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ABSTRACT

The application of Intelligent Internet of Things (IIoT) in constructing distribution station areas strongly supports
platform transformation, upgrade, and intelligent integration. The sensing layer of IIoT comprises the edge
convergence layer and the end sensing layer, with the former using intelligent fusion terminals for real-time data
collection and processing. However, the influx of multiple low-voltage in the smart grid raises higher demands
for the performance, energy efficiency, and response speed of the substation fusion terminals. Simultaneously, it
brings significant security risks to the entire distribution substation, posing a major challenge to the smart grid. In
response to these challenges, a proposed dynamic and energy-efficient trust measurement scheme for smart grids
aims to address these issues. The scheme begins by establishing a hierarchical trust measurement model, elucidating
the trust relationships among smart IoT terminals. It then incorporates multidimensional measurement factors,
encompassing static environmental factors, dynamic behaviors, and energy states. This comprehensive approach
reduces the impact of subjective factors on trust measurements. Additionally, the scheme incorporates a detection
process designed for identifying malicious low-voltage end sensing units, ensuring the prompt identification and
elimination of any malicious terminals. This, in turn, enhances the security and reliability of the smart grid
environment. The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated
through simulation experiments. Notably, the scheme outperforms established trust metric models in terms of
energy efficiency, showcasing its significant contribution to the field.
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1 Introduction

The emergence of Intelligent Internet of Things (IIoT) has resulted in the overlap of many
conventional engineering domains with information technology [1], the smart grid being one of them
[2,3]. The application of IIoT in the construction of power distribution network has elevated the
intelligence and automation of distribution operations and inspections, which, in turn, has provided
a strong upgrade and intelligent integration support for the distribution network.

The sensing layer of IIoT in the power distribution network comprises of two components, namely
the edge convergence layer and the end sensing layer [4]. The edge convergence layer is, in turn,
mainly composed of intelligent fusion terminals, energy controllers and other devices (referred to
as “station area fusion terminals”). This layer aggregates the data collected by sensors from across
the power distribution network and makes use of the edge computing framework of the station area
fusion terminal for data aggregation, processing, and local analysis. The objective is to ensure real-
time data collection, instant processing, and regional autonomy to meet operational demands. The
second layer, which is the end sensing layer, mainly consists of monitoring devices such as micro-
powered wireless sensors, conventional wireless sensors, and wired sensors (collectively referred to
as “low-voltage end-sensing units”). These sensors collect the information pertaining to operational
status, environmental conditions, visualization information, and operation information of power grid
equipment. The thorough approach leads to extensive equipment status sensing as well as a rapid
response to operational demands.

Comprising two fragments, namely the remote communication network and the local power
distribution network [5,6]. The primary focus of the remote power distribution network is to meet
communication needs between the management platform and the station’s fusion terminal, charac-
terized by exceptional reliability, minimal latency, and the imperative to distinguish. The local power
distribution network, on the other hand, satisfies the communication demand between the station area
convergence terminal and the low-voltage end-sensing units (abbreviated as LVESU). In the context of
the power distribution network, the specific demands on local distribution networks vary concerning
bandwidth, capacity, real-time capabilities, reliability, and security [7–9].

The smart grid, with its growing number of LVESUs, places greater emphasis on the performance,
energy efficiency and response speed of station fusion terminals, while also posing security risks to
the power distribution network as well as the smart grid as a whole [10,11]. In recent years, a growing
number of researchers have directed their focus towards examining security concerns intricately linked
with the smart grid. These concerns encompass the trustworthiness of devices, user privacy, key
management, trusted data transmission, as well as the confidentiality and integrity of messages.
However, the large variations in computational capabilities and storage capacities among various
terminals in the smart grid complicate the application of conventional verification and encryption
mechanisms.

Trust measurement technology serves an approach to access the reliability of components in a
system or network [12]. It leverages diverse metrics and algorithms to precisely gauge the trustwor-
thiness of specific entities, whether they are devices, users, nodes, or other system components [13].
The use of trusted metrics technology can measure and analyze a large number of terminals in the
perception layer of the smart IoT system in an all-round way, ensuring the reliability of end perception
units and establishing the groundwork for the holistic security in the smart grid [14,15]. Consequently,
it becomes imperative to thoroughly explore the trustworthy relationship of terminals in the local
power distribution network and adeptly identify malicious terminals to uphold the security and service
quality of the smart grid.



CMC, 2024, vol.78, no.3 3911

Addressing the aforementioned challenges, numerous researchers have put forth diverse solutions.
Nevertheless, two primary deficiencies persist. Firstly, the existing solutions fall short in effectively
tackling the resource constraints specific to LVESU devices, as they lack comprehensive measurements
of both the hardware and software conditions of LVESUs. Secondly, prevailing metric models fail to
establish a clear trust relationship between integrated terminals and LVESUs, introducing subjectivity
into the evaluation process. This subjectivity poses challenges in accurately identifying malicious
nodes within the system. In light of these gaps, we introduce a novel dynamic and energy-efficient
trust measurement scheme tailored for distribution networks. The proposed scheme makes significant
contributions in optimizing the trust evaluation process.

