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ABSTRACT

This paper focuses on wireless-powered communication systems, which are increasingly relevant in the Internet
of Things (IoT) due to their ability to extend the operational lifetime of devices with limited energy. The main
contribution of the paper is a novel approach to minimize the secrecy outage probability (SOP) in these systems.
Minimizing SOP is crucial for maintaining the confidentiality and integrity of data, especially in situations
where the transmission of sensitive data is critical. Our proposed method harnesses the power of an improved
biogeography-based optimization (IBBO) to effectively train a recurrent neural network (RNN). The proposed
IBBO introduces an innovative migration model. The core advantage of IBBO lies in its adeptness at maintaining
equilibrium between exploration and exploitation. This is accomplished by integrating tactics such as advancing
towards a random habitat, adopting the crossover operator from genetic algorithms (GA), and utilizing the global
best (Gbest) operator from particle swarm optimization (PSO) into the IBBO framework. The IBBO demonstrates
its efficacy by enabling the RNN to optimize the system parameters, resulting in significant outage probability
reduction. Through comprehensive simulations, we showcase the superiority of the IBBO-RNN over existing
approaches, highlighting its capability to achieve remarkable gains in SOP minimization. This paper compares
nine methods for predicting outage probability in wireless-powered communications. The IBBO-RNN achieved the
highest accuracy rate of 98.92%, showing a significant performance improvement. In contrast, the standard RNN
recorded lower accuracy rates of 91.27%. The IBBO-RNN maintains lower SOP values across the entire signal-to-
noise ratio (SNR) spectrum tested, suggesting that the method is highly effective at optimizing system parameters
for improved secrecy even at lower SNRs.
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1 Introduction

Wireless-powered communication (WPC), a transformative paradigm in wireless communica-
tions, encompasses technologies such as wireless power transfer (WPT) and simultaneous wireless
information and power transfer (SWIPT) [1]. WPT enables the wireless transmission of electrical
power from a source to electronic devices, removing the need for physical connectors. Notable appli-
cations include wireless charging for mobile devices, biomedical implants such as pacemakers, and
self-sustained sensor networks for environmental monitoring. SWIPT, on the other hand, combines
power transfer with data transmission [2]. It empowers devices to recharge while simultaneously
receiving data, opening doors for applications like solar-powered sensor networks, enhanced IoT
devices in remote areas, and energy-harvesting communications for scenarios where traditional power
sources are impractical. These innovations promise to revolutionize the Internet of Things (IoT)
by increasing device autonomy and addressing some of the most pressing challenges in wireless
communications [3–5].

While the concept of WPC opens the door to a vast array of opportunities, it is not devoid of
challenges. A comprehensive understanding of these challenges is vital to harness the full potential of
this paradigm [6]. These challenges include optimizing energy harvesting efficiency, improving data
transmission rates, and ensuring system reliability under dynamic environmental conditions. In this
context, security stands as a paramount concern. With the rapid adoption of WPC technologies,
safeguarding the confidentiality and integrity of data transmission becomes imperative. This is
precisely where the concept of secrecy outage probability (SOP) comes into play. SOP is a fundamental
metric that quantifies the vulnerability of communication links to information leakage. It assesses
the likelihood that the secrecy capacity of a wireless-powered communication system falls below a
certain threshold, rendering it susceptible to security breaches [6–10]. The significance of minimizing
SOP cannot be emphasized enough, as it is intricately linked to data security levels, particularly
in situations where the transmission of sensitive information is a central concern. Attaining the
utmost reduction in SOP plays a vital role in upholding the highest standards of data privacy and
network robustness [11–15]. SOP minimization embodies a critical optimization problem. It demands
the orchestration of numerous system parameters, such as the allocation of energy resources, the
determination of transmission power, and the management of signal-to-noise ratios. This problem’s
intricacy is accentuated by the dynamic and often unpredictable nature of wireless channels, leading
to variations in communication quality and potentially disruptive interferences. Achieving the lowest
possible SOP is not solely a matter of security but a multifaceted challenge that involves the continuous
balancing act of optimizing security while preserving operational efficiency [16–20].

