
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.047407

ARTICLE

Nonparametric Statistical Feature Scaling Based Quadratic Regressive
Convolution Deep Neural Network for Software Fault Prediction

Sureka Sivavelu and Venkatesh Palanisamy*

School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, 632014, India

*Corresponding Author: Venkatesh Palanisamy. Email: venkatesh.palanisamy@vit.ac.in

Received: 04 November 2023 Accepted: 08 January 2024 Published: 26 March 2024

ABSTRACT

The development of defect prediction plays a significant role in improving software quality. Such predictions
are used to identify defective modules before the testing and to minimize the time and cost. The software with
defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist
to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To
improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical
feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed
SQADEN technique mainly includes two major processes namely metric or feature selection and classification.
First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the
relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used
to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition
with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The
deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The
softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–
Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a
minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative
metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the
superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by
3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art
methods.

KEYWORDS
Software defect prediction; feature selection; nonparametric statistical Torgerson–Gower scaling technique;
quadratic censored regressive convolution deep neural network; softstep activation function; nelder–mead
method

1 Introduction

Software fault prediction is the process of identifying defective software components, and it is
considered a crucial process during software development. It symbolizes the activity of identifying

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.047407
https://www.techscience.com/doi/10.32604/cmc.2024.047407
mailto:venkatesh.palanisamy@vit.ac.in

3470 CMC, 2024, vol.78, no.3

defective software modules in original versions of a software system. Fault prediction is considered
of great significance in software engineering since it contributes to constantly improving the software
quality for increasing the cost-effectiveness of quality assurance and testing.

A Graph Convolutional Neural Network for Defect Prediction (DP-GCNN) model was devel-
oped in [1] to classify the software module as defective or not defective. However, the fault prediction
in the software modules with different sizes was not analyzed. A three-Stage Weighting approach for
Multi-Source Transfer Learning (3SW-MSTL) was introduced in [2] for software fault prediction.
However it failed to enhance the performance of accurate defect prediction with minimum time. A
defect prediction model based on Gated Hierarchical Long Short-Term Memory networks (GH-
LSTMs) was introduced in [3] by extracting relevant features. However, the designed method was
not efficient in performing cross-project defect prediction tasks. A cross-project defect prediction was
performed in [4] using the transfer-leaning algorithm. However the combination of information from
multiple source projects was not analyzed to achieve better performance.

Gated Hierarchical Long-Short-Term Memory networks (GH-LSTMs) were developed in [3] for
defect prediction to extract relevant features of source code files. However the time consumption of
the defect prediction was not minimized. An artificial neural network-based prediction model was
introduced in [5,6] for identifying software defects by using conceptual features extracted from the
source code. However, the higher accuracy of defect prediction was not achieved. A new Hellinger
net model was designed in [7] to improve defect prediction for software modules. However, the time
complexity of defect prediction was not minimized. A hybrid Deep Neural Network model was
developed in [8] to improve the prediction of software bugs. However, the efficient feature selection
process was not investigated to improve the quality of available public datasets. A Nested-Stacking and
heterogeneous feature selection model was introduced in [9] for software defect prediction. However
it failed to build a more intelligent and automated prediction system. An Extended Random Forest
(extRF) technique was developed in [10] for defective system prediction. However, it failed to provide
an analytical evaluation of the machine-learning techniques for prediction purposes.

1.1 Major Contributions of the Paper

To overcome the existing issues, a novel Nonparametric Statistical feature scaled QuAdratic
regressive convolution Deep nEural Network (SQADEN) is developed with the following
contributions:

• A novel SQADEN is introduced for improving the software fault prediction which includes two
different processes namely feature selection and classification.

• To minimize the prediction time and space complexity of software fault prediction, the
SQADEN first performs the feature selection using the nonparametric statistical Torgerson–
Gower scaling technique. The relevant features are identified through the Mann-Whitney
nonparametric statistical test analysis with the help dice similarity coefficient.

• The classification is carried out by using a Quadratic Censored regressive convolution deep
neural network to classify defective or non-defective software projects.

• Censored regression is employed to examine the training and testing samples via deep deep-
learning classifier analyzes the training and testing samples. The dimension of the input is
minimized by applying censored regression.

• The softstep activation function is used to provide the final fault prediction results.
• Nelder–Mead method is applied to solve non-linear least-squares problems by reducing

quadratic loss.

CMC, 2024, vol.78, no.3 3471

1.2 Outline of Paper

The rest of the work is organized into different sections as follows: Section 2 expresses the related
works of recent year techniques for predicting software defects. The proposed methodology SQADEN
of this research work is briefly explained in Section 3. The experimental settings of the proposed and
existing methods are discussed in Section 4. Followed by, performance results and discussions are
presented in Section 5. The conclusion of the work is given in Section 6.

