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ABSTRACT

Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as
two common conditions arising from dysfunction in the thyroid gland. Accurate and timely diagnosis of these
disorders is crucial for effective treatment and patient care. This research introduces a comprehensive approach
to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced
feature selection techniques. Sequential forward feature selection, sequential backward feature elimination, and
bidirectional feature elimination are investigated in this study. In ensemble learning, random forest, adaptive
boosting, and bagging classifiers are employed. The effectiveness of these techniques is evaluated using two different
datasets obtained from the University of California Irvine-Machine Learning Repository, both of which undergo
preprocessing steps, including outlier removal, addressing missing data, data cleansing, and feature reduction.
Extensive experimentation demonstrates the remarkable success of proposed ensemble stacking and bidirectional
feature elimination achieving 100% and 99.86% accuracy in identifying hyperthyroidism and hypothyroidism,
respectively. Beyond enhancing detection accuracy, the ensemble stacking model also demonstrated a streamlined
computational complexity which is pivotal for practical medical applications. It significantly outperformed existing
studies with similar objectives underscoring the viability and effectiveness of the proposed scheme. This research
offers an innovative perspective and sets the platform for improved thyroid disorder diagnosis with broader
implications for healthcare and patient well-being.
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1 Introduction

Thyroid dysfunction mostly affects people over the age of 70 by affecting both genders with
females as the primary affectees of this disease. Thyroid illness has become a major public health
concern across the globe, impacting a significant number of individuals. About 42 million Indians
are thought to have thyroid problems [1]. In the United States, 1.2% of the population, or one in
every 100 people have hyperthyroidism, while 4.2% had hypothyroidism between 1976 and 1990. The
corresponding figure for Germany was 6% in 2000 and later improved to 2.6% between 2005 to 2012.
Similarly, positive cases were recorded at a rate of 7.6% in Iran from 2003 to 2006, rising to 18.5%
between 2012 and 2014. In Wales, 20.8% (1997–2005) were diagnosed, which reduced to 6.5% from
2006 to 2007. From 2007 to 2011, 33.5% of hypothyroidism cases in Spain were recorded [2].

The butterfly-shaped thyroid gland near the base of the neck produces triiodothyronine (T3)
and thyroxine (T4) to regulate heart rate, blood pressure, and body temperature. Iodine shortage or
other factors can cause thyroid diseases, which release hormones into the bloodstream to maintain
hydration, balance, and digestion. T3, thyroid-stimulating hormone (TSH), and T4 hormones are
used to examine thyroid functionality with hypothyroidism and hyperthyroidism as two main thyroid
diseases [3]. Weight increase and moderate pulse rate result from hypothyroidism, while weight loss
and rapid heartbeat result from hyperthyroidism. TSH, T4, and T3 blood tests are common for
diagnosis. Diagnosing hypothyroidism helps with joint discomfort, cardiac problems, and obesity.
Cognitive and respiratory issues can result from late diagnosis [4]. It is frequent in women and can
cause fertility troubles and myxedema which is a life-threatening illness. Thus, this study helps to detect
hypothyroidism at an early stage for saving lives. It also motivates clinicians and doctors to use data
to detect hypothyroidism-related health issues earlier [5]. There are multiple machine learning (ML)-
based thyroid detection approaches in addition to clinical examination. In this effort, several studies
have examined the effectiveness of ML-based techniques [1,2]. For example, k-nearest neighbors
(KNN), Bayesian classifiers, and support vector machines (SVM) were used to diagnose thyroid
diseases in thyroid nodule ultrasound images [6]. The radial basis function neural networks (RBFNN)
and multi-layer perceptron (MLP) were employed to accurately classify thyroid diseases [7]. Much of
the literature addresses binary classification problems like distinguishing thyroid patients and healthy
individuals from the data. Few multiclass identification investigations have been done on thyroid
datasets. Classifying problems by patient health status helps diagnose and treat thyroid diseases. The
datasets were categorized as “normal”, “hypothyroid”, and “hyperthyroid”. ML and deep learning
(DL) model optimization receive most of the research focus but feature selection approaches for
thyroid ailment diagnosis are less explored. The stacking ensemble models are not employed for thyroid
disease classification. This research addresses these issues with the following main contributions:

• A multilayer ensemble is introduced which combines the predictions from three popular
ensemble classifiers. The proposed method achieved remarkable results on both employed
datasets. Performance evaluation includes statistical testing, loss/error analysis, and confusion
matrix-based indicators.