1.1 Related Works

Wireless-powered communication networks have garnered significant attention due to their
potential to enhance energy efficiency and extend network lifetime. One critical aspect of such
networks is ensuring the security and confidentiality of communication, particularly in the presence
of eavesdroppers. This section provides an overview of recent research related to secrecy outage
probability minimization in wireless-powered communications. In their work, Cao et al. [1] introduced
a joint artificial noise and power allocation (JAP) scheme for ensuring reliability and security in
wireless-powered non-orthogonal multiple access (NOMA) systems. The study presents closed-form
expressions for connection outage probability (COP), SOP, and effective secrecy throughput (EST).
The proposed JAP scheme was found to outperform benchmark schemes, making it a notable
contribution in the field of wireless-powered secure communications. Lee et al. [2] addressed secrecy
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outage minimization in wireless-powered relay networks with destination-assisted cooperative jam-
ming. Their work introduced power splitting-based relaying (PSR) and time switching-based relaying
(TSR) protocols to control energy harvesting and minimize secrecy outages. The results demonstrated
that these protocols could achieve near-optimal secrecy outage performance, even without precise
knowledge of eavesdropper locations, under high signal-to-noise ratio (SNR) conditions. Chen et al. [3]
focused on the secrecy communication of a wirelessly powered network, proposing protocols that
combine maximum ratio transmission with zero-forcing (ZF) jamming to enhance physical layer
security. They provided closed-form expressions for connection and secrecy outage probabilities,
along with optimal time-switching ratio and power allocation for secrecy throughput maximization
in high SNR regimes. Their proposed schemes effectively improved security in wireless-powered
networks. Moon et al. [4] considered a wireless-powered communication network with an energy
harvesting (EH) jammer, addressing secrecy performance optimization. Their work involved the
transmission of energy signals and information in separate phases, effectively thwarting eavesdropping
attempts. The research provided insights into maximizing secrecy rates under various channel state
information scenarios, emphasizing the advantage of optimal power allocation for security in EH
systems. Li et al. [5] explored the performance of friendly jammer selection-aided multiuser scheduling
for wireless networks. They proposed random jammer selection-aided multiuser scheduling (RJS-
MUS) and optimal jammer selection-aided multiuser scheduling (OJS-MUS) schemes, analyzing
their impact on secrecy outage probability. Their research demonstrated that, under specific SNR
conditions, the proposed schemes outperformed conventional non-jammer selection-aided multiuser
scheduling (NJS-MUS), highlighting the potential of power allocation strategies to enhance security.
Yan et al. [6] investigated transmit antenna selection in a multiple-input-multiple-output (MIMO)
energy-harvesting system. Their work introduced optimal antenna selection (OAS) and suboptimal
antenna selection (SAS) schemes, examining the secrecy performance of these schemes under various
channel state information scenarios. Notably, their results showed that full knowledge of CSI led
to better secrecy performance, emphasizing the importance of CSI in achieving security in MIMO
systems.

Jiang et al. [7] contributed to the field by studying secrecy performance in wirelessly powered
wiretap channels. Their work involved exploring multi-antenna transmission schemes and deriving
closed-form expressions for achievable secrecy outage probability and average secrecy rate. It empha-
sized the role of channel state information in achieving substantial secrecy diversity gain, furthering
our understanding of security in wireless-powered networks. Zen et al. [8] explored wirelessly powered
backscatter communications in the context of smart sustainable cities. Their work addressed the
secrecy performance of WP-BackComs using a stochastic geometry framework. They considered fac-
tors such as imperfect successive interference cancellation, non-linear energy harvesting, and energy-
causality constraints in the analysis. The results emphasized the importance of optimizing reflection
coefficients to minimize SOP and the potential benefits of optimal strategies in WP-BackComs.
Xu et al. [9] studied resource allocation for secure communications in cooperative cognitive wireless-
powered communication networks. Their research proposed a cooperative protocol for secondary
users, focusing on maximization of the secondary user’s ergodic rate while ensuring primary user
security. Their algorithms considered perfect and imperfect channel state information and addressed
both collusive and non-collusive eavesdroppers, highlighting the significance of secure resource
allocation in cognitive wireless-powered networks. Tang et al. [10] addressed secrecy outage probability
in wireless-powered cognitive radio networks. Their work focused on secure information transmission
for secondary systems sharing the spectrum with primary networks and considered the presence of
eavesdroppers. The closed-form analytical expressions revealed the trade-offs between primary outage
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probability, secondary secrecy outage probability, and the probability of non-zero secrecy capacity.
Their research also discussed optimal time-switching and power-splitting strategies to maximize
secondary secrecy outage probability under primary constraints, highlighting the importance of
securing cognitive radio networks. The work by Lee et al. [11] delved into deep-learning-assisted
wireless-powered secure communications with imperfect channel state information. They aimed to
find robust transmit power control strategies to maximize secrecy rates while accounting for imperfect
channel state information (CSI). Their research included iterative methods and a deep learning (DL)-
assisted approach to tackle the no convexity of the problem, demonstrating the robustness of DL-
assisted strategies against channel errors. Liu et al. [12] proposed a tag selection scheme to enhance
security in passive backscatter communication systems with multiple tags and eavesdroppers. They
analyzed SOP while considering a non-linear energy harvesting model. Their research introduced
dynamic reflection coefficient optimization and tag selection to maximize the instantaneous secrecy
capacity.

Moon et al.’s research [13] delved into the intricacies of enhancing security in wireless-powered
communication networks by introducing an energy harvesting (EH) jammer, where an eavesdropper
seeks to intercept communication between a user and a hybrid access point (H-AP). Their study
presents a novel approach to this challenge, dividing the communication process into two key phases:
energy transfer (ET) and information transfer (IT). During the ET phase, the H-AP transmits an
energy signal to replenish the batteries of both the EH user and the EH jammer. In the subsequent IT
phase, the user sends its information signal to the H-AP, while the EH jammer leverages the harvested
energy to generate jamming signals aimed at interfering with the eavesdropper. This innovative
approach assumes only knowledge of the channel distribution information (CDI) of the eavesdropper,
and it focuses on minimizing the secrecy outage probability through an optimized time allocation
between the two phases. To manage complexity, Moon et al. offered a simplified closed-form solution,
demonstrating through simulations that their method closely approaches the optimum performance.
Their research provides insights into secure wireless-powered communication networks, particularly in
scenarios with energy-harvesting jammers and partial channel information. Chen et al. [18] researched
a unique hierarchical game model for enhancing physical layer security (PLS) through dynamic
three-party collaborations. This system focuses on legitimate users (LUs) who strive to securely send
confidential data to their respective base stations (BSs) via uplink channels, contending with potential
eavesdroppers (EVs). Additionally, jammers (JAs) exist, which can opt to align with either LUs to boost
their secure data transmission or with EVs to enhance eavesdropping capabilities, in return for possible
rewards. They introduced a deep reinforcement learning (DRL) strategy for achieving equilibrium with
long-term performance assurances in this hierarchical game. Through simulations, they demonstrated
the effectiveness of their method, highlighting its advantages over similar approaches.