2 Related Works

Stacked Sparse Denoising Auto Encoders (SSDAE) and Extreme Learning Machines (ELM) were
developed [11] to detect defective modules. However, it was not applied to evaluate our model in more
open-source and commercial projects. The multi-perspective tree embedding (MPT) technique was
developed in [12] for software project defect prediction. However, it failed to extend our model for
other software source code-based research such as code clone detection and code completion.

An attention-based GRU-LSTM model was developed in [13] for statement-level defect predic-
tion. But it failed to perform defect predictions with more features hence it increased the complexity.
The Relief-Based Clustering (RFC) method was developed in [14] for selecting the significant features
based on correlation. However, the method failed to focus on the redundant features of high-
dimensional datasets.

An integration of Particle Swarm Optimization and Sparrow Search Algorithm was designed in
[15] for software defections estimation and prediction. However, it was not able to make improvements
to the strategy of software reliability models. A Kernel Spectral Embedding Transfer Ensemble
(KSETE) approach was developed in [16] for defect prediction. However, it failed to improve the
KSETE approach using deep learning because of its efficient feature learning ability. Two novel
methods were developed in [17] to handle the problem of class imbalance datasets during software
defect prediction. But it has more time consumption for defect prediction.

Semantic Feature Learning via Dual Sequences (SFLDS) was developed in [18] for feature
generation to improve software defect prediction. However, deep feature learning was not performed.
An automatic selection of source project training data was developed in [19] for defect prediction-based
divergence. However, it failed to validate the proposed approach, and a modified objective cluster
analysis was performed in [20] for software defect prediction using unlabeled datasets. However, the
space complexity of defect prediction was not minimized.

Software defect was forecasted in [21] by using feature selection and classifications with maximum
accuracy. But, the time was not reduced. Ensemble learning methods were employed in [22] by higher
prediction performance. A novel software defect prediction framework was discussed in [23] to lessen
time. The data imbalance issue was determined with the Synthetic minority oversampling method.
Shapley additive explanation model was employed to highlight the utmost determinative features.
RNN-Based DL as well as Ensemble ML methods was analyzed in [24] for performing software
fault defection. An improved CNN model was investigated in [25] for enhancing defect prediction
performances. However, deep learning was not performed to accurately detect the fault prediction.

3 Methodology

Software Defect Prediction (SDP) plays a significant role in software engineering. It helps software
practitioners assign their limited resources for testing and improve the quality by identifying a defect
in the early phases of the development life cycle. When the software systems complexity increases,

3472 CMC, 2024, vol.78, no.3

the number of software defects during the software development also considerably increases. This
increasing complexity of software projects involves an increasing consideration of their analysis and
testing. Therefore, a novel SQADEN technique is introduced for accurately and timely detecting
software defects. The proposed SQADEN is an effective method to identify defects in system modules
in advance. First, the software metrics related to software defects are selected followed by the
classification performed for detecting the defects in the source code to enhance the software quality.

Fig. 1 depicts the architecture diagram of the proposed SQADEN technique consisting of two
major processes namely feature selection and classification for improving the accuracy of SDP with
big data. Initially, the big dataset is considered for software defect prediction. This dataset consists of
many features or software metrics X1, X2, X3, . . . , Xn and data D1, D2, D3, . . . , Dn for constructing the
software defect predictor to classify instances to predict the defected and non-defected instances.

Dataset
Extract number of metrics

and data

Apply nonparametric statistical Torgerson–
Gower scaling technique

Select relevant features
metrics and removes the other

Quadratic Censored regressive
convolution deep neural network

Accurately detect software prediction with
minimum time and higher accuracy

Feature
selection

Classificati
on

Figure 1: Architecture diagram of the proposed SQADEN technique

After collecting the metrics from the dataset, the feature selection process is carried out to reduce
the input variable by selecting relevant software metrics for minimizing the time complexity of software
defect prediction. The proposed SQADEN technique uses a nonparametric statistical Torgerson–
Gower scaling for selecting the relevant metrics and removes the other metrics for enhancing the
performance of SDP with minimum time. The final result of this procedure obtains the relevant
features to enhance the classification process.

Finally, the classification process is performed to enhance SDP with minimum time by analyzing
the testing and training data instances by using a Quadratic Censored regressive convolution deep
neural network. The convolution neural network is a type of deep learning technique for analyzing
the testing and training data by using a contingency correlation coefficient in the convolution layer.
Then the dimension of the data is minimized in the max pooling layer by applying censored regression.
Finally, the softstep activation function is used in the dense layer for identifying defective or non-
defective software modules. After that, the Nelder–Mead method is applied to minimize incorrect
software fault prediction. Based on the analysis, the software fault prediction is correctly identified
with minimum time. These two different processes of the proposed SQADEN are described in the
following subsections.

