solve the above problem.

Figure 2: The original time series and difference sequence in the ETTh1 dataset

The contributions of this paper are as follows:

• To mitigate information loss in dilated convolution on long sequences, we propose a novel
subsequence-based convolution method (SDC). The method extracts temporal features from
a receptive field via a growing subsequence, and the subsequence has a richer representation
than a single element.

• To break the limitation of dilated causal convolution on the receptive field, we use multiple
convolution filters to generate elements that share a receptive field in SDC without causal
convolution. As the elements of the shared receptive field increase, eventually, all output
elements will be able to look back at the entire input sequence.

• To alleviate the distribution shift in time series, we propose a difference and compensation
method (DCM) to reduce the discrepancies between and within input sequences by difference
operations. As shown in Fig. 2, difference operation greatly reduces the variance of sequences
at different time periods.

• Based on SDC and DCM, we further construct a temporal subsequence-based convolutional
network with difference (TSCND) for time series forecasting. Experimentally, compared with
state-of-the-art methods and vanilla TCN, TSCND can reduce prediction mean squared error
by 7.3% and save runtime. The results of the ablation experiments also demonstrate the
effectiveness of SDC and DCM for time series forecasting.
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2 Related Works
2.1 Time Series Forecasting

Current time series forecasting methods can be divided into traditional statistics-based methods
and deep learning-based methods.

Traditional statistics-based methods, such as the autoregressive integrated moving average
(ARIMA) [12] and Kalman filter models [13], have had extensive theoretical research in the past.
However, these traditional statistical-based methods perform poorly on complex time series.

Deep learning can automatically learn and model the hidden features of complex series based on
raw data and can achieve better forecasting accuracy on complex time series datasets. Therefore, more
research is now based on deep learning methods.

Recurrent neural networks (RNNs) [14] play an important role in time series forecasting [15–17].
However, when the given time series is long, much of the information contained earlier in the time
series will be lost [18].

In recent years, transformer-based models [19] have been widely used for time series forecasting
tasks [20]. Informer [21] reduces the computational complexity of the self-attention mechanism and
performs well in long-term time series forecasting. Autoformer [22] uses autocorrelation attention
and seasonal decomposition methods for model construction, reducing the required computational
workload and improving forecasting accuracy. FEDformer [23] uses the seasonal trend decomposition
method and frequency-enhanced attention. PatchTST [24] achieves SOTA accuracy on several long-
term time series forecasting datasets based on channel independence and subseries-level patch input
mechanism. However, when these transformer-based models deal with long sequence data, they
always require considerable computational resources and memory. In addition, using self-attention
mechanisms for time series modeling may lead to the loss of temporal information [10].

TCNs are also popular for time series forecasting tasks [25–28]. MISO-TCN [29] is a lightweight
and novel weather forecasting model based on TCN. TCN-CBAM [30] uses the convolutional block
attention module for the prediction of chaotic time series. VMD-GRU-TCN [31] integrates variational
modal decomposition, gated recurrent unit and TCN into a hybrid network for high and low frequency
load forecasting. Veg-W2TCN [32] combines multi-resolution analysis wavelet transform and TCN
for vegetation change forecasting. TCNs use dilated causal convolution in the temporal dimension
to learn temporal dependencies [33,34]. For vanilla convolution operations, the size of the receptive
field is linearly related to the number of convolution layers, which leads to an inability to handle
long sequence inputs. Dilated causal convolution is a very efficient structure that helps a model
achieve exponential receptive field sizes. For an input sequence X = {x0, x1, . . . , xt}, the dilated causal
convolution operation for the element located at s can be formalized as:

F (s) =
∑k−1

i=0
f (i) · xs−di (1)

where fn : {0, . . . , k − 1} → R is a convolutional filter, d is the dilation factor, and k is the convolutional
filter size. The use of a larger d allows the top output to represent a larger range of inputs, which
effectively expands the receptive field of the convolutional network, as shown in Fig. 1.

Dilated causal convolution can capture the long-term dependencies of the time series, but the
causal convolution structure limits the receptive field and results in severe information loss during
dilated convolution. Therefore, we propose a new dilated convolution method to replace dilated causal
convolution in TCNs.
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2.2 Distribution Shift Problem Addressing

Forecasting models often suffer badly from distribution shift in time series. Domain adaptation
[35] and domain generalization [36] are common methods to alleviate the distribution shift [37,38].
However, these methods are often complex, and it is not easy to define the domain in non-stationary
time series. Recently, some simple and effective methods have been proposed to address the distribution
shift problem. The Revin method [39] normalizes each input sequence and then non-normalizes the
model output sequence. However, this method prevents the model from obtaining features such as
the magnitude of data changes. The NLinear model [10] uses a method of subtracting the end value
of the input sequence from each value of the input sequence and restoring the end value to the
output sequence. However, there is a problem of significant differences within the input sequence,
which undermines the effectiveness of model training. Our proposed method minimizes the difference
between and within input sequences without losing information in the original data.