1.2 Paper Motivations and Contributions

The challenges involved in SOP minimization span the realms of both cyber security and system
optimization. It requires the development of efficient algorithms [21–25]. That can adapt to evolving
network conditions, effectively allocate power and resources, and dynamically adjust to potential
security threats [5–8]. Furthermore, the integration of machine learning (ML) techniques introduces
a new layer of complexity, but also the potential for groundbreaking advancements [26–28]. In the
literature of wireless-powered communication, there have been notable efforts aimed at minimizing
SOP as we investigated in Subsection 1.1. However, it is evident that while significant progress has
been made, particularly in enhancing security against eavesdroppers, most existing research tends
to focus on scenarios with specific conditions, such as high or perfect CSI. These studies often
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present strategies optimized for idealized conditions and may not fully encapsulate the challenges
encountered in more variable and realistic wireless network environments. Additionally, many of these
approaches concentrate on theoretical models and may not sufficiently address the practical challenges
of deployment in real-world scenarios. Moreover, proposing an efficient optimization scheme to
tackle this challenge has proven to be a formidable task. The primary motivation of this work lies
in advancing the state-of-the-art in wireless-powered communications. By minimizing SOP and, in
turn, enhancing the secrecy performance, this paper not only contributes to the evolution of wireless-
powered communication but also exemplifies the potential of combining nature-inspired optimization
methods with advanced ML methods to address complex communication challenges [3–5]. ML tech-
niques are now extensively and effectively utilized across various sectors [29–31]. Specifically, recurrent
neural networks (RNNs) are increasingly used to reduce outage probabilities in wireless-powered
communication, offering a smart solution to key challenges in today’s wireless networks [25]. Their role
is crucial for improving the dependability and effectiveness of these systems, particularly in managing
the fluctuating and hard-to-predict nature of wireless channels. RNNs become essential in such
scenarios because wireless communication faces various uncertainties like constantly changing channel
conditions, variable energy harvesting rates, and unpredictable movements of users. They excel in fine-
tuning power distribution and managing resources to lower the chances of outages, thereby boosting
system reliability. Consequently, RNNs play a pivotal role in enhancing the performance of wireless-
powered communication systems by continuously fine-tuning energy and resource allocation [26].

While DL algorithms can play a crucial role in reducing SOP, the primary difficulty is in adjusting
the DL’s hyper-parameters. Currently, meta-heuristic algorithms are used for fine-tuning network
parameters. Training RNNs poses significant challenges, particularly with traditional gradient-based
techniques, which often encounter limitations such as getting trapped in local minima and struggling
with non-differentiable objectives [32–34]. These issues highlight the need for alternative optimization
strategies to enhance RNN training. Biogeography-based optimization (BBO) emerges as a promising
approach, illustrating the effectiveness of meta-heuristic methods in addressing these challenges. BBO
offers a unique way of balancing exploration and exploitation, potentially avoiding local minima
and improving training results. However, standard BBO has its drawbacks, including a propensity
to get stuck in local optima and inefficient exploration of the search space, leading to suboptimal
outcomes [35]. Improving BBO could lead to more powerful and versatile optimization algorithms,
better equipped to address the complex problems encountered in real-world optimization scenarios.
In light of these challenges and the pressing need for heightened security, this paper introduces a
novel approach aimed at the minimization of SOP in wireless-powered communications. Our proposed
method harnesses the power of an improved BBO (IBBO) to effectively train an RNN. This unique
synergy between the IBBO and the RNN’s capacity for learning complex relationships within wireless-
powered communication scenarios promises to enhance system performance significantly. The main
contributions of this paper can be summarized as follows:

• Our work introduces a novel approach to address the pressing challenge of minimizing SOP
in the context of WPC. SOP, a pivotal metric, quantifies the vulnerability of communication
links to information leakage, and our scheme offers a fresh perspective on how to effectively
reduce it.

• In the proposed approach, this paper introduces an innovative IBBO algorithm, tailored to
boost the weights and biases in RNN models (named IBBO-RNN). The proposed IBBO
introduces an innovative migration model, detailed in Eqs. (11)–(13). This new approach aims to
create a more intelligent migration structure, thus hastening the algorithm’s progression towards
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the optimal solution. The core advantage of IBBO lies in its adeptness at maintaining equilib-
rium between exploration and exploitation. This is accomplished by integrating tactics such as
advancing towards a random habitat, adopting the crossover operator from genetic algorithms
(GA), and utilizing the global best (Gbest) operator from particle swarm optimization (PSO)
into the IBBO framework.