CMC, 2024, vol.78, no.3 3473

3.1 Nonparametric Statistical Torgerson–Gower Feature Scaling

SDP is used to perform the statistical analysis of sequential faults, in the source code program.
However, there are redundant and irrelevant features or metrics in the software defect datasets that
affect the performance of defect predictors. To identify and remove the redundant and irrelevant fea-
tures in datasets, a novel nonparametric statistical Torgerson–Gower scaling technique is introduced.

Torgerson–Gower scaling is a machine learning technique used to minimize the dimensionality
of the dataset by identifying the level of similarity of individual cases of a dataset. The similarity
is measured by applying the Mann-Whitney statistical test. It is a nonparametric test for randomly
selected values (i.e., features) from the dataset.

Fig. 2 given above depicts the block diagram of nonparametric statistical Torgerson–Gower
feature scaling. First, the number of features or software metrics is collected from the dataset. Then, a
new feature selection method is applied and proposed based on the dependence between the features.
Moreover, the corresponding significance of the feature has been obtained using Mann-Whitney
statistical test.

Figure 2: Nonparametric statistical Torgerson–Gower feature scaling

Let us consider the number of features X1, X2, X3, . . . , Xn collected from the dataset. Then the input
is taken in a matrix form.

A =

⎡
⎢⎢⎣

X11 X12 . . . X1n

X21 X22 . . . X2n

...
... . . .

...
Xm1 Xm2 . . . Xmn

⎤
⎥⎥⎦ (1)

In Eq. (1), A denotes a matrix. By applying a Torgerson–Gower scaling method, input features are
in the form of a matrix and measure the similarities between the pairs of features and output relevant
features with the help of the dice coefficient. The corresponding Mann-Whitney nonparametric
statistic is defined as:

T
(
Xi, Xj

) = S
(
Xi, Xj

)
(2)

S
(
Xi, Xj

) = 2 ∗
[

Xi ∩ Xj

n

]
(3)

In Eqs. (2) and (3), S
(
Xi, Xj

)
indicates the similarity coefficient between the two features Xi and

Xj. The symbol ‘∩’ indicates mutual dependence between the two features. ‘n’ denotes the number of
features. The similarity coefficient returns the output value between 0 and 1. If the coefficient returns
‘1’ indicates that the features are mutually dependent. Otherwise, the features are independent.

3474 CMC, 2024, vol.78, no.3

S
(
Xi, Xj

) =
{

1; dependent features
0; independent features

(4)

In Eq. (4), the dependent features are selected for classification, and the remaining features are
removed. This helps to minimize the time complexity of software fault prediction. The algorithmic
process of the nonparametric statistical Torgerson–Gower feature scaling is given below:

Algorithm 1: Nonparametric statistical Torgerson–Gower feature scaling
Input: Dataset ‘D’, features or software metrics X1, X2, X3, . . . Xn

Output: Select significant features
Begin
Step 1: Collect the features or software metrics X1, X2, X3, . . . Xn from the dataset
Step 2: For each metric ‘X ’
Step 3: Apply Nonparametric statistical test ‘T

(
Xi, Xj

)
’

Step 4: Measure the similarity between the features ‘S
(
Xi, Xj

)
’

Step 5: If (S
(
Xi, Xj

) = 1) then
Step 6: Two features are said to be mutually dependent
Step 7: Selected as relevant features
Step 8: else
Step 9: Two features are said to be independent
Step 10: Selected as an irrelevant features
Step 11: end if
Step 12: Select relevant features
Step 13: Remove the irrelevant features
Step 14: end for
End

Algorithm 1 given above illustrates the different processing nonparametric statistical Torgerson–
Gower scaling for selecting the significant software metrics from the dataset. The number of features
and data are collected from the dataset. After that, the Torgerson–Gower scaling is applied to find the
dependence between the features. The dependent features are selected for fault prediction and other
software metrics are eliminated from the dataset to minimize the time consumption of software fault
prediction.

3.2 Quadratic Censored Regressive Convolution Deep Neural Network Based Classification

Finally, in this section, with the selected relevant features, classification is performed data the
respective relevant features are made. The classification here is made employing Quadratic Censored
regressive convolution deep neural network-based classification to detect the software faults. The
advantage of a convolution deep neural network is to reduce the high dimensionality of data without
losing any data. Contrary to the conventional algorithm, the censored regression, Contingency
Correlation coefficient, and Nelder–Mead method are applied to convolution-deep neural networks
to increase the performance of classification and minimize the error rate.