1. Establishing a network communication model within smart grids, we introduce a three-layer
trust measurement framework. This model spans from the IoT management platform to
substation integrated terminals and further to LVESUs. The implementation of hierarchical
management facilitates precise measurements between devices, elucidating trust relationships
among smart IoT terminals in distribution substations.

2. Employing multidimensional measurement factors, we conduct a comprehensive assessment
of smart IoT terminals in distribution substations. This involves the integration of static
environmental factors, dynamic behaviors, and energy states. By adopting this approach, we
mitigate the impact of subjective elements on measurement results, ensuring a more robust
evaluation.

3. Designing a detection process for malicious LVESUs, we incorporate threshold and deviation
threshold determinations for trustworthiness. This process effectively identifies and eliminates
any malicious terminal sensing units, thereby upholding the security and dependability of the
smart grid environment.

4. We comprehensively consider the three measurement factors of static environment, dynamic
behavior and energy state, which more truly reflects the state of LVESU. Compared with the
existing schemes, it is verified that the proposed scheme is also superior to the existing schemes
in malicious LVESU detection and energy consumption.

The subsequent sections are organized as outlined below: Section 2 furnishes the existing related
work; Section 3 elaborates on the proposed trustworthy operation scheme for local communication
networks in distribution substations; Section 4 validates the scheme through experiments, and lastly,
Section 5 concludes the presented work in the manuscript.

2 Related Work

Currently, numerous researchers have made significant contributions to enhancing the security
and privacy of IoT-related applications. Zong et al. [16] introduced a lightweight access control scheme
to address the security concerns associated with consumer-level smart devices. This scheme utilizes
blockchain technology to achieve deduplication and dynamic user revocation for smart consumer
devices. To tackle the resource constraints of UAV terminals, Wang et al. [17] proposed a practical and
lightweight mutual authentication protocol. This protocol is composed of bitwise XOR operations
and a one-way hash function, leveraging blockchain technology to mitigate the challenges posed by a
centralized trusted center. In a related development, Wang et al. [18] presented a framework oriented
towards metaverse modeling for timely and secure data collection. This framework is based on crowd
sensing and has been applied in healthcare scenarios to facilitate a bidirectional mapping of patient
data between physical and virtual spaces.

There has also been considerable research exploring different trust assessment mechanisms to
facilitate secure communication in IoT systems. For example, in Wireless AD Hoc Networks [19],
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Wu et al. [20] have proposed a network trustworthiness metric model, namely BLTM, utilizing
Beta and Link Quality Indicator (LQI) to combat insider attacks. In this work, the direct and
recommended trustworthiness metric are calculated based on the LQI analysis mechanism. This
method ensures greater accuracy and stability of low-quality link trustworthiness metrics. Competent
in discerning sostile entities and malfunctioning nodes, this fuzzy Ad-hoc trustworthiness metric model
by Soleymani et al. [21] effectively addresses the uncertainty and imprecision stemming from non-
intrusive factors that impact network data download. The schemes mentioned above involve complex
trust metric evaluations to compute the trustworthiness metric values of nodes, which results in
higher accuracy; however, at the cost of higher system energy consumption. In addition, there are
some schemes, such as [22–26], which can resist certain internal security attacks, but also have some
other problems, such as higher energy consumption, high computational complexity, while considering
notable network communication overhead.

The challenge of utilizing recommendation credibility metrics from other network nodes lies in the
potential risk of dishonest recommendations. To enhance the trustworthiness metric of recommended
third-party nodes, Shabut et al. [27] introduced a model and defense scheme based on recommendation
trustworthiness metrics. This approach employs clustering techniques to dynamically filter attacks
associated with dishonest recommendations, considering factors such as the frequency of interactions
between nodes, information compatibility, and temporal closeness. Khanna et al. [28] proposed a
novel Subjective Logic (SL) trustworthiness metric model designed for evaluating recommendations
among adjacent nodes in ad hoc networks. Meanwhile, Xu et al. [29] presented an algorithm
based on recommendation trustworthiness metrics, specifically a collaborative computation model, to
determine data forwarding policies. While this algorithm notably improves nodes’ ability to identify
deceitful or harmful activities, it is crucial to emphasize that the trustworthiness metric model does
not address the security of information transmitted by routing nodes, despite its effective enhancement
of recommendation precision from external nodes. In a separate domain, Boakye-Boateng et al. [30]
conducted trust research, where trust calculations were grounded in the familiarity of interaction
among devices and the consequences of devices acknowledging requests. It is noteworthy that,
in certain scenarios, engineers might consider queries as component of troubleshooting actions,
potentially influencing the sequence of transmitted queries. Additionally, it is crucial to emphasize that
there is currently no trust model establishing the correlation among trust levels and the comprehensive
trustworthiness and the substation’s risk status [31,32].