3 Methods
3.1 Model Structure

The overall architecture of our proposed model is shown in Fig. 3. First, the DCM carries
out a difference operation on the input time series to obtain difference sequences with smaller
discrepancies in values, and then the Padding operation is used to extend the sequence length to meet
the requirements of dilated convolution. Next, the Embedding operation maps the padded sequences
to a high-dimensional space, followed by multiple layers of SDC to extract temporal dependencies of
the input. Finally, the Decoding operation is used and the DCM restores the original input values to
the Decoding output to obtain the prediction result.

Figure 3: Overview of the TSCND architecture



3670 CMC, 2024, vol.78, no.3

3.2 Difference and Compensation Method (DCM)

DCM is used to address the problem of distribution shift. It contains a difference stage and a
compensation stage.

In the difference stage, a difference sequence is obtained through differencing adjacent elements
in an input sequence. For an input sequence X = {x0, x1, . . . , xt} with length t, the difference stage can
be formalized as:

Xd = {x1 − x0, x2 − x1, . . . , xt − xt−1} (2)

In the compensation stage, to compensate for the information loss caused by difference operation,
the last element value of the original sequence is added back to the output. For the output sequence
Y = {y0, y1, . . . , yq} of length q, the compensation stage can be formalized as:

Y = {y0 + xt, y1 + xt, . . . , yq−1 + xt, yq + xt} (3)

3.3 Padding and Embedding

To ensure that the sequence length can meet the requirements of the SDC, we pad the difference
sequence Xd with zeros, and the length L of the padded sequence is:

L = kc (4)

where k is the convolutional filter size, and c is the number of layers of the Muti-layer SDC.

The process of padding and embedding the sequence Xd can be formalized as:

Xp = Padding (Xd), (5)

H0 = Embedding
(
Xp

)
(6)

where Embedding(.) is a linear layer that maps the padded sequence Xp ∈ R
var×L to H0 ∈ R

dim×L, var
denotes the number of variates in time series, dim is a hyperparameter that represents the hidden
variable dimension of the model, H0 is the input of Muti-layer SDC.

3.4 Subsequence-Based Dilated Convolution Layer

Due to the limitation of dilated causal convolution on the receptive field, we propose the SDC to
be used instead of dilated causal convolution. Our SDC has the following two similarities with dilated
causal convolution: (1) The size of the receptive field of the output sequence elements is exponentially
related to the number of network layers, so very large receptive fields can be achieved by stacking a
few convolutional layers. (2) The input and output sequences are of equal length, which facilitates
the stacking of layers to obtain a larger receptive field. The uniqueness of SDC is that it uses multiple
convolutional filters to convolve the elements of adjacent subsequences. The elements in a subsequence
share a receptive field. Fig. 4 shows a 3-layer SDC structure.

At the SDC layer, an input or output sequence is divided into several subsequences. For multi-
layer SDC, the initial subsequence length is 1, and the length will increase with the number of SDC
layers by SDC operation. Each SDC layer uses k convolutional filters of size k, which means that the
size and number of convolutional filters used in each layer are equal. This setting ensures that the input
and output sequences possess equal lengths.
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Figure 4: The multi-layer SDC contains 3 SDC layers with k (here k = 2) convolution filters at each
layer, this figure omits the residual connection. The elements generated using the same convolution
filter are represented by the same color (e.g., at Layer 2, the elements colored in red are all generated
by the same convolution filter, but they do not share a convolution filter with the green elements).
Subsequences are marked by rounded rectangles in the figure. Solid lines show how an output element
acquires information about the entire input sequence via the SDC

Specifically, at SDC Layer i, k input subsequences are convolved to generate an output subse-
quence whose length is the sum of the lengths of these input subsequences. Therefore, we can calculate
the length of subsequences for each layer. The output sequence Hi of SDC Layer i can be expressed
based on subsequence as:

Hi = {h0,0
i , . . . , ha,b

i , . . . , hri−1,pi−1
i } (7)

where ha,b
i denotes the a-th element of the b-th subsequence, the subsequence length ri = ki, ki is the

i-th power of k, pi is the number of the subsequences, and pi = L/ri.