Fig. 3 given above shows the schematic diagram of the Convolutive Deep Learning Classifier that
includes three types of layers namely one input, one or more hidden (i.e., middle), and one output
layer. The input and output layers are always single layers, whereas the middle layer consists of many
sublayers for analyzing the given input data samples. Each layer normally contains a small individual

CMC, 2024, vol.78, no.3 3475

unit called artificial neurons or nodes. The main process of the neuron is to process the given inputs
and forward the output to other nodes with the help of an activation function. An input of an artificial
neuron is training data from the input layer or outputs from a previous layer’s neurons. The connection
between the neurons is called a synapse.

Input layer

Training data
instances

Convolution
layer

Max
pooling

layer

Dense layer Y

Output layerHidden layer

Figure 3: Schematic diagram of Quadratic Censored regressive convolution deep neural network

The input layer consists of training data, i.e., A1, A2, A3, . . . , An that includes a source code. The
proposed classifier includes three hidden layers and multiple sub-layers for learning the given input
training data. The hidden layers are the convolutional layer, the maxpooling layer, and the dense layers.
Finally, the classified result is displayed at the output layer that provides the final fault prediction
results. The convolutional layer is the first hidden layer. Followed by, pooling layers, the dense layers
are presented.

• Input layer

First, the input layer considers the number of training data i.e., A1, A2, A3, . . . , An that includes a
source code and is given to the input layer. The input is transferred into the first hidden layers, i.e.,
convolutional for learning the given input.

• Convolutional layers

The convolution layer convolves the input training data, i.e., A1, A2, A3, . . . , An and passes its result
to the next layer. This layer performs a mathematical procedure called a “convolution”. Convolution
is a linear mathematical operation that involves the product of a set of weights with the input training
data. The activity of the artificial neuron in the convolution layer is shown in Fig. 3.

The activity of the neuron in the layer as given below:

W =
∑n

i=1

∑m

j=1
(Ai ∗ δj) + c (5)

In Eq. (5), W indicates a Convolutional layer output, δj denotes weights assigned to an input ‘Ai’.
Here, ‘∗’ indicates a numerical operator called a “convolution”.

In this Convolutional layer, the feature map is also carried out by measuring the relationship
between testing and training data using the contingency correlative statistical Cramér’s test.

The Contingency Correlation coefficient is a statistical technique used to measure the association
between the testing and training data using Cramér’s phi test.

CC = CT =
[∑ ∑ |Ai − AT |2

(n − 1) + (m − 1)

]
(6)

3476 CMC, 2024, vol.78, no.3

In Eq. (6) CC denotes a Correlation coefficient result, CT denotes an output of Cramér’s phi test,
Ai denotes training data, AT denotes a testing data, ‘n, m’ are sample size. The test ‘CT ’ returns a value
from 0 (no association between the data) to 1 (complete association between the data).

R =
{

CT = 1; Ai is associated with AT

CT = 0; no association
(7)

In Eq. (7), R denotes an output of the convolution layer, The test in correlation coefficient CC
returns +1’ indicates that the two data are associated and selected whereas the value of ‘0’ indicates
that the two data are not associated. The feature mapping results are transferred to the next max-
pooling layer.

• Max-pooling layer

It is the second hidden layer of the deep learning classifier for minimizing the dimensions of
the input. Max Pooling is the method, where the highly correlated feature map results are taken as
input and it provides the dimensions reduced output. The Censored regression is a machine learning
technique used to find the stochastically higher correlated results by defining the threshold value.

M =
{

CT > β; Selected
CT < β; Removed

(8)

In Eq. (8), M indicates an output of the regression, β denotes a threshold, output CT indicates a
correlation output. Therefore the higher correlation results are greater than the threshold chosen for
the classification process. Or else, the correlation results are removed to minimize the dimension of the
input data. The output of the max-pooling is sent to the dense layer for classification.

• Dense layer

In this layer, the deep learning classifier performs the SDP with the help of the activation function.
A dense Layer is used to classify data based on output from convolutional layers. The classification is
performed using the softstep activation function.

K = 1
1 + e−CT

(9)

In Eq. (9), K denotes a softstep activation function, ‘CT ’ indicates the correlation results. The
activation provides the outcomes as 0 or 1.

K =
{

1, Defective
0, non−defective

(10)

Based on activation function results, software defects are correctly identified. After that, the
Quadratic loss function is calculated for each observed result.