The Lightweight and Dependable Trust System (LDTS) proposed by Li et al. [33] divides the
trustworthy metric decision scheme into two levels, i.e., trustworthy metric decisions at both cluster
member and cluster head levels. The trustworthiness metric values based on cluster members are
calculated using both direct and indirect trustworthiness metrics. LDTS utilizes feedback reports from
cluster heads to specific nodes to build an indirect feedback database. This approach effectively reduces
the feedback from malicious nodes and reduces the network risk in open or harsh environments.
Alnumay et al. [34] proposed a wireless self-organized quantitative trustworthiness metric model based
on ARMA/GARCH theory to calculate the recommended trustworthiness metric using β probability
distribution combined with direct trustworthiness metric. Dhelim et al. [35] proposed a large scale
IoT trustworthiness metric system by software-defined network approach to manage the trusted state
among IoT entity devices, which can effectively detect large-scale attacks. Dang et al. [36] proposed
a trusted metric model for smart grids, featuring large deviations in trusted dynamic threshold
calculations, which effectively improves the efficiency and accuracy of these calculations. Even though,
the above design scheme can effectively resist malicious fraud at the nodes, the use of multiple trust
metrics in an integrated calculation process, making use of a static weighted sum, results in subjective
prediction outcomes.
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3 Trustworthy Operation Mechanism of Local Power Distribution Network in Power Distribution
Network

This section provides an overview of the network mechanism within the distribution station net-
work and formulates a detailed trusted operational mechanism based on the local power distribution
network in distribution station area.

3.1 Overview

The standard power distribution network designed to facilitate the implementation of IIoT in
power distribution comprises two primary segments: the remote power distribution network and
local power distribution network. The primary focus of the remote power distribution network is
to meet communication needs between the management platform and the station’s fusion terminal,
characterized by exceptional reliability, minimal latency, and the imperative to distinguish. It is
characterized by significant data volumes, extensive coverage, and a reliable two-way communication.
For low-voltage distribution, it mainly relies on 4G technology, and can be flexibly switched based on
the availability of fiber optic and wireless network coverage in the distribution network.

On the other hand, the local power distribution network primarily serves communication needs
between the fusion terminal in the power distribution network and the LVESU. With various service
types, equipment variations, and deployment methods, the local network has specific requirements
for bandwidth, capacity, real-time capabilities, reliability, and security. In low-voltage distribution
power networks, the local network relies predominantly on RS485 wired connections and HPLC.
Other communication methods are selectively employed based on specific operational needs within
the power distribution network.

At the heart of ensuring the secure operation of a trusted network within the power distribution
network lies the measurement of the trust relationship between the end sensing devices. The trustwor-
thiness of a terminal can be defined as a belief in the terminal’s ability to perform with reliability and
safety within a specific contextual environment. The trustworthiness metric serves as a quantitative
representation of a terminal’s trustworthiness, and its magnitude signifies the trustworthiness of a
power distribution network smart IoT terminal.

The trust metric model for IoT terminals in a distribution power network contains three types
of physical devices: the IoT management platform, the power distribution network fusion terminal,
and the low-voltage end sensing unit. The trust assessment is carried out through a hierarchical
management approach among these devices.

The power distribution network fusion terminal plays a central role in aggregating data, per-
forming edge computing, and integrating applications within the smart IoT systems of the power
distribution network. It acts as a link between the information and physical nodes. To reduce the
workload on the power distribution network fusion terminal, the IoT management platform divides
its responsibilities to use the power distribution network fusion terminal only for collecting the data
from LVESUs within a certain range. Finally, the IoT management platform aggregates and evaluates
the data coming from the power distribution network fusion terminal, as collected from the LVESUs.

The architecture of this hierarchical trust measurement scheme is illustrated in Fig. 1. The
trust measurement process occurs at two levels: The IoT management platform measures the power
distribution network fusion terminal which, in turn, measures the LVESU.
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Figure 1: Trusted metrics architecture for smart IoT terminals in power distribution network

The assessment metrics include three aspects, which are static credible metrics, dynamic credible
metrics, and energy credible metrics. The measurement process of the station fusion terminal to the
LVESU is shown in Fig. 2. In addition, the trustworthiness metric or the LVESU is set in the range
of 0–1. Here, ‘0’ indicates that the terminal is completely untrustworthy while ‘1’ indicates that the
terminal is completely trustworthy.
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3.2 Static Trust Measure for LVESUs

The static trusted metric is mainly a metric for the computing environment of the LVESU
itself, which generally includes Software (SW) and Hardware (HW) attributes. Hence, the computing
environment of the station fusion terminal can be rendered as IA = (h, s), signifying the intrinsic
properties of the LVESU within the smart grid. Here, he and se denote the characteristics of the HW
and SW components of the LVESU, respectively.