The detailed process of the SDC operation for convolving subsequences is as follows: firstly, the
elements in the neighboring subsequences are convolved using several different filters, and elements
in the same subsequence are not convolved with each other. Then the output elements generated by
convolving the same elements but with different convolution filters are adjacent to each other, and
the elements generated by the same subsequences are merged into a new subsequence. E.g., in Fig. 4,
convolution between h0,0

1 and h0,1
1 , not between h0,0

1 and h1,0
1 , the output elements h0,0

2 and h1,0
2 generated

by the same input elements are adjacent to each other.

We first formalize SDC operations from the perspective of a single output element. The SDC
operation on the a-th element ĥa,b

i of the b-th subsequence can be formalized as:

ĥa,b
i = fdc(Hi−1, a, b) =

∑k−1

n=0
fm(n) · h

.
r,

.
p+n

i−1 (8)

where Hi−1 is the input sequence of Layer i, k is the convolutional filter size, fm : {0, . . . , k − 1} → R is

the m-th convolution filter, m = a mod k,
.
r = �a

k
�, and

.
p = b · k.
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Next, based on the SDC operation for a single element, we extend to the SDC operation for the
sequence. The SDC operation for the input sequence Hi−1 can be formalized as:

Ĥi = FDC (Hi−1) (9)

=
{

ĥ0,0
i , . . . , ĥri−1,pi−1

i

}

= {fdc (Hi−1, 0, 0) , . . . , fdc (Hi−1, ri − 1, pi − 1)}
For a SDC Layer i, the output Hi is obtained after SDC operation and residual connection, the

process can be formalized as:

Hi = ReLU(Ĥi + Hi−1) (10)

where ReLU(·) is the rectified linear unit (ReLU) activation function [40].

To enhance the comprehensibility of the SDC layer, we utilize pseudo-code to illustrate the process
in Algorithm 1.

Algorithm 1: Multi-layer SDC layer
Input: H0 ∈ Rdim×L, convolution filter size k, number of SDC layers c, sequence length L = kc

Output: Hc ∈ Rdim×L

//Adding dimension that represents the subsequence to Hin

Hin ← reshape(H0) //Hin ∈ R1×dim×L

for i ← 1 to c do
//Convolution in the sequence dimension with kernel size k, stride k, out_channels dim ∗ k
Hout ←conv1dj(Hin) //Hout ∈ R

subL×(dim∗k)×(L
k ), the initial value of subL is 1

//Arranging the variables generated by multi-kernel convolution along the subsequence dimension
Hout ← reshape(Hout) //Hout ∈ R

(subL∗k)×dim×(L
k )

Hout ← ReLU(Hout)

Hin ← Hout + reshape(Hin) //Hin ∈ R
(subL∗k)×dim×(L

k )

end
//After multiple layers of SDC, the length of the subsequence is equal to the length of the original input
sequence, and the length of the sequence dimension becomes 1
Hc ← transpose(reshape (Hin)) //Hin ∈ RL×dim×1, Hc ∈ Rdim×L

3.5 Decoding

The Decoding module includes 2 fully-connected layers. The one maps Hc ∈ R
dim×L to Hd ∈ R

tvar×L,
tvar denotes the number of target variates to be predicted. And then the other one maps Hd ∈ R

tvar×L

to Y ∈ R
tvar×pL, pL denotes the time step of the target variates.

4 Experiments

To evaluate our model’s performance, we conducted univariate time series forecasting on four
popular real-world datasets ETTh1, ETTh2, ECL, and WTH.
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4.1 Datasets

ETT (Electricity Transformer Temperature): This dataset consists of the electricity transformer
temperature derived from two different countries in China for two years. ETTh1 and ETTh2 corre-
spond to data collected at one-hour intervals from these two counties. The target “oil temperature”
was predicted based on past data. The train/val/test is 12/4/4 months.

ECL (Electricity Consumption Load): This dataset collects the electricity consumption loads
(kWh) of 321 customers. We set “MT_320” as the target value. The training, validation, and test sets
were scaled to 0.6/0.2/0.2.

WTH (Weather): This dataset collects four years of climate data from 2010 to 2013; it covers 1600
locations in the United States, with data points collected every hour. Each data point consists of the
target value “wet bulb”. The training, validation, and test sets were scaled to 0.6/0.2/0.2.