QL = b [T − O]2 (11)

In Eq. (11), the Huber loss ‘QL’ is measured as a squared difference between the target results ‘T ’
and output predicted by the activation function ‘O’, b denotes a constant. The Nelder–Mead method
is applied to solve non-linear least-squares problems to minimize the Quadratic loss.

f (x) = arg min QL (12)

CMC, 2024, vol.78, no.3 3477

Finally, the classification results are obtained at the output layer. Based on the classification
results, accurate software fault prediction is obtained with minimum loss. The Quadratic Censored
regressive convolution deep neural network-based classification algorithm is described as given below:

Algorithm 2: Quadratic Censored regressive convolution deep neural network-based classification
Input: Selected relevant features A = {A1, A2, A3,Ab} and training data D1, D2, D3,Dm,
Output: Increase the fault prediction accuracy
Begin

1. Number of selected features {A1, A2, A3,Ab} with training data D1, D2, D3,Dm taken into
the input layer

2. For each training data D [convolutional layer]
3. Convolve the weight ‘δj’ with the input ‘Ai’ and add bias ‘c
4. Compute the neuron activity ‘W ’
5. end for
6. For each training data with testing data
7. Perform feature mapping using correlation coefficient ‘CC’
8. Endfor
9. Apply censored regression –[max-pool layer]
10. if (CT > β) then
11. Select the data for classification
12. else
13. Remove the data
14. end if
15. For selected correlation results ‘CT ’ –[Dense layer]
16. Apply softstep activation ‘K’
17. If (K = +1) then
18. Software fault is correctly predicted
19. else
20. Identify the non-defective
21. End if
22. For each predictionoutput
23. Calculate the quadratic loss ‘QL’
24. Apply Nelder–Mead method
25. Find minimum loss f (x) = arg min QL
26. Obtain final fault prediction at the output layer

End

Algorithm 2 given above illustrates the different step-by-step procedures of software fault predic-
tion using Quadratic Censored regressive convolution deep neural network with higher accuracy. The
selected software metrics with the training data are given as input for the deep learning classifier. Then
the input is transferred into a convolution layer. In this layer, the inputs are convolved with the set of
weights and added to the bias. In the convolutional layer, the Contingency Correlation coefficient is
applied to find the correlation between the training and testing data. Then the correlation outcomes
are transferred into the next layer called the max pooling layer. In that layer, the higher correlated
results are selected for the next classification process to minimize the time of fault prediction. Then
the output of the max pooling layer is given to the dense layer where the softstep activation function
for predicting the defective or non-effective software codes class. Subsequently, the quadratic loss

3478 CMC, 2024, vol.78, no.3

is calculated for each predicted output. After that, the quadratic loss is minimized by applying the
Nelder–Mead method. Finally, the accurate prediction results are displayed at the output layer of the
deep learning classifier.

4 Experimental Settings

In this section, the proposed SQADEN technique and existing DP-GCNN [1], and 3SW-MSTL
[2] are implemented in Java language. The experiment is conducted in an Intel Core i5- 6200U CPU @
2.30 GHz 4 cores with 4 Gigabytes of DDR4 RAM. The objective of the proposed SQADEN technique
is to accurately predict the software fault with higher accuracy and minimum time. Based on the
objective, existing methods such as DP-GCNN [1], and 3SW-MSTL [2] are taken as base paper. These
two base papers are explained to understand the proposed method. The drawbacks of these methods
are effectively convinced by implementing the proposed technique. Software Defect Prediction Data
Analysis is utilized to perform experiments. Lastly, we compare the proposed SQADEN technique
with other existing methods to validate its effectiveness.

Software Defect Prediction Data Analysis taken from the https://www.kaggle.com/code/
semustafacevik/software-defect-prediction-data-analysis/data. This is a PROMISE repository and
is publicly available for software engineering. The dataset consists of 10885 instances and 22 attributes
features or metrics. The attribute information is given in Table 1. First, the metrics are taken from the
dataset. The metric selection process is carried out by using the Nonparametric statistical Torgerson–
Gower scaling technique to select relevant features for defect prediction. With the selected relevant
metrics, the Quadratic Censored regressive convolution deep neural network classifier is applied for
predicting the software defects based on the attributes and it indicates true and false.

Table 1: Attributes information

S. No. Features or attributes or metrics Description

1 loc Line count of code
2 v(g) Cyclomatic complexity
3 ev(g) Essential complexity
4 iv(g) Design complexity
5 n Total operators + operands
6 v Volume
7 l Program length
8 d Difficulty
9 i Intelligence
10 e Error approximation
11 b Effort approximation
12 t Time estimator
13 10Code Line count
14 10Comment Count of lines of comments
15 10Blank Count of blank lines
16 10CodeAndComment Line count and count of lines of comments
17 Uniq_op Unique operators
18 Uniq_opnd Unique operands

(Continued)

https://www.kaggle.com/code/semustafacevik/software-defect-prediction-data-analysis/data
https://www.kaggle.com/code/semustafacevik/software-defect-prediction-data-analysis/data

CMC, 2024, vol.78, no.3 3479

Table 1 (continued)

S. No. Features or attributes or metrics Description

19 Total_op Total operators
20 Total_opnd Total operands
21 Branch count Flow graph
22 Defects {False, True} indicates whether the module has

defects or not

5 Results Analysis

Results of and discussion of the proposed SQADEN technique and existing DP-GCNN [1], 3SW-
MSTL [2] are discussed with the different parameters such as fault prediction accuracy, precision,
recall, and F-measure and prediction time. Performance results are assessed with the help of tables
and graphical illustrations.