The characteristics of HW components of the LVESU are referred to as h = (h0, h1, h2, . . . , hx),
here hi (0 ≤ i ≤ x) specifies the characteristic values of individual HW components associated with
the LVESU, and x is the amount of hardware attributes. These key HW components include network
equipment, data processing module, data acquisition module, memory, motherboard, etc. The SW
related information of the LVESU is denoted by s = (s0, s1, s2, . . . , sy), where each si (0 ≤ i ≤ y)

indicates the characteristic values of SW executing on LVESU, and y is the amount of software
attributes. The main SW modules include the OS kernel module, OS boot module, data acquisition
program, transmission program and other upper-layer running SW, etc.

In the centralized network approach, a LVESU in a region is denoted as (p1, p2, . . . , pn), while a
station area fusion terminal in the region is denoted as pfusion, where n is the amount of LVESU. In
this region, pfusion is required to reliably verify the sensing environment of LVESU pi based on security
requirements. At time t, pfusion acquires the static trustworthiness of pi via the static trust assessment
function StmFi(IA, t), based on the inherent property IAi = (hi, si) of pi. It then determines the
trustworthiness of the sensing environment of pi, similarly, the environmental trustworthiness of pfusion is
measured by its upper-level IoT management platform in a similar process. The following description
solely focused on the measurement process of a regional station area fusion terminal for the low-
voltage end-perception unit in the domain.

Based on the given information of running environment of pi, the static trust metric function,
StmFi(IA, t), initially needs to perform trust evaluation of HW attribute hi and the SW attribute si,
respectively.

For the HW attribute, hi = (hi0, hi1, hi2, . . . , hix) of pi, its reliability is determined through the HW
static trust metric function HStmFi(IA (hi), t), represented by Eq. (1).

HStmFi (IA (hi), t) =
x′∏

j=0

diff
(

hij, hij

′) ∗ 1
x

x∑
j=k+1

diff
(

hij, hij

′)
(1)

Here, hij

′
(0 ≤ j ≤ x′) denotes the incipient HW state reported by pi to its superior station fusion

terminal pfusion at the inception, hij (0 ≤ j ≤ x) represents the HW condition of pi at the moment t, and
diff

(
hij, hij′

)
signifies the difference between hij and hij

′
. To emphasize the significance of core firmware,

including data processing and data acquisition modules in the LVESU, (hi0, hi1, . . . , hix′) is employed to
denote the fundamental firmware characteristics of pi, and x′ denotes the amount of the core hardware
attributes.

Similarly, for the SW attribute si = (
si0, si1, si2, . . . , siy

)
of pi, its reliability is determined through

the SW static trust metric function SStmFi(IA (sei), t), represented by Eq. (2).

SStmFi (IA (si), t) =
y′∏

j=0

diff
(
sij, sij

′) ∗ 1
y

y∑
j=k+1

diff
(
sij, sij

′)
(2)
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where sij
′
(0 ≤ j ≤ y′) denotes the incipient SW state reported by pi to pfusion at the inception,

sij (0 ≤ j ≤ y) denotes the SW state of pi at moment t, and diff
(
sij, sij

′) signifies the variance from sij

to sij
′ . To emphasize the importance of core SW modules such as data processing program, operating

system bootstrap program, operating system kernel program, and core data acquisition in the LVESU,(
hi0, hi1, . . . , hiy′

)
is employed to denote the core SW module of LVESU, and y′ denotes the amount of

the core software attributes.

Finally, at time t, the station fusion terminal pfusion uses the function StmFi (IA, t) to compute the
static trusted measure StmVi (t) of pi, represented by Eq. (3).

StmVi (t) = StmFi (IA, t) = α1HStmFi (IA (hi), t) + α2SStmFi (IA (si), t) (3)

Here, α1 and α2 are the measurement weights for the HW and SW components, respectively and
satisfy the condition α1 + α2 = 1. The exact values of α1 and α2 may be determined depending upon
the specific scenario. The HW environment is generally considered to be equally important as the SW
environment, i.e., α1 = α2 = 1/2.

3.3 Dynamic Trust Measure for LVESUs

The dynamic trusted measurement primarily involves the evaluation of the behavior and status of
the LVESU during the data interaction process. Consequently, the station fusion terminal pfusion should
be evaluated separately by the operation behavior and status of the LVESU pi. Likewise, the dynamic
trusted measurement of the station fusion terminal pfusion is mainly conducted by the IoT management
platform.

The feature vector for the operational state of pi is defined as OperateStatusi

(OpS0, OpS1, · · · , OpSm), encompassing the network state, activity level, communication state, and
more of the LVESU. The station fusion terminal pfusion can compute a state trust metric for the
operational state of the LVESU pi based on Eq. (4).

SDtmVi (OperateStatusi, t) =
m∑

i=0

(
βidiff

(
OpSi, OpSi

′))
(4)

where OpSi

′
denotes the operational attributes of LVESU pi at the previous moment step t − 1. The

diff
(

OpSi, OpSi

′)
signifies the distinction between OpSi

′
and OpSi, which is the difference between

the current and previous states of sensing unit in question. The variable βi denotes the importance or
influence of Stai among all states and complies with β0 + β1 + · · · + βm = 1.