• This study assesses the effectiveness of three feature selection methods for addressing the
issue. These methods use dataset feature-response relevance estimates to produce feature
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significance scores. Both datasets are preprocessed using Z-score-based Boruta-SHapley Addi-
tive exPlanations (BorutaSHAP) attribute importance to extract relevant feature information
before feature selection. This study is examined in multiple ways; with sequential feature
selection (WSFS), also known as forward attribute selection, with sequential feature backward
elimination (WSFBE), and with bidirectional feature selection (WBDFS), as well as without
attribute selection (WOAS).

• Since many studies only examined one dataset it is highly probabilistic that the models
only perform well on that dataset. The literature rarely reports the suggested methodology’s
consistent performance on numerous datasets. This study used diverse thyroid illness datasets
and provided a technique that works across multiple datasets.

1.1 Related Works

Previous studies have proven that classification is a crucial strategy for forecasting and identifying
many illnesses, such as heart disease, breast cancer, lung cancer, and thyroid conditions [8,9]. The anal-
ysis of the literature showed that in comparison to other illnesses, thyroid conditions are comparatively
under-addressed which requires further exploration in terms of intelligent diagnosis schemes [10,11].
Few studies have employed ML and DL methods for predicting thyroid illness because of recent
developments in data processing and computing. Early diagnosis and categorization of this condition
as either malignancy, hypothyroidism, or hyperthyroidism aid in prompt treatment and recovery.

The Toxicity Forecaster (ToxCast) database and pertinent research publications provided training
datasets. Along with statistical methodologies and ML methods including random forest (RF), SVM,
and artificial neural networks (ANN), three data-balancing procedures were tested. The models were
calibrated using holdout data after molecular descriptor and fingerprint training. The classifiers had
83% and 81% F1-scores on the holdout dataset [12]. Another study used two thyroid datasets: One
from Knowledge Extraction based on Evolutionary Learning (KEEL) repository and one from a
Pakistani hospital. The new dataset had three new properties to distinguish it from earlier ones.
KNN model performance was assessed on these two datasets using various distance measures. The
use of ML models to identify hyperthyroid and hypothyroid-affected individuals was discussed.
Predictions of hyperthyroidism and hypothyroidism were shown to have an accuracy of 93.8% and
90.9%, respectively, according to the data collected in this research [13]. Thyroid prediction on a
dataset of the UCI-MLR using an XGBoost (XGB) model is shown in a study [14]. When compared to
the prediction performance of KNN, decision trees (DT), and logistic regression (LR), the suggested
model was shown to have the highest accuracy with XGB.

A research work [15] investigated multiple ML models for thyroid disease detection. It utilized
Naive Bayes (NB), KNN, SVM, and LR to classify the data. The SVM was the most accurate
approach. Another study [16] discussed a thorough examination of many classifiers, including KNN,
SVM, NB, DT, and LR applied with L1 and L2 or without feature selection approaches. The results
showed that classifiers with L1-based feature selection had greater overall efficiency (NB 100%, LR
100%). Another research [17] employed multiple ML models to classify the thyroid illness data using
ANN, KNN, XGB, RF, DT, and NB. The highest results of thyroid prediction were achieved by
ANN with 98.57% accuracy, 95.7% precision, 95.9% recall, and 95.7% F1-score. Few studies [10,18]
focused on the necessary preprocessing of thyroid datasets, and three attribute selection approaches
namely select K-best, select from model (SFM), and recursive feature elimination (RFE). As feature
estimators, DT, gradient boost (GB), LR, and RF were employed. Homogeneous ensemble-activated
boosting and bagging-based classifiers were evaluated using the voting ensemble namely soft and
hard voting. These works achieved remarkable results with accuracies of 99.27% [10] and 100% [18].
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In [19], ML methods such as DT, RF, KNN, and ANN are used to better predict illness based on
dataset parameters. Both unsampled and sampled datasets were classified for better comparability.
After dataset modification, RF achieved 94.8% accuracy and 91% specificity. In a study [20], the
hypothyroid and hyperthyroid conditions were detected using SVM, DT, RF, LR, and NB classifiers.
Principal component analysis (PCA), univariate feature selection, and RFE-based attribute selection
approaches were applied. All the classifiers with RFE feature selection achieved an accuracy of 99.35%
for the classification of thyroid disorders. Another research [21] was done to predict thyroid illness
classification using dimensionality-reduced data. Data augmentation was used to create enough data
to train deep neural network (DNN) models. The two-stage technique offers 99.95% accuracy. It has
been observed that few studies have focused on feature engineering along with ML and DL-based
classification models for thyroid prediction which shows the need for further investigation in this area.