5.1 Performance Metrics

Software fault prediction accuracy: It is measured as the number of instances that are correctly
predicted as defects or not. The prediction accuracy is calculated.

SFPA =
[

Tp + Fp

Tp + Fp + Tn + Fn

]
∗ 100 (13)

where SFPA indicates a software fault prediction accuracy, Tp indicates a true positive, Fp denotes a
false positive, Tn indicates the true negative, Fn represents the false negative. The accuracy is measured
in percentage (%).

Precision: It is calculated based on many true positives as well as false positives. Therefore, the
precision is mathematically estimated as given below:

Pr =
(

Tp

Tp + Fp

)
∗ 100 (14)

In Eq. (14), Pr represents a Precision, Tp symbolizes the true positive, Fp represents the false
positive. The Precision is measured in percentage (%).

Recall: It is calculated to find the number of true positives as well as false negatives during the
fault prediction. It is also known as sensitivity and is calculated as follows:

Rc =
(

Tp

Tp + Fn

)
∗ 100 (15)

In Eq. (15), Rc indicates a recall, Tp denotes a true positive, Fn denotes the false negative. The recall
is measured in percentage (%).

F-measure: It is estimated as the average of both precisions as well as recall. The F-measure is
computed as given below:

MESF =
[

2 ∗ Pr ∗ Rc

Pr + Rc

]
∗ 100 (16)

3480 CMC, 2024, vol.78, no.3

In Eq. (16), MESF indicates an F-measure computed based on precision Pr and recall ‘Rc’. F-
measure is measured in percentage (%).

Prediction time It is measured as the amount of time consumed by the algorithm to accurately
predict defective or non-defective software modules. Therefore, the overall time is calculated as given
below:

Pt = n ∗ [t (POI)] (17)

In Eq. (17), Pt indicates a prediction time, n denotes the number of instances, t denotes a time for
predicting one instance (POI). Prediction time is measured in milliseconds (ms).

Space complexity: It refers to the amount of memory space taken by an algorithm to predict
software faults. Therefore, it is computed by:

Spacecom = n ∗ Mem [POI] (18)

In Eq. (18), Spacecom denotes a space consumption, Pi represents the patients involved in simula-
tion ‘Mem [POI]’ denotes a memory space consumed to classify defective or non-defective instances.
It is computed by Megabytes (MB).

5.2 Comparative Analysis

To validate the effectiveness of the proposed SQADEN technique, this paper conducts a compar-
ative analysis with state-of-the-art DP-GCNN [1], 3SW-MSTL [2], utilizing the Software Defect Pre-
diction Data Analysis dataset as presented in Tables 2–5. Furthermore, we evaluated the performance
of the proposed SQADEN technique using the Software Defect Prediction Data Analysis dataset, with
the results reported in Figs. 4–6.

Table 2: Software fault prediction accuracy

Number of instances Software fault prediction accuracy (%)

SQADEN DP-GCNN 3SW-MSTL

2500 97.32 92.4 95.2
5000 97 92.1 95.1
7500 96.85 91.95 94.96
10000 96.44 91.84 94.57
12500 96.22 91.63 94.2
15000 95.98 91.55 94.1
17500 95.66 91.36 93.71
20000 95.33 91.22 93.57
22500 95.2 91 93.22
25000 95 90.7 93

CMC, 2024, vol.78, no.3 3481

Table 3: Recall

Number of instances Recall (%)

SQADEN DP-GCNN 3SW-MSTL

2500 98.88 96.46 97.59
5000 98.44 96.25 97.18
7500 97.94 96 97.14
10000 97.9 95.92 97.09
12500 97.74 95.76 96.74
15000 97.6 95.55 96.65
17500 97.49 95.39 96.54
20000 97.42 95.22 96.5
22500 97.39 95 96.33
25000 97.21 94.88 95.98

Table 4: Prediction time

Number of instances Prediction time (ms)

SQADEN DP-GCNN 3SW-MSTL

2500 24 30 27
5000 26 32 30
7500 32 38 35
10000 34 42 37
12500 36 44 41
15000 39 47 44
17500 44 51 48
20000 46 55 50
22500 52 60 56
25000 56 65 62

Table 5: Comparative analysis of the proposed method with existing methods

Metrics Methods

SQADEN technique DP-GCNN [1] 3SW-MSTL [2]

Software fault prediction accuracy (%) 96.10 91.57 94.16
Precision (%) 97.51 93.65 95.71
Recall (%) 97.80 95.64 96.77
F-measure (%) 98.22 94.59 96.59

(Continued)

3482 CMC, 2024, vol.78, no.3

Table 5 (continued)