The behavioral state of the LVESU pi is monitored by the station fusion terminal pfusion, which can
classify its behavior into ‘expected behavior’ or ‘unintended behavior’. Expected behaviors generally
include normal execution of commands, correct data transmission, correct data reception, timely
data transmission, etc. Conversely, unintended behaviors generally include actions such as discarding
commands or data, tampering with commands or data, and delayed data transmission. The station
fusion terminal pfusion measures the behavioral status of LVESU pi, including interaction activity,
the information forwarding status, the latency status of transmission, and status of Data Trans-
mission Repetition Rate (DTRR), denoted respectively as ActiveSta(pfusion, pi), ForwardSta(pfusion, pi),
DelaySta(pfusion, pi), and RepeatSta(pfusion, pi). The detailed formulations of the functions corresponding
to ActiveSta, ForwardSta, DelaySta and RepeatSta, respectively, are given in the following paragraphs.
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The formula for the Activity Metric Function, ActiveSta
(
pfusion, pi

)
is as follows:

ActiveSta
(
pfusion, pi

) = TotalComm
(
pfusion, pi

)
j=n∑
j=0

TotalComm
(
pfusion, pj

) (5)

where TotalComm
(
pfusion, pi

)
denotes the total amount of communications between the station fusion

terminal pfusion and LVESU pi, while n denotes the overall count of LVESUs.

ActiveSta
(
pfusion, pi

)
specifies the share of the overall communications involving the station fusion

terminal pfusion and the LVESU pi, with respect to all the interactions of the station fusion terminal
pfusion. A larger value of ActiveSta

(
pfusion, pi

)
indicates a greater activity and interaction by the LVESU

pi, which in turn vouches for a stronger credibility of the unit. Conversely, a lower value implies a
reduced credibility.

Next, the data forwarding status metric function, ForwardSta
(
pfusion, pi

)
is formulated as:

ForwardSta
(
pfusion, pi

) = TotalRequest
(
pfusion, pi

)
RealForward

(
pfusion, pi

) + 1
(6)

where TotalRequest
(
pfusion, pi

)
indicates the aggregate amount of packets requested by the station fusion

terminal pfusion from the LVESU pi, and RealForward
(
pfusion, pi

)
indicates the aggregate amount of

packets indeed forwarded by the LVESU pi to the station fusion terminal pfusion. ForwardSta
(
pfusion, pi

)
shows the real data forwarding rate of the LVESU pi. A higher result indicates a greater data
forwarding capability with a low possibility of malicious behavior, which in turn signifies a higher
trustworthiness in data forwarding; conversely, a lower value implies lower trustworthiness.

Then, the data transfer delay condition metric function, DelaySta
(
pfusion, pi

)
is formulated as:

DelaySta
(
pfusion, pi

) =
{

δ
TimeThreshold −TimeTransmission

TimeThreshold

1
, TimeThreshold ≥ TimeTransmission

, TimeThreshold < TimeTransmission
(7)

where δ > 1, TimeTransmission represents the real Data Transmission Time (DTT) of LVESU pi, while
TimeThreshold represents the DTT threshold. The δ and TimeThreshold are decided by the security guidelines
specified by pfusion for the LVESU pi. If the real DTT of LVESU falls within the acceptable range and
the larger result of DelaySta (pm, pi) suggests a negligible DTT for the LVESU, which means that the
sensing unit is deemed effective in terms of data delay. On the other hand, if the DTT is long enough,
it results in a smaller result of DelaySta(pfusion, pi), indicating a weaker credibility of the LVESU.

Finally, the data sending repetition rate metric function, RepeatSta
(
pfusion, pi

)
is formulated as

follows:

RepeatSta
(
pfusion, pi

) =
{

2 − δReRate

0
, ReRate < ReRateThreshold

, ReRate ≥ ReRateThreshold
(8)

where δ > 1, ReRate is the DTRR of the LVESU pi and the DTRR threshold is ReRateThreshold. The
values δ and ReRateThreshold are defined by the security policy specified by the station fusion terminal
pfusion for the LVESU pi. If the DTRR of pi increases than predefined threshold value, the sensing unit
is deemed to exhibit malicious behavior, indicating a potential malicious sensing unit.

As a result, its trust value in this regard is set to 0, lowering the overall trustworthiness of this
sensing unit. On the other hand, if the DTRR of the LVESU is within the threshold, and the repetition
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rate is lower (i.e., a smaller ReRate), a larger value of RepeatSta (pm, pi) under these conditions suggests
a high credibility of the LVESU with respect to DTRR. Conversely, a higher repetition rate (i.e.,
a larger ReRate) results in a smaller value of RepeatSta (pm, pi) indicating a lower credibility of the
sensing unit in question.

The station fusion terminal pfusion can assess the confidence in the behavioral performance state of
the LVESU pi through the Eq. (9).