• The performance of the proposed IBBO-RNN is compared against eight ML models, namely
capuchin search algorithm (CapSA), chimp optimization algorithm (ChOA), linear BBO, log-
arithmic BBO, backpropagation RNN (BP-RNN), long short-term memory (LSTM), support
vector machine (SVM), and k-nearest neighbors (KNN).

• To validate our contributions, we conduct comprehensive simulations. The results unequivocally
illustrate the effectiveness of our approach. By significantly reducing SOP, our method not
only advances the state-of-the-art in WPC but also exemplifies the potential of integrating
nature-inspired optimization techniques with advanced neural networks. This synergy addresses
intricate communication challenges, ensuring higher data confidentiality and network integrity.

1.3 Paper Organization

The structure of the paper is organized as follows: Section 2 delves into the research model,
encompassing the system model, SOP problem formulation, the proposed IBBO, and the evolutionary
RNN. Section 3 presents the experimental findings and discussions, providing crucial insights. The
paper concludes in Section 4 with a summary of the key contributions and the broader implications
of the research.

2 Research Model and Methodology

This section explores the research model, which includes the system model, the formulation of the
SOP problem, the proposed IBBO approach, and the evolutionary RNN.

2.1 System Model

The considered system model, as illustrated in Fig. 1, consists of a wireless-powered communi-
cation network. Within this setup, a legitimate user we refer to as Alice receives her power wirelessly
from a distant power beacon (PB). The objective for Alice is to securely send a private message to Bob,
another authorized receiver, across a wireless channel subject to fading. Concurrently, an eavesdropper,
whom we call Eve, is attempting to capture and decipher the message from the signals that reach her.

Figure 1: System model depicting the secure wireless power communication



CMC, 2024, vol.78, no.3 3977

For ease of analysis while maintaining the system’s generality, it is assumed that each node in the
network is equipped with only one antenna. Consequently, the power that Alice receives at any specific
instant can be quantified by the Eq. (1):

PR = PTLTdα

TgT (1)

Here, PT represents the power transmitted by the power beacon (PB), LT combines the effects
of antenna gains and frequency-dependent propagation losses, dT is the distance between the power
beacon and Alice, α > 2 is the path-loss exponent, and gT = |hT|2 signifies the normalized fading power
channel coefficient between the power beacon and Alice, where E[gT ] = 1 (indicating an average value
of 1). With these assumptions, the instantaneous SNR at user K, where K can be either Bob (B) or
Eve (E), can be defined as Eq. (2):

γK = PTLT

σ 2
Kdα

Tdα
K

|hT |2 |hK |2 = γ KgTgK (2)

Here, σ 2
K represents the noise power at Bon/Eve, γ K is the average SNR, and gK = |hK |2 is the

corresponding fading coefficient with an average value of 1. Furthermore, we assume that all channels
in the system are quasi-static fading channels, meaning they remain constant during the transmission
of an entire code word and change randomly from one transmission block to another. These channels
are modeled using the independent Rayleigh distribution. The goal of this paper is to minimize the
SOP, which is the probability that the instantaneous secrecy capacity falls below a threshold target
secrecy rate; RS. The secrecy capacity CS is given by the difference between the capacities of the main
channel (Alice to Bob) and the eavesdropper’s channel (Alice to Eve):

CS = [CB − CE]+ (3)

where CB = log2(1 + γB) and CE = log2(1 + γE), and [X ]+ denotes the positive part of X as max{CB −
CE, 0}. Therefore, the SOP can be given by Eq. (4):

PSOP = Pr (CS ≤ RS) (4)

Using the definition of CS, we can deduce a mathematical representation for SOP:

PSOP = Pr
(

log2

1 + γB

1 + γE

≤ RS

)
(5)

Thus, according to Eq. (2), the cost function can be formulated as Eq. (6):

f (PT , LT , dT , α, σ 2
B , σ 2

E , dB, dE, hT , hB, hE) = Pr
(

log2

1 + γB

1 + γE

≤ RS

)
(6)

Under the following constraints:

0 ≤ PT ≤ Pmax

α > 2 is a constant value.

hT , hB, and hE follow independent Rayleigh distributions with the mean value of aT , aB, and aE,
respectively.
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2.2 Standard BBO

The BBO algorithm, introduced by Dan Simon in 2008, is inspired by biogeography, a field that
examines species distribution and their migration and adaptation processes in different geographic
areas [35]. BBO utilizes the concepts of immigration, emigration, and speciation from biogeography
to find optimal solutions in multi-objective optimization problems. In BBO, potential solutions are
conceptualized as “habitats,” each with a habitat suitability index (HSI) indicating its fitness. The
algorithm operates through migration, mutation, and elitism. Habitats with higher fitness values
are more likely to share their features with others, facilitating the spread of advantageous features.
Conversely, habitats with lower fitness levels are prone to receiving features from others, potentially
enhancing their quality. The emigration rate of a habitat depends on its fitness relative to the
population’s average fitness, with higher fitness habitats having higher emigration rates. Similarly, the
likelihood of a habitat receiving immigrants correlates with the emigration rates of other habitats.
The mathematical foundation of linear BBO is encapsulated in Eqs. (7), (8) that detail its operational
mechanisms [35].