Table 1 compares published thyroid detection studies that used standard repositories and local
hospital datasets with encouraging results. This study used standard thyroid datasets from UCI-MLR
for wide applicability and technique investigation. Previous research has improved thyroid disorder
classification accuracy. However, feature selection for thyroid illness diagnosis problems has not been
well studied. The proposed stacking ensemble classifiers produced highly accurate results after crucial
prepossessing, identification, removal of outliers, and feature selection. A multi-thyroid dataset and
multi-class thyroid disease categorization have been implemented in this work. A thorough comparison
of suggested methods with the past research on both datasets is also included.

Table 1: An overview of comprehensive research on recent developments in thyroid illness detection

Ref. Dataset size
(samples/
features)

Number
of
classes

Dataset Implemented
models

Performance
metrics

Best attained
results

[12] – 2 ToxCast LR, SVM, RF,
XGB, ANN

F1-score XGB: 83%

[13] 309/10 3 Hospital in
Pakistan

KNN, L1, Chi2
feature selection

Accuracy KNN (Euclidean,
Cosine) Chi2:
98.62%

690/13 2 KEEL Thyroid

[22] 176727/23 2 Clinical +
medical
universities,
Japan

SVM, ANN,
LR, GBDT

AUROC GBDT (Feature
set 1): 97.2%

[23] 7200/27 4 UCI-MLR NB, RF, SVM
with RFE
feature selection

Accuracy SVM, RFE:
92.92%

[24] 80/5 5 Diagnostic lab
in Kashmir

KNN, DT,
SVM, LR

Accuracy DT: 98.89%

[25] 7200/21 3 UCI-MLR SVM, NB, DT,
LR

Accuracy LR: 99.23%

[26] 574/11 3 Hospital in
India

KNN, SVM,
LR, ANN

Accuracy SVM: 99.08%

Note: GBDT, Gradient boosting decision tree; AUROC, Area under receiver operating characteristic curve.



CMC, 2024, vol.78, no.3 4229

In the remaining sections of the paper, information on thyroid datasets, data preprocessing, feature
selection approaches, and the proposed ML diagnosis method are presented in Section 2. Section 3
provides the findings of using several attribute selection methods along with stacking the ensemble
models, evaluating their efficiency with different metrics, and comparing and discussing their results
with those of similar research. Section 4 summarizes the most important findings of this research work.

2 Materials and Methods

The structure and flow of the proposed method for predicting thyroid problems are shown in
Fig. 1. Two thyroid illness datasets are obtained from the UCI-MLR. The initial step includes the
necessary preprocessing while considering the deletion of the unimportant features and handling the
missing values. The BorutaSHAP-based feature importance by using Z-score is also focused. Another
contribution of this study includes the minimum covariance determinant (McovD) based outlier
detection and removal from both datasets. The attributes selection process comes next which employs
a variety of feature selection strategies. Several ensemble classifiers RF, bagging classifier (BGC),
and AdaBoost (ADB) are used in this study by dividing the datasets in a train-to-test ratio of 70:30.
Finally, the stacking of the ensemble classifiers with an LR meta-estimator has been implemented in
this research work.

Figure 1: The block diagram of the suggested approach for diagnosing thyroid disease

2.1 Thyroid Datasets

The two datasets used in this research work have been taken from the UCI-MLR repository. The
dataset-1 is named “hypothyroid”, and dataset-2 is known as the “new-thyroid” dataset.