BDtmVi (BehaviorStatei, t) = κ1ActiveSta + κ2ForwardSta + κ3DelaySta + κ4RepeatSta (9)

where κ1, κ2, κ3, κ4 suggest the relative weights of the interaction activity, the information forwarding
status, the latency status of transmission, and DTRR, respectively, of the LVESU pi in evaluating its
overall behavioral performance. These weights meet κ1 + κ2 + κ3 + κ4 = 1, and their specific values can
be decided based on the actual environment and security policy.

After obtaining the state trusted metric as well as the behavioral trust metric of pi, the sta-
tion fusion terminal pfusion executes the dynamic trust measurement function DtmFi(OperateStatusi,
BehaviorStatei, t) to compute the dynamic trusted measurement value, DtmVi(t), for the LVESU pi

based on Eq. (10).

DtmVi (t) = DtmFi (OperateStatusi, BehaviorStatei, t)

= λ1SDtmVi (OperateStatusi, t) + λ2BDtmVi (BehaviorStatei, t) (10)

where λ1, λ2 denote the weight factors for the state metric and the behavior metric, respectively, and
satisfy the condition λ1 + λ2 = 1.

3.4 Energy Trusted Measure for LVESUs

The LVESUs are generally deployed in environments where they cannot be charged in a timely
manner; therefore, the energy status of the LVESUs is critical for terminal information collection.

The energy consumption of a LVESU primarily involves sensing data collection, packet trans-
mission, packet reception, and ensuring the regular functioning of this unit. Therefore, the remaining
energy state of LVESU pi at moment t in the following manner.

RemainEnergyi (t) = InitialEnergyi − Energyi (Reception)

− Energyi (Send) − Energyi (Collection) − Energyi (Run) (11)

where InitialEnergyi denotes the incipient energy value of pi, i.e., its energy at time 0. Energyi (Reception)

shows the total energy consumed by unit pi for packet reception from time 0 to t, while Energyi (Send)

shows the total energy consumed for packet transmission in this time interval time. Finally,
Energyi (Collection) shows the total value of energy consumption during the data collection and
Energyi (Run) accounts for other energy consumed by the LVESU pi to maintain its own normal
operation. The calculations for Energyi (Reception) and Energyi (Send) are given in the following
paragraphs.

The energy required for packet reception by LVESU pi is computed as:

Energyi (Reception) = PacketNumReception ∗ lenReception ∗ SingleEnergyReception (12)

where PacketNumReception denotes the overall count of packets received by pi in the time interval ranging
from 0 to t. lenReception indicates the length of individual packets, while the amount of energy consumed
by the LVESU pi to receive one-unit length of data is denoted by SingleEnergyReception.
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The energy required for packet transmission by LVESU pi is calculated as:

Energyi (Send) = PacketNumSend ∗ lenSend ∗ SingleEnergySend (13)

Eq. (13) illustrates the calculation of Energyi(Send). Here, PacketNumSend signifies the overall
count of data packets sent by pi during the time period from 0 to t. lenSend denotes the length of
individual data packets, while SingleEnergySend denotes the energy consumed by unit pi to send one-unit
long data.

After obtaining the remaining energy status RemainEnergyi (t) of sensing unit pi, the station
fusion terminal conducts a credible energy measurement of this unit using the energy credibility
measurement function EtmFi(RemainEnergyi, t). Thus, calculating the energy credibility measurement
value EtmVi(t), as formulated in Eq. (14).

EtmVi (t) = EtmFi (InitialEnergyi, RemainEnergyi (t))

=
{

2
RemainEnergyi(t)

InitialEnergyi − 1 , RemainEnergyi (t) ≥ EnergyThreshold

0 , RemainEnergyi (t) < EnergyThreshold

(14)

where EnergyThreshold indicates the energy threshold of the LVESU pi; its value is determined by the
corresponding power distribution network convergence terminal pfusion. If the remaining energy of pi

falls below the predefined threshold value, indicating that this unit may no longer function as a reliable
data collection and transmission unit. Therefore, when the remaining energy of this LVESU surpasses
the specified threshold, a higher energy trust value is assigned due to a larger remaining energy;
conversely, if the remaining energy falls below the threshold, a lower energy trust value is assigned,
impacting the overall reliability of the LVESU.

3.5 Detection and Rejection of Malicious LVESUs

With the passage of time, LVESUs may be subjected to attacks or natural damage. It, therefore,
becomes necessary to periodically perform measurements over these units and timely identify and
eliminate malicious or non-functional units. The remaining energy of some of the sensing units may
not be enough to perform their computational tasks, or they may have certain vulnerabilities in their
operational environment, or can even exhibit malicious behaviors. Collectively, these units are referred
to as malicious LVESUs. Fig. 3 illustrates the process of detecting such a malicious unit.

The station fusion terminal calculates cumulative trustworthiness using the trust measurement
results of the static environment, dynamic behavior, and energy state of the LVESU. The weights
assigned to these three aspects can be fine-tuned based on the specific circumstances. When assessing
the overall trustworthiness of LVESUs in the domain, or upon receiving information from the IoT
management platform, the terminal first determines whether the cumulative trustworthiness of each
sensing unit in the domain falls below the trust threshold CtmV ON

Threshold for inter-domain LVESUs.