μj (k) = E ×
(

k (j)
N

)
(7)

λj (k) = I ×
(

1 − k (j)
N

)
(8)

where μk(j) signifies the emigration rate, λk(j) denotes the immigration rate, kj refers to the species’ rank,
N represents the total population size, E and I are the maximum rates of emigration and immigration,
respectively. Within BBO, the information exchange between habitats is facilitated probabilistically
through the emigration and immigration rates of each solution [35]. The migration process in standard
BBO is described by Eq. (9):

Hj (SIVs) ← Hj (SIVs) + Hi (SIVs) (9)

where Hj is the host habitat and Hi is the guest habitat. According to the Eq. (9), the host habitat
receives information from the guest habitat and itself. Also, the mutation operator defines as Eq. (10):

mj = mmax ×
(

1 − pj

pmax

)
(10)

where mmax is chosen by user, pj reveals the probability of species count and pmax is the highest value of
pj.

2.3 Improved BBO

The linear BBO algorithm, like other optimization methods, faces several challenges that affect
its applicability and efficiency. Its performance is sensitive to the precise tuning of various parameters,
such as migration and immigration rates, which need careful adjustment for different problem
domains. This sensitivity can make BBO challenging to apply broadly without specific tuning. Addi-
tionally, BBO tends to converge slowly, particularly in complex and high-dimensional problems, often
requiring numerous iterations due to its probabilistic migration and immigration rules. The algorithm
also struggles with effectively exploring the entire search space, especially in rugged, multi-modal
landscapes, as it tends to focus on regions with higher fitness values, potentially overlooking other
viable areas. Scalability is another issue, particularly with very high-dimensional problems or those
with numerous constraints, as maintaining and updating habitat populations can be computationally
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intensive. Furthermore, like many evolutionary algorithms, BBO faces difficulties in striking the right
balance between exploration and exploitation, a critical aspect of its overall effectiveness [35].

To address these limitations, researchers have proposed various enhancements and modifications,
such as hybridizing BBO with other techniques, introducing diversity-preserving mechanisms, or
addressing parameter tuning issues. Recent research, particularly studies on Markov theory-based
models, has explored the impact of different migration models on BBO’s efficiency. Various models
like linear BBO, quadratic BBO, sinusoidal BBO, generalized sinusoidal BBO, and exponential-
logarithmic BBO have been introduced. The paper under discussion introduces a novel migration
model for BBO, described in Eqs. (11)–(13), which proposes unique migration rates for each habitat.
This new approach aims to create a smarter migration structure to accelerate convergence to the best
solution, differing from previous models that used a single function for migration rates and treated all
habitats uniformly.⎧⎪⎪⎨
⎪⎪⎩

μk(j) = 2E
3

×
(

−cos
(

k (j) π

N

)
+ 1

)

λk(j) = 2I
3

×
(

cos
(

k (j) π

N

)
+ 1

) k(j) <
N
5

(11)

⎧⎪⎪⎨
⎪⎪⎩

μk(j) = E
2

× Ln
(

k (j)
N

+ 1
)

λk(j) = I
2

× exp
(

−k (j)
N

) N
5

≤ k(j) ≤ 2N
5

(12)

⎧⎪⎪⎨
⎪⎪⎩

μk(j) = 2E
3

×
(

tan h
(

k (j) π

N
− 2π

7

)
+ 1

)

λk(j) = 2I
3

×
(

−tan h
(

k (j) π

N
− 2π

7

)
+ 1

) k(j) >
2N
5

(13)

Selecting the six specified mathematical functions for migration rates, the IBBO employs a range
of functions suited to combining habitats with diverse HSI, which enhances its overall effectiveness. In
this paper, the GA’s crossover operator is employed to enhance the exploitation capabilities of the BBO.
During the optimization process, in addition to the regular migration of BBO, the crossover operator
can be applied to selected pairs of habitats. This operation allows for a more diversified exchange of
features between habitats, potentially leading to more effective exploration and exploitation of the
search space. It can help in overcoming local optima issues by providing a mechanism to escape and
explore new areas of the solution space. Additionally, the mechanism of moving towards the Gbest
from the PSO algorithm has been utilized to improve the performance of the BBO. This concept can
be applied to BBO by allowing habitats to be influenced not just by their features but also by the best
solutions found in their neighborhood. This mimics the way particles in PSO are influenced by their
neighbors. By moving habitats towards the best experiences of their neighbors, the BBO algorithm
can more effectively explore the solution space and exploit the best-known solutions. This approach
encourages convergence towards optimal or near-optimal solutions by leveraging collective knowledge.

Fig. 2 presents an example of the operators in the IBBO. Moving towards a random habitat
involves occasionally directing a habitat towards a completely random position in the solution space.
Such random movements can prevent the algorithm from getting stuck in local optima. It introduces an
element of randomness that helps to explore potentially unvisited regions of the search space. While the
PSO-inspired mechanism focuses on exploiting known good solutions, the random habitat movement
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ensures that the algorithm does not overly focus on certain areas, thus maintaining a balance
between exploration and exploitation. The key to effective optimization is balancing exploration and
exploitation. Integrating moving towards a random habitat, the crossover operator from GA, and
global best (Gbest) operator from PSO into BBO can help in maintaining this balance, as it introduces
a new layer of complexity and adaptability to the search process. By incorporating these techniques, the
BBO algorithm becomes more adaptable and robust, capable of handling a wider range of optimization
problems.