2.1.1 Dataset-1

It comprises 30 explanatory variables representing 3772 patients, 29 of which are objects and
one with integer values. The dataset-1 contains a lot of missing data. Out of the 30 attributes, eight
important features include the missing data. The features, total T4 (TT4), free T4 index (FTI), T4
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uptake (T4U), age, sex, TSH and T3 includes 231, 385 387, 01, 150, 369, and 769 missing samples
out of a total of 3772 instances, respectively. The other feature, thyroid-binding globulin (TBG) fully
comprises the missing values. The total distribution of the target class is represented as a binary class
consisting of 3481 samples as ‘P’ and 291 as ‘N’. The t-distributed stochastic neighbor embedding
(t-SNE)-based projection for this target variable is shown in Fig. 2a.

Figure 2: The t-SNE-based target variable data points projection on (a) dataset-1, (b) dataset-2

2.1.2 Dataset-2

This dataset includes a total of 215 instances while considering a total of six attributes including
the target variable. It consists of both the integer and float values with no missing samples involved.
The target factors classify patients into three groups according to the well-being of their thyroid glands
including normal thyroid function, hyperthyroidism, and hypothyroidism. The division of the class
variable consists of 150 samples for “normal” as 1, 35 samples for “hyper” as 2, and 30 samples for
“hypo” as 3. Fig. 2b shows the t-SNE-based target variable projection for this dataset.

2.2 Preprocessing

The dataset-2 has no missing values or redundant attributes and the target variable comprising
strings is converted to integers for further processing. The string “nan” represents missing values in
dataset-1 features which are replaced with the mean values of neighbors. The dataset-1 additionally
includes attribute values like ‘t’ and ‘f’ which are changed to ‘0’ and ‘1’, respectively, for further
processing. The TBG feature includes a lot of missing values, so it is removed from the dataset since it
highly affects the model performance and has no significant effect on the outcome. The dataset-1 has
few numeric, and mostly objects, strings, or character-based attributes. These variables are difficult to
process for ML libraries, so string or character objects are converted into integers. This data cleansing
is performed in preprocessing for both datasets.

2.2.1 BorutaSHAP for Feature Importance

Feature importance refers to methods that evaluate input features based on their ability to predict
output variables. In predictive modeling, feature relevance scores reflect the insights about the model
attributes. It provides the foundation for attribute selection and dimensionality reduction for higher-
dimensional data which may affect prediction model efficiency. The most common methods include
statistical correlation scores, LR model coefficients, RF and DT-focused features scores, permutation-
based scores, and F-score-based feature importance [10]. The SFM class converts a model into a subset
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with specified features for XGB-based feature significance [18]. Wrapper-based BorutaSHAP uses
Boruta attribute selection and SHAP values. This combination outperforms the classic permutation
importance technique in time and feature subset reliability. This method improves model inference by
providing better attributes and the most consistent and accurate global feature rankings [27]. Fig. 3
shows BorutaSHAP-based attribute importance using the Z-score for both datasets.

Figure 3: Z-score-based feature importance by using BorutaSHAP on (a) dataset-1, (b) dataset-2

2.2.2 Minimum Covariance Determinant-Based Outlier Detection

Multivariate data makes it more difficult to identify anomalies because multidimensional residuals
may not be readily apparent in lower dimensional situations, and visual evaluation of the data is not
necessarily reliable in higher dimensional data. A traditional method is to figure out how far each
observation is from the center of the data, considering how the data is shaped. An outlier is a data point
that is distant from the other data points beyond a certain cutoff. The traditional distance metrics are
Euclidean, Manhattan, Chebyshev, Minkowski, hamming, or Mahalanobis distances, etc.

One of the most reliable methods for estimating the covariance matrix of a collection of multivari-
ate data is the McovD [28]. When the covariance matrix is positive semi-definite and its diagonal entries
are all equal to one, the inverse of the covariance matrix determinant is the minimum determinant.
McovD is a helpful estimator because it is less susceptible to outliers than the covariance matrix. It
is helpful for datasets with outliers or noise. A total of 264 and 15 outliers are detected in dataset-
1 and dataset-2 with WOAS, achieving the mean absolute error (MAE) value of 2.5 × 10−2 and
1 × 10−4, respectively. These outliers are detected with MAE values of 2.4 × 10−2, 2.5 × 10−2,
2 × 10−2 for dataset-1, and 6.2 × 10−2, 1 × 10−4, 2 × 10−4 for dataset-2, with WSFS, WSFBE, WBDFS-
based selected features, respectively.