Metrics Methods

SQADEN technique DP-GCNN [1] 3SW-MSTL [2]

Prediction time (ms) 38.9 46.4 43
Space complexity (MB) 31.4 38.1 34.8

Figure 4: Comparison analysis of precision

Table 2 reveals the comparative performance analysis of the software fault prediction accuracy vs.
the number of instances taken as input in the ranges from 2500 to 25000. From the observed results,
different performance results are observed for all three methods namely SQADEN technique and
existing DP-GCNN [1], 3SW-MSTL [2]. The observed results indicate that the SQADEN technique
achieves higher accuracy of software fault prediction than the other two existing methods. Let us
consider 2500 instances taken as input for calculating the accuracy. By applying the SQADEN
technique, 97.32% accuracy was observed. The accuracy of [1] and [2] was found to be 92.4% and
95.2%, respectively. For each method, ten feasible results are obtained. The obtained results of the
proposed SQADEN technique are compared to the results of the existing methods. The average of ten
comparison results proves that the software fault prediction accuracy of the SQADEN technique is
considerably improved by 5% and 2% when compared to the existing [1], and [2], respectively. This is
because of applying quadratic censored regressive convolution deep neural network. The deep learning
classifier uses the contingency correlation coefficient to find the relationship between the training and
testing data instances. Then the higher correlated results are transferred into the next layer called the
max pooling layer. Finally, the softstep activation function predicts the faults accurately.

CMC, 2024, vol.78, no.3 3483

Figure 5: Comparison analysis of F-measure

Figure 6: Comparison analysis of space complexity

3484 CMC, 2024, vol.78, no.3

Fig. 4 illustrates the comparison analysis of precision concerning three different methods namely
the SQADEN technique, existing DP-GCNN [1] and 3SW-MSTL [2].The observed result indicates
that the precision using the SQADEN is better when compared to other techniques. This is because
of SQADEN technique uses the quadratic censored regressive convolution deep neural classifier.
The SQADEN technique uses the contingency correlation coefficient for analyzing the training and
testing data instances. The results provide accurate true positive results and minimize the false positive
by applying Nelder–Mead method. The method minimizes the quadratic loss. Finally, the accurate
prediction results are displayed at the output layer.

Let us consider the 2500 instances in the first iteration to calculate the precision. The percentage
of precision using SQADEN is 98.13%. Similarly, the precision of [1,2], is 94.08%, and 94.66%,
respectively. Likewise, a variety of results are obtained many instances. Then the precision using the
SQADEN is compared to the results of existing methods. Finally, the average of ten comparison results
proves that the performance of precision is considerably improved by 4%, and 2% when compared to
existing [1,2], respectively.

The above Table 3 shows the performance results of recall vs. many instances in the ranges from
2500 to 25000. The performance of recall analysis is performed with the help of the true positives
as well as false negatives. Let us consider the 2500 instances for calculating the recall. By applying
the SQADEN, the observed performance recall was found to be 98.88%. The performance results of
recall using existing DP-GCNN [1] and 3SW-MSTL [2] were observed to be 96.46%, and 97.59%,
respectively. The average of ten comparison results indicates that the overall performance of recall
using SQADEN is significantly improved by 2%, and 1% when compared to conventional methods.
This is due to a application of quadratic censored regressive convolution deep neural classifier for
identifying the defective or non-defective instances correctly predicted with a higher true positive and
minimum false negative.

The performance results of the F-measure vs. many instances of three different methods SQADEN
and existing DP-GCNN [1] and 3SW-MSTL [2] are plotted in Fig. 5. Among the three methods, the
SQADEN achieves a higher F-measure when compared to existing methods. This is because SQADEN
achieves higher precision as well as recall. In the first iteration, 2500 instances are taken as input and
the F-measure of the SQADEN was found to be 98.5% whereas the F-measure of existing methods
was found to be 95.26% and 97.12%. Finally, the results of the proposed SQADEN are compared to
the observed results of existing methods. The average of ten comparison results demonstrates that the
F-measureof SQADEN is found to be increased by 4% when compared to [1] and 2% as compared to
the existing [2], respectively.

Table 4 depicts the overall analysis of the prediction time using SQADEN and existing DP-
GCNN [1] and 3SW-MSTL [2] vs. the number of instances taken in the ranges from 2500 to 25000.
While increasing the input patient data, the time consumption of fault prediction of three methods
gets increased for all the classification methods. However, the proposed SQADEN achieves lower
time consumption than the others. However, with ‘2500’ instances involved in the experiment the
time consumed in software fault prediction was observed to be ‘24ms’, with time consumption of
software fault prediction being ‘30ms’ using [1] and ‘27ms’ using [2]. Similarly, the remaining results
of software fault prediction are observed with different counts of input data. The overall comparison
result confirms that the proposed SQADEN is compared to the time consumption of the existing
results. The average of ten comparison values of the SQADEN is comparatively higher by 17% and
10% when compared to existing methods.