RMSE = 0.750.080.070.060.050.040.030.020.01Habitat 1

RMSE = 0.690.160.150.140.130.120.110.100.09Habitat 2

RMSE = 0.650.240.230.220.210.200.190.180.17Habitat 3

RMSE = 0.850.320.310.300.290.280.270.260.25Habitat 4

RMSE = 0.620.400.390.380.370.360.350.340.33Habitat 5

RMSE = 0.810.480.470.460.450.440.430.420.41Habitat 6

RMSE = 0.540.320.470.220.130.280.350.020.17Update Host Habitat

Migration 

Select:
Migration rates (µ, �)

Select elite habitat
(Gbest from PSO)

Select random habitat 
(for exploration)

Select parents:
Roulette wheel of GA

Figure 2: Illustration of IBBO operators utilized for weights and biases training

2.4 Evolutionary RNN

RNNs are a unique subset of artificial neural networks tailored for processing sequential data,
setting them apart from traditional feed-forward neural networks. Their defining feature is a feedback
loop that maintains a ‘memory’ of previous inputs, enabling the handling of variable input lengths
and the integration of past information into current input processing [25]. Comprising multiple layers,
including an input layer for sequence data, a recurrent layer that refeeds outputs into the network,
and an output layer for final outcomes, RNNs utilize activation functions such as sigmoid, tanh,
and ReLU to learn complex patterns. These networks are highly effective in tasks like language
modeling, sentiment analysis, machine translation, text generation, and speech recognition, as well
as in predicting time series data and, in combination with CNNs, generating images and videos [26].

However, RNNs encounter significant challenges, notably in capturing long-term dependencies
and grappling with vanishing or exploding gradients during training. Their primary training method,
gradient-based optimization techniques, has inherent limitations, including the risk of getting trapped
in local optima, leading to less than optimal training outcomes. Moreover, these methods are compu-
tationally complex and time-consuming, especially in large networks or with long sequences, due to the
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extensive computation of gradients across many layers and time steps. The vanishing gradient problem,
where gradients become too small to effect meaningful learning, particularly hampers standard RNNs
in handling long sequences and capturing long-term data dependencies. Conversely, the exploding
gradient issue causes overly large updates to network weights, destabilizing training. These challenges
collectively constrain the efficiency and applicability of RNNs in certain real-world applications.

Meta-heuristic algorithms [36–39], including BBO, are gaining recognition as effective tools for
training the weights and biases of RNNs, offering several advantages over traditional gradient-based
methods. One of their primary benefits is the ability to avoid getting trapped in local optima, a common
issue with gradient-based techniques that follow the steepest descent. Meta-heuristics, in contrast,
employ mechanisms to explore the search space more broadly and escape local minima, thus increasing
the likelihood of identifying the global minimum. These algorithms are not dependent on the gradient
of the error function, making them well-suited for optimizing functions that are non-differentiable,
discontinuous, or highly nonlinear, which often poses challenges for gradient-based methods. This
attribute is particularly beneficial in complex RNN architectures with a non-smooth error surface.

In this paper, the IBBO is utilized for training the RNN due to its ability to effectively balance
exploration and exploitation. This equilibrium is key in training RNNs, as it allows the algorithm to
investigate various weight and bias configurations without prematurely converging on a solution. The
adaptive nature of the BBO, characterized by migration rates that change based on the quality of the
habitats, enables the algorithm to modify its search strategy to suit the specific needs of the problem
at hand. Such adaptability is particularly beneficial in training RNNs within dynamic environments,
where data patterns may evolve over time. Fig. 3 shows the structure of the IBBO-RNN, and Fig. 4
shows the structure of a habitat in IBBO. Additionally, the cost function used in the IBBO is detailed
in Eq. (14).

Mean Square Error(MSE) = 1
k

k∑
i=1

(Oi − Di)
2 (14)

where k = the total number of samples, Oi = System output, Di = Desire.

3 Results

This section evaluates the efficiency of the IBBO-RNN approach. Its performance are measured
using eight well-known and advanced ML algorithms: CapSA, ChOA, linear BBO, logarithmic BBO,
BP-RNN, LSTM, SVM, and KNN. The execution of various algorithms is carried out in the R
Studio software environment. Detailed information regarding the calibration parameters linked to
these algorithms can be found in Table 1. Calibrating meta-heuristic algorithm parameters is essential
for optimal performance and requires meticulous attention. It involves determining the most effective
parameter value combinations for efficient algorithm functioning. Before evaluating the algorithm’s
performance, it is vital to establish these optimal settings.

In this paper, we use a trial-and-error method for parameter calibration, systematically altering
each parameter and observing the effects while maintaining all other variables constant. For example,
in an algorithm with various parameters like learning rates, convergence thresholds, or population
sizes, we individually test each to see how they influence the algorithm’s behavior. A fitness function
is used to evaluate the effectiveness of these parameter settings. This function provides a standard to
assess the algorithm’s performance with different parameter combinations. The possible range for each
parameter is wide, but practical limitations necessitate selecting and presenting a manageable subset
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of varied parameter instances. Table 1 displays this selection, offering a glimpse into the trial-and-
error process by highlighting the parameter values that improved or reduced algorithm performance
in certain cases.