2.3 Feature Selection Approaches

This study used two datasets having 30 and five features, respectively. ML requires an essential and
significant number of attributes for learning models to train them well for better prediction capabilities.
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Feature selection strategies like WSFS, WSFBE, and WBDFS are used in this study to select the
important features from the dataset for the effective development of the proposed ML model.

2.3.1 Sequential Forward Feature Selection

A technique for choosing a smaller subset of features from a larger collection of features in a
dataset is called sequential feature selection. “Sequential” means that features are added or removed
in a sequence based on predetermined performance criteria until a subset of desired features is
found. Sequential feature selection may be done in various ways, including recursive feature removal,
backward elimination, and forward selection. These approaches vary in the procedure and criteria for
feature addition or removal from the subset. All techniques proceed to identify the subset of features
that give the highest model performance as measured by the selected performance criteria. The WSFS
technique is detailed in Algorithm 1.

Algorithm 1: Sequential forward feature selection
Start
Input Significance level value (S) and an empty set (Z0 = ∅)

Step 1: Select the initial feature
select minimum p-value:
Y+ = argmaxy/∈Zk

(Zk + y)

update p-value
Step 2: Put an increment of 1.
Step 3: Repeat Step 1 until all feature values become less than S (Zk < S).
Step 4: Calculate the total number of features:

Zk = Zk + Y+; K = K + 1
End

Dimensionality reduction of datasets is a valuable technique for improving the performance of
ML models and making them simpler to understand. Additionally, it might be useful to determine the
key characteristics of a dataset that can emphasize the underlying connections between the features
and the desired variable. In this study, the Scikit learn package [29] has been used to select the most
important and essential attributes in both datasets. Fig. 4 illustrates the feature performance scores
against the number of selected features by all the feature selection techniques on both datasets. The
WSFS achieved performance scores of 0.25 and 0.46 with 20 and four number of selected features in
dataset-1 and dataset-2, respectively.

2.3.2 Sequential Backward Elimination

The term “Backward” refers to the continuous removal of features based on pre-established
performance criteria until the desired subset is found. It adds or removes model features sequentially
like WSFS. Sequential backward elimination is computationally more efficient than training a new
model for each feature addition or removal. The WSFBE technique is detailed in Algorithm 2. The
WSFBE achieved performance scores of 0.25 and 0.46 with 22 and five selected features in dataset-1
and dataset-2, respectively, as shown in Fig. 4.
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Figure 4: Performance scores of selected features with selection techniques on (a) dataset-1,
(b) dataset-2

Algorithm 2: Sequential backward elimination-based feature selection
Start
Input Select all features: (Z0 = Y)

Step 1: Find the highest p-value feature (H-p-value)
Step 2: Compare H-p-value with S
Step 3: if (y > S)

Execute the following: Y− = argmaxy/∈Zk
(Zk − y)

Step 4: Eliminate H-p-value and repeat Step 1
Step 5: Increment: (K + 1)

Step 6: if (k == 0)

Zk−1 = Zk − Y−; K = K + 1
End

2.3.3 Bi-Directional Feature Elimination

The most significant ML model properties are chosen using bidirectional feature reduction.
It involves the gradual removal of model features with the evaluation of its performance. Feature
elimination can be performed from the complete or reduced feature set. The model performance is
checked by eliminating each feature one by one, and the checked feature is permanently removed from
the selected feature set if its removal improves the model performance. If the performance drops with
the removal of any feature, then it is added back to the selected feature set. This procedure is repeated
until the model’s performance is plateaued out. In the reverse process, all the features are checked
sequentially by including them in the initially null feature set, and they are added to the selected feature
set permanently if their inclusion improves the model performance or vice versa until the performance
plateaus.