4.2 Baselines

To verify the superiority of our proposed method, we compared it with four SOTA models:
PatchTST, FEDformer, Autoformer, and Informer. In addition, our proposed method was also
compared with the classic models TCN and LSTM.

PatchTST (2023) [24]: This is a transformer-based model. it achieves SOTA accuracy on ETTh1
and ETTh2 datasets based on channel independence and subseries-level patch input mechanism.

FEDformer (2022) [23]: This is a transformer-based model. It uses the seasonal trend decompo-
sition method and a frequency-enhanced attention module. Since the frequency-enhanced attention
module has linear complexity, FEDformer is more efficient than the standard transformer. It achieves
the best forecasting performance on the benchmark dataset in comparison with previous state-of-the-
art algorithms.

Autoformer (2021) [22]: This is a transformer-based model. It uses auto-correlation attention
and seasonal decomposition for model construction, reducing the required computational effort and
achieving improved forecasting accuracy.

Informer (2021) [21]: This is an efficient transformer-based model that uses the ProbSparse self-
attention mechanism to reduce its computational complexity. The model performs well in long-term
time series prediction tasks.

TCN (2018) [9]: This is a convolutional network for sequence modeling that uses dilated causal
convolution. It outperforms recurrent neural networks in many sequence modeling tasks.

LSTM (1997) [41]: This is a recurrent neural network whose gating mechanism alleviates the
problem of gradient disappearance and allows the model to capture long-term dependencies.

4.3 Evaluation Metrics

We used the following evaluation metrics:

(1) Mean squared error (MSE):

MSE = 1
n

∑
(y − y∗)2 (11)

(2) Mean absolute error (MAE):

MAE = 1
n

∑
|y − y∗| (12)
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where n is the number of time steps to be predicted, y is the predicted value, and y∗ is the ground truth.

4.4 Implementation Details

For all the compared models, the same parameter settings were used for the training process, with
predicted sequence lengths of 24, 48, 168, 336, and 720. The models were optimized using the adaptive
moment estimation (Adam) optimizer with learning rates starting at 1e-3. The total number of epochs
is 8 with proper early stopping. We used Mean Squared Error (MSE) as our loss function. The inputs
of each dataset were zero-mean normalized. Following the previous related work [42], we used a 10-
residual-block stack in the TCN. Referring to Informer [21] and PatchTST [24], the input length was
selected from {168, 336, 512, 720}. The other settings used their default values.

For better performance of TSCND, we set the convolutional filter size k to 2 and the hidden layer
dimension dim to 64 based on the validation dataset. To allow the output elements to have a look back
at the entire input sequence while the model has as little computational effort as possible, the number
of model layers is computed from the input length t, and the number of model layers c = �logk t� + 1.

4.5 Experimental Results

Tables 1 and 2 list the forecasting results of the comparison models and our model. Our model
achieved the best results in 32/40 cases and the second-best results in 6/8 cases where it did not achieve
the best results. Compared with the SOTA model PatchTST, our model yields an overall 7.3% relative
MSE reduction, and when the prediction length is 720, the improvement can be more than 15%.
TSCND performs slightly worse than PatchTST on the MSE metrics in the ETTh1 dataset. This is
due to the presence of many outliers in the ETTh1 dataset, and the self-attention mechanism employed
by PatchTST is more advantageous than convolutional networks in dealing with outliers. Meanwhile,
TSCND outperforms PatchTST on the MAE metric in the ETTh1 dataset. This metric is insensitive
to outliers, which supports the above view and suggests that TSCND is better at predicting the normal
value of ETTh1.

Table 1: The MSE results for time series forecasting tasks with different prediction lengths

Method Ours PatchTST FEDformer Autoformer Informer LSTM TCN

Metric MSE MSE MSE MSE MSE MSE MSE

ETTh1

24 0.027 0.028 0.046 0.064 0.098 0.065 0.044
48 0.040 0.041 0.066 0.091 0.158 0.120 0.061
168 0.073 0.071 0.100 0.118 0.183 0.249 0.086
336 0.085 0.080 0.125 0.119 0.222 0.244 0.131
720 0.089 0.086 0.162 0.123 0.269 0.266 0.195

ETTh2

24 0.067 0.072 0.108 0.104 0.093 0.147 0.090
48 0.098 0.101 0.130 0.140 0.155 0.182 0.119
168 0.164 0.165 0.183 0.182 0.232 0.276 0.223
336 0.188 0.195 0.206 0.268 0.263 0.300 0.268
720 0.202 0.209 0.305 0.351 0.277 0.355 0.312