Feedback Loop

Input 
Layer

RNN Layer

RNNRNN Dense
Layer

Output 
LayerRNN

Tanh

Tanh

IBBO

Figure 3: The structure of the proposed IBBO-RNN

Habitat … …

Figure 4: The structure of a habitat in IBBO

Table 1: Parameter setting of algorithms through the trial and error method

Algorithm Parameter Value

The probability range for migrating
into for each gene

[0, 1]

Maximum emigration (I) and
immigration (E) coefficient

1

IBBO and Elitism percent 11%
other BBO Mutation rate 0.09

Population size 120

(Continued)



CMC, 2024, vol.78, no.3 3983

Table 1 (continued)

Algorithm Parameter Value

Iteration 300
Velocity control constants 1.00
Inertia parameter 0.65

CapSA Balance and elasticity factors 0.72, 9
Population size 120
Iteration 300
a [−1, 1]

ChOA f Linearly decreased from 2 to 0
Population size 120
Iteration 300
Number of hidden layers {10, 15, 20}
Number of neurons in hidden layers {50, 70, 100}

RNN Learning rate 0.08
Dropout rate 0.2
Activation Tanh and sigmoid
Optimizer IBBO and SGD
Number of hidden layers {8, 10, 12}
Number of neurons in hidden layers {40, 70, 110}

LSTM Learning rate 0.10
Recurrent dropout Rate 0.3
Activation ReLU and Tanh
Optimizer Adam
C (regularization parameter) 10

SVM Kernel type Linear
Gamma 0.002
Iteration 300
Number of neighbors (k) 7
Distance metric Euclidean distance

KNN Weights Uniform
Algorithm Kd-tree
Leaf size 30

Fig. 5 illustrates the performance of the SOP of the proposed scheme vs. the different values
of the average SNR at Bob. In this figure, the SOP is inversely related to the SNR at Bob–as the
SNR increases, the SOP decreases, indicating enhanced secrecy performance. The proposed IBBO-
inspired RNN scheme demonstrates superior performance compared to other benchmark algorithms
like KNN, SVM, and BP-based RNN. This can be observed from the steeper slope of the IBBO-based
RNN curve, which indicates a faster reduction in SOP with increasing SNR. Notably, the IBBO-based
RNN maintains lower SOP values across the entire SNR spectrum tested, suggesting that the method
is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.
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Figure 5: SOP performance of the proposed scheme vs. different average SNR at Bob

Fig. 6 presents the SOP performance against various values of RS, which can be interpreted as the
target secrecy rate or the rate of confidential information transmission. The SOP increases with higher
RS, which aligns with the expectation that higher data rates pose a greater challenge for maintaining
secrecy due to increased vulnerability to interception. The IBBO-based RNN again outperforms the
benchmark algorithms across all RS values. However, the rate at which SOP increases with RS is less
steep for the IBBO-based RNN, indicating its robustness in maintaining secrecy even as demands
on the system’s secrecy capacity rise. This demonstrates the efficiency of the proposed method in
managing energy harvesting and data transmission processes under various operational constraints.
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Figure 6: SOP performance of the proposed scheme for different values of RS
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The rest of this section evaluates the effectiveness of the IBBO-RNN and various other methods in
reducing outage probability in wireless-powered communications. This assessment includes perform-
ing tests for sensitivity, accuracy, and specificity and utilizes Eqs. (15)–(17) for calculation.

Sensitivity = TP
TP + FN

(15)

Specificity = TN
TN + FP

(16)

Accuracy = TP + TN
TP + FN + FP + TN

(17)

where, TP = True positive, TN = True negative, FN = False negative, FP = False positive.

Table 2 presents the results from different algorithms designed for outage probability in wireless-
powered communications. The table clearly demonstrates that the IBBO-RNN surpasses others in
terms of sensitivity, specificity, and accuracy across training and validation sets. Specifically, the IBBO-
RNN achieved accuracies of 98.92% and 99.45% in the testing and training datasets, respectively.
Furthermore, it attained sensitivities of 99.14% and 99.65% in the test and train datasets, respectively.
According to Table 2, the IBBO-RNN, CapSA-RNN, and ChOA-RNN algorithms recorded the top
accuracy rates of 98.92%, 96.52%, and 95.62%, respectively, demonstrating a significantly improved
capability in predicting outage probability in wireless-powered communications. In contrast, the BP-
RNN, SVM, and KNN algorithms reported lower accuracy levels, with respective values of 91.27%,
88.81%, and 87.11%. The high sensitivity scores reflect superior algorithmic efficiency. The IBBO-
RNN algorithm achieved the highest sensitivity of 99.14%, marking its exceptional performance
over other models. On the other hand, the BP-RNN, SVM, and KNN algorithms showed lesser
effectiveness.