Due to its consideration of both the effects of individual features on the performance of the model
and the interactions between features, bi-directional feature elimination is a beneficial strategy for
feature selection. A model’s interpretability and risk of overfitting may both be improved by reducing
the number of unimportant features in the model. The WBDFS technique is detailed in Algorithm
3. The WBDFS achieved performance scores of 0.965 and 0.465 with 16 and five selected features in
dataset-1 and dataset-2, respectively, as shown in Fig. 4.
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Algorithm 3: Bi-directional feature elimination-based feature selection
Start
Input Starts with a null set: (Z0 = ∅)

Step 1: For feature selection: ZF = ∅; ZB = Y ;
Step 2: Use p-value comparison to select the best feature:

X+ = argmaxy/∈ZFk

(
ZFk

+ y
)

ZFk
+1 = ZFk

+ Y+

Step 3: The following best features are also selected using p-value comparison
Step 4: Use WSFBE to eliminate the unwanted features
Step 5: Repeat Step 2 until the value of K the count of the total number of features:

X+ = argmaxy/∈ZBk

(
ZFk

+ y
)

ZBk
+1 = ZFk

+ Y+

End

2.4 Ensemble Classification Models

Ensemble classifiers improve prediction accuracy by using many base models. The same or
different base models are trained separately on the same dataset in an ensemble. The final prediction
of the classifier is made by combining the base model predictions which can be performed in multiple
ways. In majority voting, the most frequently predicted class by the base models is selected as the
final prediction. In weighted voting, weighted averaging of base models’ performance is done for the
final prediction. The proposed approach employed stacking classifiers for early predictions, and meta-
estimators for final predictions. Stacking may reduce overfitting and improve generalization surpassing
base models. They are beneficial for complex problems where model selection is challenging [30]. The
ensemble classifiers are ADB, GB, RF, BGC, etc., which can perform both the classification and
regression tasks.

Random Forests ensembles are DTs that work together to predict. Each tree in an RF ensemble
learns from a distinct sample of the dataset and averages its predictions to make a final prediction.
This method reduces overfitting and may improve model accuracy compared to a single DT. RF tends
to train quickly and handle large datasets, making them popular for many applications [31].

Classification problems are commonly solved with Adaptive Boosting ensemble learning. DT
and other weak learners are combined to create a powerful classifier. The weak learners are trained
sequentially with training data weights modified to learn those samples that are misclassified by
previous learners. Therefore, the final classifier is more accurate than each weak learner alone. ADB
is widely used since it is easy to set up and improves several classifiers [32].

A Bagging ensemble refers to a collection of classifiers that collectively output predictions. Bagged
ensemble learning approaches include training individual classifiers using random samples from the
entire dataset [33]. Each classifier contributes to the prediction, but the final prediction is made by
a majority vote. This technique may enhance model accuracy over a single classifier due to reduced
overfitting [34]. BGC is popular because it learns quickly and handles large datasets.

Ensemble Stacking is an ensemble learning technique that uses the “stacking” strategy by training
each ensemble classifier on a different subset of the training data. Meta-classifiers combine all classifier
findings to generate a final prediction. Since many classifiers can focus on distinct data points, this
method may improve model accuracy [35]. Stacking ensembles can improve many classifiers and are
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adaptable [36]. In this study, LR is employed as a meta-estimator to produce the final prediction. Fig. 5
shows the flow diagram of the homogeneous ensemble stacking-based classification model.

Figure 5: Ensemble stacking approach-based meta-classification model

2.5 Performance Assessment Metrics

The confusion matrix is used to evaluate the model’s accuracy in making predictions of respective
classes and to assess the model’s performance by identifying any anomalies [37,38]. The metrics are
based on the number of true positives, false positives, true negatives, and false negatives in the model
predictions. The number of positive outcomes that were correctly identified, the number of positive
outcomes that were misidentified, the number of negative outcomes that were correctly identified, and
the number of negative outcomes that were misidentified are referred to as true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN), respectively. Precision, recall, accuracy,
F1-score, and the Matthews correlation coefficient (MCC) are some of the measures that can be
determined by using these indicators according to the following relationships.