(Continued)
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Table 1 (continued)

Method Ours PatchTST FEDformer Autoformer Informer LSTM TCN

Metric MSE MSE MSE MSE MSE MSE MSE

ECL

24 0.138 0.138 0.371 0.366 0.246 0.774 0.182
48 0.176 0.180 0.350 0.450 0.285 0.909 0.213
168 0.237 0.256 0.295 0.644 0.373 0.908 0.287
336 0.298 0.306 0.421 0.703 0.416 0.955 0.314
720 0.357 0.502 0.453 0.677 0.408 0.995 0.361

WTH

24 0.093 0.093 0.254 0.143 0.116 0.150 0.094
48 0.137 0.140 0.257 0.181 0.203 0.196 0.138
168 0.233 0.224 0.307 0.273 0.284 0.272 0.221
336 0.276 0.306 0.336 0.320 0.331 0.315 0.284
720 0.351 0.398 0.371 0.404 0.353 0.405 0.372

Note: A lower MSE indicates a better prediction. The best results are highlighted in bold and the next best result is highlighted with an
underline.

Table 2: The MAE results for time series forecasting tasks with different prediction lengths

Method TSCND PatchTST FEDformer Autoformer Informer LSTM TCN

Metric MAE MAE MAE MAE MAE MAE MAE

ETTh1

24 0.125 0.128 0.162 0.204 0.247 0.205 0.163
48 0.155 0.157 0.191 0.237 0.319 0.288 0.190
168 0.212 0.212 0.246 0.267 0.346 0.431 0.225
336 0.231 0.227 0.284 0.271 0.387 0.424 0.286
720 0.235 0.239 0.319 0.278 0.435 0.449 0.364

ETTh2

24 0.190 0.207 0.251 0.255 0.240 0.307 0.235
48 0.237 0.248 0.279 0.291 0.314 0.342 0.270
168 0.318 0.324 0.335 0.332 0.389 0.424 0.384
336 0.348 0.357 0.361 0.403 0.417 0.442 0.423
720 0.363 0.366 0.443 0.472 0.431 0.484 0.450

ECL

24 0.269 0.264 0.452 0.472 0.363 0.726 0.317
48 0.300 0.302 0.447 0.504 0.382 0.786 0.341
168 0.345 0.350 0.407 0.624 0.442 0.773 0.387
336 0.386 0.384 0.493 0.618 0.481 0.788 0.407
720 0.450 0.514 0.513 0.646 0.480 0.818 0.458

WTH

24 0.211 0.211 0.386 0.278 0.255 0.291 0.212
48 0.264 0.264 0.386 0.315 0.338 0.329 0.262
168 0.354 0.341 0.440 0.390 0.416 0.391 0.345
336 0.390 0.412 0.449 0.419 0.457 0.420 0.397
720 0.450 0.475 0.475 0.468 0.464 0.495 0.457

Note: A lower MAE indicates a better prediction. The best results are highlighted in bold and the next best result is highlighted with an
underline.
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Compared to TCN, our method brings improvement in all cases on ETTh1, ETTh2, and ECL
datasets, and brings improvement in 7/10 cases on WHT datasets. It achieved better results than
TCN, with an average MSE reduction of 19.4%. In the short-term forecasting of WTH, the results
of TSCND and TCN are similar for the following reasons. The time series of the WTH dataset is
relatively stationary, thus the DCM method is of little help to the model. And when the prediction
length is short, this advantage of SDC using subsequences instead of elements to extract features is
not obvious, so TSCND and TCN perform similarly. However, when predicting long-term time series,
TSCND is superior to TCN.

To evaluate the efficiency of our proposed model in handling inputs of different lengths, we chose
PatchTST and TCN for comparison. We compared the time required for training each model for 1
epoch on the ETTh2 dataset under different input sequence lengths. The results are shown in Table 3.
Compared with PatchTST and TCN, it reduces training time by over 40% on average. The reason for
the faster training speed of TSCND compared to TCN is that (1) TSCND uses only one convolutional
layer per layer, while TCN uses two convolutional layers per layer. (2) TSCND is designed with the
number of layers adjusted according to the length of the inputs, while TCN has a fixed number
of layers. TSCND uses fewer layers when processing short inputs. (3) Since the stride length of the
convolutional layers in TCN is shorter than in TSCND, the elements of each layer in TCN participate
in the convolution more times.