If the cumulative trustworthiness CtmVi (t) of LVESU pi at the time t meets the condition
CtmVi (t) ≥ CtmV ON

Threshold, it means that the unit pi is within the normal range in terms of its operating
environment, behavior and energy state in that assessment cycle. It is considered a normal LVESU
for that evaluation cycle. However, if CtmVi (t) < CtmV ON

Threshold, the LVESU pi may be malicious
and is subsequently detected for the subsequent phase. The primary component of the detection
method involves assessing whether the difference CtmVDevi (t, t − 1) among the current value of the
cumulative trustworthiness CtmVi (t) of LVESU pi and its previous value CtmVi (t − 1) is less than
a predefined threshold CtmVDevThreshold, where Eq. (15) is the calculation method for the deviation
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CtmVDevThreshold. The calculation of the deviation CtmVDevThreshold is depicted in the following manner:

CtmVDevi (t, t − 1) = |CtmVi (t − 1) − CtmVi (t)| (15)

Integrated trustworthiness of low-voltageend-
sensing units in the computational domain of 

station fuston terminals

Is the combined endpoint
trustworthiness greater than exceed 

the inter-domain trust threshold?

Malcious terminal removal network

No

No

Normal terminal

Yes

The deviation of the current 
confidencemeasure from the historical 

confdence measure isless than the 
devtation threshold?

Yes

Start

End

Figure 3: Malicious low voltage end sensing unit detection process

If the deviation is small, it indicates that the LVESU is a normal sensing unit. In the event of a
significant deviation, two scenarios may occur:

1. When CtmVi (t) − CtmVi (t − 1) > CtmVDevThreshold, it suggests a substantial increase in
trustworthiness, indicating that the LVESU is engaging in masking behavior.

2. When CtmVi (t − 1)− CtmVi (t) > CtmVDevThreshold, it means that the trust level of the LVESU
has significantly diminished, suggesting either insufficient energy or a compromised state.

4 Experimental Verification and Analysis

This section presents a comprehensive simulation replicating a communication scenario within a
power distribution network.

4.1 Experimental Environment Configuration

The simulations has been run using Matlab on a Windows System equipped with Intel (R) Core
(TM) i5-6500 CPU @ 3.20 GHz 3.19 GHz processor. Table 1 provides an overview of the simulation
parameters applied during these numerical experiments. In our work, we set the parameters in the table
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because it aligns with the specific requirements of our experimental setup and is consistent with the
characteristics of LVESU in the context of our smart grid background.

Table 1: Simulation variables

Parameter Value

Simulation area size 100 m × 100 m
The overall count of LEVSUs 100
The count of malicious LEVSU 5%∼30%
Data transfer efficiency 15∼100 Kbps
Packet size 40 bit
Detection interval 1000 ms
Initial energy of low-pressure terminal sensing unit 1 J
Initial energy of fusion terminal in power distribution network 5 J

The initial distribution of network devices is illustrated in Fig. 4. In this figure, the black node
represents the LVESU, the blue node represents the fusion terminal of the station area, and the red
node represents the malicious LVESU.

Figure 4: The initial position and state of nodes

4.2 Experimental Results and Analysis

We offer a thorough analysis of the trust measures within the proposed scheme which include
the static, dynamic and energy trust measures. The effectiveness of detecting various proportions of
malicious terminals is then analyzed. Finally, the energy consumption is compared with that of relevant
schemes.

Fig. 5a shows the static environment trust measures corresponding to each terminal. With the
increase of detection period, its static reliability value almost remains unchanged. This is because for
the entire network, the probability of the basic software and hardware environment coming under
attack remains the same, leading to fluctuations between 85% and 95%. However, it is evident that
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a higher proportion of malicious devices leads to lower average trust values among terminals. Since
malicious terminals may carry viruses themselves, the corresponding software environment undergoes
change over time, thus, reducing the overall average trust value.

(a) Static trusted measure (b) Dynamic trusted measure

(c) Energy trusted measure (d) Comprehensive trusted measure

Figure 5: Static trusted measure

Fig. 5b shows the trust measure for dynamic behavior and the state corresponding to the terminal.
With the extension of detection cycle, the dynamic trust value gradually decreases. As the time passes
by, the behavior of the malicious LVESU is gradually discovered by the platform fusion terminal,
which results in a reduced credibility value. In line with the static measures, an increased proportion
of malicious devices leads to lower average trust values for the terminals.

Fig. 5c represents a trusted measure of the energy state corresponding to the terminal sensing
units. As the detection period is extended, the energy trust value gradually decreases. This is attributed
to the fact that, over time, various communication and interaction activities of the LVESU deplete the
energy of the terminals, resulting in a decline in energy trust values. Furthermore, a higher proportion
of malicious devices leads to smaller average trust values for the terminals. It is important to note that
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a terminal cannot be classified as malicious unless it engages in malicious behaviors. However, if it
does, it consumes more energy for sending and receiving packets than a normal terminal.