Accurracy = TP + TN
TP + FP + TN + FN

× 100% (1)

Precision = TP
TP + FP

× 100% (2)

Recall = TP
TP + FN

× 100% (3)

F1 − score = TP
TP + FN

× 100% (4)

MCC = (TP × TN) − (FP × FN)√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

× 100% (5)

Cohen kappa is a statistical measure used to find out how much the two evaluators agree with
each other. It can also be used to see the efficiency of a model for gathering samples into groups in the
real world.

Kappa score = OA − EA
1 − EA

× 100% (6)

where OA is the observed agreement and EA relates to the expected agreement.
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Hamming loss is a way to measure how often mistakes happen in classification tasks with more
than two labels. It is the number of wrongly predicted labels as a percentage of all the labels in the
dataset. It is used to measure how well a multiclass classifier works. It is found by subtracting the
fractional accuracy of the classifier from one for binary classification problems.

Hamming Loss = 1
|N| . |L|

∑|N|

i=1
.
∑|L|

j=1
(Yi,j ⊕ Zi,j) (7)

whereas forecasted and the target values are represented as Zi,j and Yi,j, respectively.

3 Results and Discussion

The results of this study involving ensemble learning and the prediction of thyroid illness are
presented in this section. The outcomes of using each feature selection strategy as well as without
attribute selection are described by employing the stacking ensemble strategy for the classification.
The dataset was randomly divided into training and testing sets using the train-to-test ratio of 70:30
with 70% of the data samples (2640 and 150 samples for dataset-1 and dataset-2, respectively) being
used for model training and 30% of the data samples being used for model testing. The effectiveness of
the model is assessed by using multiple performance evaluation indicators including accuracy, MCC,
precision, Cohen Kappa, recall, F1-score, and hamming loss.

3.1 Results for Dataset-1

The results of the stacking ensemble classifier used on dataset-1 are shown in Table 2. All
performance assessment measures are computed with original preprocessed features (WOAS) and with
feature selection approaches-based selected attributes. The dataset-1 has a total of 30 features out of
which a few had missing values which are not included in the evaluation. In a comparative analysis,
the WBDFS methodology used the fewest features and achieved the highest accuracy of 99.86% with
the lowest computational cost after the deployment of various feature selection algorithms.

Table 2: Performance evaluation measures for stacking ensemble classifier using multiple attribute
selection techniques on both datasets

Attributes
selection
techniques

Classification
method/
Dataset

Selected
attributes

Accuracy
(%)

Recall
(%)

Cohen
kappa
(%)

F1-
score
(%)

Precision
(%)

MCC
(%)

Hamming
loss
(%)

WOAS
Stacking
ensemble/
Dataset-1

26 97.87 89.00 85.95 93.00 98.50 86.68 2.120
WSFS 20 99.55 98.00 97.31 99.00 99.50 97.33 0.441
WSFBE 22 99.29 98.00 98.76 98.00 98.00 95.70 0.706
WBDFS 16 99.86 99.50 99.19 99.50 100.0 99.20 0.133

WOAS
Stacking
ensemble/
Dataset-2

5 99.16 97.33 94.70 96.66 95.33 94.73 0.830
WSFS 4 93.84 89.00 85.88 90.33 85.93 85.93 6.153
WSFBE 5 98.46 99.33 96.55 96.00 96.60 96.60 1.538
WBDFS 5 100.0 100.0 100.0 100.0 100.0 100.0 0.000

From Table 2, it is found that dataset-1 has many outliers since the accuracy reduced and the
computational complexity of the suggested approach increased as the number of features increased in
the testing feature set. As a result, the WBDFS and stacking ensemble produced the best performance,
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whereas the WOAS and stacking ensemble produced the worst performance with an accuracy of
97.87%. Overall, the WBDFS is regarded as the most efficient attribute selection strategy for thyroid
disease prediction. The confusion matrices obtained by using stacking ensemble and various feature
selection techniques for dataset-1 are shown in the top row of Fig. 6.

Figure 6: Confusion matrices for stacking ensemble and feature selection techniques on dataset-1 (top
row) and dataset-2 (bottom row)

3.2 Results for Dataset-2

Table 2 presents the results of employing the stacking ensemble method on dataset-2 with feature
selection approaches as well as with the original feature set. All the performance assessment metrics
results validate the effectiveness of the proposed model for multiclass thyroid disease classification.
Although dataset-2 contains a limited number of features and training samples, it does not contain
missing values which indicate that each attribute possesses essential information, and hence is critical
to achieving high-end results.