Table 2: The results of architectures in the test and train datasets

Architectures Training (%) Validation (%)

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

IBBO-RNN 99.65 96.81 99.45 99.14 96.12 98.92
Linear BBO-RNN 95.32 92.47 94.02 94.68 92.09 93.29
Logarithmic
BBO-RNN

95.96 93.27 94.71 95.17 92.58 94.05

CapSA-RNN 98.21 95.29 97.25 97.71 94.68 96.52
ChOA-RNN 97.26 94.53 96.24 96.85 94.03 95.62
BP-RNN 93.12 90.98 92.45 92.41 89.34 91.27
LSTM 93.49 91.15 92.86 92.85 89.69 91.74
SVM 90.18 87.75 89.66 89.49 86.65 88.81
KNN 89.63 86.05 88.77 88.29 85.91 87.11

Figs. 7 and 8 offer a graphical comparison among different architectural models. These models
are ranked according to their performance, with the IBBO-RNN leading, followed by CapSA-
RNN, ChOA-RNN, Logarithmic BBO-RNN, Linear BBO-RNN, LSTM, BP-RNN, SVM, and KNN.
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The rankings reflect the effective training of these architectures using meta-heuristic algorithms,
which have successfully maximized their operational efficiency. Additionally, the accuracy of these
architectures is consistently high across various hybrid DL structures in both the testing and training
datasets. This uniformity in performance indicates that the meta-heuristic algorithms incorporated
into the training regimen have yielded reliable and consistent results across multiple models and
datasets.
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Figure 7: A visual representation showcasing the comparison of algorithms using training datasets
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Figure 8: A visual representation showcasing the comparison of algorithms using validation datasets

Fig. 9 depicts a graphical comparison of the receiver operating characteristic (ROC) curves for
different architectures. The ROC curve visually shows how well a binary classifier, like one that
differentiates between two categories, performs as its discrimination threshold changes. It highlights
the balance between the true positive rate (sensitivity) and the false positive rate (1-specificity) at
various threshold levels. Sensitivity indicates the percentage of true positive cases accurately identified,
whereas specificity denotes the percentage of true negative cases correctly classified. An analysis of
the graph in Fig. 9 reveals that the area under the curve (AUC) for the IBBO-RNN surpasses that
of the other architectures. The AUC is a measure of a classifier’s overall effectiveness, reflecting the
likelihood that a randomly selected positive instance is ranked above a randomly selected negative
one. The greater AUC of the IBBO-RNN indicates its superior accuracy and discrimination capability
relative to the others.

MSE criteria in Table 3 are utilized for evaluating the proposed models. Among these, the IBBO-
RNN architecture shows a lower MSE compared to its counterparts, signifying the effectiveness of
the proposed method in addressing the problem. The IBBO’s key strength lies in its ability to balance
exploration and exploitation. This balance is achieved by incorporating strategies such as moving
towards a random habitat, integrating the crossover operator from GA, and employing the global
best operator from PSO into the IBBO. The IBBO algorithm enhances the parameter optimization
for the RNN, enabling it to more accurately represent and understand the patterns and relationships
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in the data. Fig. 10 illustrates that the IBBO-RNN architecture converges faster than other models.
At epoch 100, the IBBO-RNN nearly reaches the lowest MSE, while other models continue to show
higher MSE values.
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Figure 9: A visual comparison of the ROC curves for different architectures

Table 3: The MSE values of the different models

Architecture MSE

Training datasets Validation datasets

IBBO-RNN 0.00017 0.00082
Linear BBO-RNN 0.18965 0.32584
Logarithmic BBO-RNN 0.10563 0.25185
CapSA-RNN 0.00484 0.01941
ChOA-RNN 0.03974 0.04856
BP-RNN 0.54853 0.61056
LSTM 0.49652 0.58541
SVM 0.61423 0.89854
KNN 0.68452 0.94125
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Figure 10: The convergence trend of architectures
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4 Conclusion

This paper has presented a novel approach to addressing one of the key challenges in the field
of wireless-powered communications, particularly within the context of the IoT: the minimization of
SOP. Our work introduces an IBBO-inspired RNN, a method that blends the strengths of BBO with the
capabilities of RNNs. The core of our approach is the innovative migration model within the IBBO,
which adeptly balances exploration and exploitation through advanced techniques borrowed from
GA and PSO. This balance is critical in optimizing the parameters of the RNN to reduce the SOP
effectively. The IBBO-RNN achieved a remarkable accuracy rate of 98.92%, outperforming the BP-
RNN and other algorithms, and demonstrated a lower MSE alongside a higher AUC. These metrics
underscore not only the method’s efficacy in SOP minimization but also its superiority over existing
approaches. However, this research is not without its limitations and challenges. As with any advanced
computational method, the complexity and computational requirements of the IBBO-RNN can be
considerable. The effectiveness of RNNs heavily relies on extensive labeled data for training, which may
not always be available. Furthermore, while our approach has shown excellent results in simulations,
real-world deployment may present additional challenges, including varying environmental conditions
and hardware limitations.

In conclusion, our work represents a significant advance in the field of wireless-powered com-
munications, particularly in enhancing the security of IoT systems. It opens up new possibilities for
the integration of nature-inspired optimization algorithms with DL architectures. For future work, we
aim to refine the IBBO-RNN to be more computationally efficient and to test its robustness in real-
world scenarios. Additionally, exploring the adaptability of our approach to other types of wireless
communication challenges could further demonstrate its versatility and effectiveness. In our current
paper, we focus on the innovative application and benefits of the IBBO-RNN. For future research,
we plan to extend our comparisons to include deep reinforcement learning (DRL), federated transfer
learning, and game theory-based methods. We believe such an expansion will significantly enhance
the wireless communication field, especially in IoT and security contexts.
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