Fig. 5d represents the result of the average trustworthiness measure of all the nodes in the network.
It is easy to see that the combined trustworthiness value of the nodes decreases gently over time, and the
higher the proportion of malicious nodes, the relatively lower the overall trustworthiness value. This
result indicates the adverse impact of malicious LVESUs on the network’s trustworthiness. With the
gradual decline of trustworthiness, especially when there are a large number of malicious entities, the
integrity of the network exposes potential vulnerabilities. This provides a key condition in the security
defense strategy to mitigate the adverse impact of malicious LVESUs on the overall trustworthiness
of the network.

In Fig. 6, we performed an in-depth analysis of the effectiveness in detecting malicious nodes,
illustrating the ratio of detected malicious nodes to the true number of malicious LVESUs. In
experiment, the malicious LVESU performs abnormal operations by simulating specific network
events or behaviors, aiming to mislead the fusion terminal in the station area to evaluate it. This
includes deceptive behavior, as well as illegal LVESUs launching attacks by means such as transmitting
false information. We employed the detection method introduced in Section 3.5.

malicious nodes
(b) Comparison of detection rate with TDTC(b) Variation of detection rate with proportion of 

Figure 6: Malicious terminal identification efficiency

Fig. 6a illustrates the variation in detection efficiency of our approach as the proportion of
malicious nodes increases. Within the same detection cycle, the efficiency gradually decreases with
the rising proportion of malicious terminals, reaching an overall detection rate of around 80%. The
substantial presence of malicious terminals has a notable impact on the dynamic behavior assessment
between terminals, influencing the judgment of fusion terminals and subsequently leading to a decline
in detection efficiency. However, as the detection cycle extends, malicious terminals are almost always
successfully identified.

Additionally, we compared our approach with TDTC [29], and the results are depicted in Fig. 6b.
As the detection cycle is prolonged, both approaches exhibit enhanced efficiency in detection. In sce-
narios with an equivalent proportion of malicious nodes, our approach demonstrates higher detection
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efficiency. This superiority arises from our approach not only integrating static trust metrics, dynamic
trust metrics, and energy trust metrics for comprehensive terminal assessment but also introducing a
bias threshold determination method in malicious node detection. This prevents malicious nodes from
engaging in deceptive evaluations, thereby crucially enhancing detection efficiency.

Energy consumption refers to the energy consumed through trust evaluation and data transmis-
sion. The residual energy of the terminal is calculated by Eq. (16).

ERes = EInitial − ETransfer − ECompute (16)

where EInitial represents the terminal initial energy, ETransfer is the energy consumed for data transmission,
and ECompute is the energy consumed for computation. In the same time period, the less energy
consumption, the more residual energy of the terminal, the higher energy efficiency, otherwise, vice
versa.

Fig. 7 plots a comparison of the proposed scheme with that presented in TDTC concerning
energy consumption usage. It is evident that, like the energy reliability value, the energy consumption
gradually increases while the energy residual rate gradually decreases over the passage of time.
Furthermore, it is readily noticeable that as the number of malicious terminals rises, there is a gradual
rise in energy consumption, leading to a gradual decrease in the energy residual rate. It is further
observed that, initially, the proposed scheme has a shorter detection cycle, with little difference in
energy residual rate in comparison to TDTC. However, with the passage of time, the proposed
scheme witnesses higher energy residual rate than TDTC. This is because the proposed scheme
comprehensively evaluates the network status, communication status, and activity of LVESUs during
dynamic measurements, promptly identifying abnormal terminal data and taking preventive measures
such as strategic repairs and warnings to reduce unnecessary energy consumption.

Figure 7: Terminal transmission energy consumption

5 Conclusion

This paper focuses on the power distribution network and introduces a dynamic trust measure-
ment method utilizing the hierarchical structure of LVESU in the distribution network. The trust
measurement process consists of three key components: environmental trust evaluation, behavioral
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trust judgment, and energy residual state calculation. Through these steps, the secure operation of
the local communication network within the distribution network is ensured. The environmental trust
evaluation focuses on the trust level of LVESU in specific environments, behavioral trust judgment
considers whether the operational behavior of LVESU meets expectations, and energy residual state
calculation focuses on the energy consumption of LVESU. The comprehensive assessment of these
three aspects constitutes the overall trust level evaluation of LVESU. Through simulated experiments,
the proposed trust measurement method demonstrates lower energy utilization in identifying and
removing non-trusted nodes in the network compared to previous models. This not only contributes to
improving the performance and response speed of LVESU but also lays the foundation for maintaining
the security and service quality of the entire smart grid. In conclusion, this trust measurement method
provides strong support for the trustworthy operation of the smart grid, addressing the limitations of
existing approaches in LVESUs’ resource constraints and trust relationship establishment. However,
the work in this paper is validated through simulated experiments, and there may be differences
between the experimental environment and actual application scenarios. Therefore, future research
and improvements will focus on enhancing the practicality and applicability of the proposed method.
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