It is shown in Table 2 that WBDFS achieved a score of 100% in accuracy as well as other evaluation
metrics while keeping its hamming loss at 0.00%. The results obtained using WSFS attained the lowest
performance with an accuracy of 93.84% because the total number of selected features was reduced by
one compared to the original feature set. A significant amount of vital information was lost in terms
of the removed feature which resulted in the lowest performance of the WSFS method. The WBDFS
emerged as the clear winner among all by achieving the maximum accuracy of 100% with the lowest
computational time of 0.040 s. The bottom row of Fig. 6 shows the confusion matrix results of the
stacking ensemble in combination with the feature selection techniques on dataset 2.

3.3 Comparison with Existing Studies

To demonstrate the effectiveness of the proposed methodology, its results were compared with
those of the recently published studies that employed experimental methods on the same datasets. In
Table 3, the accuracy, specificity, and recall values from the published research models were assessed
against the proposed stacking ensemble method with attribute selection on the employed thyroid
datasets of UCI-MLR. The proposed approach of stacking the common homogeneous ensemble
classifiers (RF, ADB, BGC) with the WBDFS feature selection technique achieved the highest



4238 CMC, 2024, vol.78, no.3

accuracy of 100% and 99.86% on both the UCI-MLR (New-thyroid) dataset-2 and (Hypothyroid)
dataset-1, respectively. This comparison ascertains the viability of the proposed method in detecting
binary as well as multiclass thyroid disorders for real-world smart healthcare applications.

Table 3: Performance comparison on both thyroid datasets of UCI-MLR

Ref. Dataset Technique Accuracy
(%)

Specificity
(%)

Recall
(%)

Prediction
time (sec)

Proposed Stacking ensemble (RF, ADB,
BGC) + WBDFS

99.86 99.21 99.50 0.075

[35] Dataset-1 RF 99.81 – – –
[36] DT, RF 99.58 – 99.60 –
[39] RF, sequential minimal

optimization
99.44 – – –

Proposed Stacking ensemble (RF, ADB,
BGC) + WBDFS

100.0 100.0 100.0 0.040

[14] Dataset-2 XGB 98.59 – – –
[40] SVM 98.62 97.80 100.0 –
[41] NB 97.20 96.10 96.70 –

4 Conclusions

The human life of a thyroid patient depends on efficient thyroid disorder detection and diagnosis.
Machine learning (ML) methods improve disease recognition and identification accuracy. Thyroid
disease is hard to diagnose as its symptoms are often misinterpreted. Current research focuses
on model optimization and ML classifier implementation, but few studies have discussed feature
engineering and attribute selection. The availability of a single method that is effective for multiple
thyroid datasets is limited as most of the studies are validated over a single dataset. The evaluation
and validation of the attribute selection-based ensemble learning combination are also not presented
widely. In this preface, this study proposed a stacking ensemble model encompassing multiple
homogenous ensemble classifiers combined with attribute selection methods, which are employed on
the significantly preprocessed feature set before classifier training. Three attribute selection approaches
namely sequential forward feature selection, sequential backward elimination, and bi-directional
feature elimination are implemented. Random forests, adaptive boosting, and bagging ensemble
classifiers are efficient thyroid prediction ML classifiers with low computational complexity, so they
are stacked together in the proposed classification model. Ensemble models help us to overcome weak
learners’ drawbacks by increasing prediction accuracy. The final meta-estimator in ensemble stacking
is the logistic regression. The performance of the proposed approach is consistent across multiple
thyroid datasets and hence is independent of dataset features. Bi-directional feature elimination and
stacking ensemble produced 99.86% and 100% accuracy with reduced computational cost in terms
of prediction time of 0.075 and 0.040 s for dataset-1 and dataset-2, respectively. Other performance
evaluation metrics results are promising with the implementation of the proposed model. The proposed
method surpasses the results obtained with the earlier research on both thyroid disease datasets. The
feature reduction and class imbalance in the target variable pose a few limitations of this study. Future
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work will focus on data augmentation and sampling procedures to balance the class distribution with
improved performance.
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