Table 3: Time taken by each model to train for an epoch on the ETTh2 dataset

Input length Ours PatchTST TCN

24 2.43 s 5.23 s 6.28 s
48 2.69 s 5.70 s 6.30 s
168 4.06 s 6.26 s 6.41 s
336 4.33 s 7.09 s 7.13 s
720 5.01 s 7.18 s 7.61 s

4.6 Ablation Studies

To evaluate the proposed method for addressing the distribution shift problem, we conducted
experiments on the ETTh1 dataset using our proposed method, the Revin method (Revin) [39], and
the NLinear method (SubLast) [10]. The experimental results are shown in Table 4, and it can be
seen that our method achieves the best performance in almost all cases. Compared with the original
input, our method yields an overall 52.6% relative MSE reduction, indicating the effectiveness of the
proposed method. We conducted experiments using CPU AMD Ryzen 7 5800 to compare the time
taken by our method with the other methods. The results of CPU times are shown in Table 5. Our
method takes more time than the SubLast method but much less time than the Revin method. This
time is almost negligible compared to the overall training time of the model. Therefore, we believe that
our method remains an alternative to SubLast method where efficiency is pursued.

To test whether a subsequence can capture more temporal dependencies than a single element, we
tested three different structures of the Decoder Layer for making predictions using SDC output.

Structure A: This is also the structure as that in TSCND. The structure uses the whole output
sequence to predict each future time point, which is shown as Structure A in Fig. 5.
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Table 4: The MSE results of TSCND on the ETTh1 dataset using three different methods to address
the distribution shift problem

Predicted length Origin Ours Revin [39] SubLast [10]

24 0.044 0.027 0.029 0.028
48 0.067 0.040 0.041 0.040
168 0.110 0.073 0.087 0.071
336 0.131 0.085 0.095 0.089
720 0.311 0.089 0.111 0.097

Table 5: The comparison of CPU times taken by methods for addressing distribution shift

Predicted length Ours Revin SubLast

168 2.23 ms 3.31 ms 1.23 ms
336 6.08 ms 15.62 ms 4.71 ms
720 9.41 ms 21.45 ms 8.42 ms

Figure 5: Three different decoding structures

Structure B: In this structure, each single output element of the Multi-layer SDC is used to predict
a time point independently, which is shown as Structure B in Fig. 5.

Structure C: This is similar to the dilated causal convolution, where only one output element can
obtain information about the whole input sequence. The structure predicts each time point using a
single element of the Multi-layer SDC outputs, which is shown as Structure C in Fig. 5.

We conducted experiments using above structures on the ECL dataset, and the experimental
results are shown in Fig. 6. The prediction error of Structure A is much lower than the other two
structures under all lengths, especially for long lengths. Using output sequences rather than single
elements for prediction improves prediction accuracy, indicating that SDC can enhance feature
extraction by using subsequences to extract features from receptive fields.
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Figure 6: Time series forecasting results of three different decoding structures on the ECL dataset

5 Conclusions

This paper proposes a temporal subsequence-based convolutional network with difference for
time series forecasting, with two effective modules: (i) SDC, which extracts information from a
receptive field via a subsequence rather than a single element, and multiple convolutional filters are
used at each layer to enable the elements in the same subsequence to share a receptive field. These
designs allow the receptive fields of all final output elements to cover the entire input sequence, thus
reducing the loss of information in the dilated convolution. (ii) DCM, which can effectively solve
the problem of distribution shift. The method reduces the discrepancies between and within input
sequences through difference operations. By restoring the original input information to the outputs,
the method can compensate for the loss of information due to difference operations.

We conducted experiments on commonly used time series datasets. Firstly, TSCND outperforms
the SOTA method on most of the MAE and MSE metrics, which indicates that TSCND is effective
in both short-term and long-term time series forecasting. Secondly, the experiments on training time
demonstrate the advantage of TSCND in efficiency. Finally, ablation experiments show that DCM
is useful in mitigating the distribution shift problem and the use of subsequences instead of single
elements in the SDC method can enhance the feature extraction capability.

In future work, we will further study from the following directions: Firstly, the convolution
filter size and hidden layer dimension of the proposed model are important hyperparameters. They
are currently set manually relying on experience, and it would be valuable to study the automatic
selection of these hyperparameters. Then we will explore combining the proposed SDC with research
on heterogeneous information systems for multivariate time series forecasting. Finally, we will consider
the possibility of the SDC as an alternative to dilated causal convolution for time series classification
and anomaly detection.
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