CMC, 2024, vol.78, no.3 3485

This is the reason that increasing the number of instances causes an increase in the number
of instances involved and this in turn increases the prediction time. Fig. 6 shows the software fault
prediction time of SQADEN is minimized. The reason behind this improvement was due to the
application of nonparametric statistical Torgerson–Gower scaling for selecting the significant software
metrics from the dataset. After that, the Torgerson–Gower scaling is applied to find the dependence
between the metrics. These dependent metrics are selected for fault prediction and other software
metrics are removed from the dataset. With the selected features, classification is performed. As a
result, the software fault prediction time using the SQADEN method was said to be reduced.

The performance analysis of space complexity of three different methods namely SQADEN and
existing DP-GCNN [1], 3SW-MSTL [2] are illustrated in the Fig. 6 with respect to the number of
instances 2500, 5000, 7500, . . . , 25000. Let us consider the number of instances is 2500 in the exper-
imentation. The memory consumption for predicting the software faults is 14 MB using SQADEN
whereas the memory consumption of the other two methods [1] and [2] are 22 and 18 MB, respectively.
The observed results prove that the proposed SQADEN achieves lesser memory consumption than
the existing methods. The average of the ten results indicates that the overall performance of memory
consumption of SQADEN is considerably minimized by 19% and 11% when compared to existing
methods. This is because of applying the feature selection using nonparametric statistical Torgerson–
Gower scaling. The irrelevant features and the data are removed from the dataset hence it minimizes
the space complexity. In addition, the max-pooling operation of the deep convolution neural learning
classifier eliminates data with lesser correlation results than the threshold by applying a censored
regression. Table 5 provides a detailed comparison of the proposed SQADEN technique with the
existing methods.

Table 5 shows the comparative analysis of three different methods namely SQADEN and existing
DP-GCNN [1], 3SW-MSTL [2] using dissimilar metrics. The results of the proposed SQADEN are
obtained with maximum accuracy and recall as compared to conventional methods. The observed
results establish that the proposed SQADEN achieves less time and space than the existing methods.

6 Conclusion

This paper presents software fault prediction broadly popular research area in software reliability
engineering. The major objective of fault prediction is to find numerous defective software modules
without damaging the overall performance. In this paper, a novel SQADEN is introduced for solving
the accurate fault prediction with minimum time. The proposed SQADEN technique is designed
with nonparametric statistical Torgerson–Gower feature scaling and Quadratic Censored regressive
convolution deep neural network-based classification.

The nonparametric statistical Torgerson–Gower scaling is employed to find the relevant features
and remove the irrelevant features. In this way, the time as well as space is minimized. Finally, the
classification is performed using a Quadratic Censored regressive convolution deep neural network for
identifying the software faults by analyzing the training and testing data. Finally, the software faults are
correctly determined with higher accuracy. The comprehensive experimental evaluation is carried out
concerning many instances and compares the results of the proposed technique with two conventional
algorithms using the software defect prediction data analysis dataset. The main advantage of the
SQADEN technique is to achieve exactly identify the defective and non-defective projects with higher
accuracy, precision, recall, F-measure, and little time as compared to conventional methods. The
experimental results show that the SQADEN gets better results in terms of 3% accuracy, 3% precision,
2% recall, and 3% F-measure and minimizes the 13% time as well as 15% space complexity when

3486 CMC, 2024, vol.78, no.3

compared to conventional deep learning methods. In future work, the proposed technique will be
further extended for accurate and timely software fault production with minimized time by using a
novel extreme learning classifier method.

Acknowledgement: None.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Sureka Sivavelu, Venkatesh Palanisamy; data collection: Sureka Sivavelu; analysis and
interpretation of results: Venkatesh Palanisamy; draft manuscript preparation: Sureka Sivavelu. All
authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: This study used the publically available dataset: https://www.kaggle.
com/code/semustafacevik/software-defect-prediction-data-analysis/data.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] L. Šikić, A. S. Kurdija, K. Vladimir, and M. Šilić, “Graph neural network for source code defect

prediction,” IEEE Access, vol. 10, pp. 10402–10415, 2022. doi: 10.1109/ACCESS.2022.3144598.
[2] J. Bai, J. Jia, and L. F. Capretz, “A three-stage transfer learning framework for multi-source cross-project

software defect prediction,” Inf. Softw. Technol., vol. 150, pp. 1–16, 2022. doi: 10.1016/j.infsof.2022.106985.
[3] H. Wang, W. Zhuang, and X. Zhang, “Software defect prediction based on gated hierarchical LSTMs,”

IEEE Trans. Reliab., vol. 70, no. 2, pp. 711–727, 2021. doi: 10.1109/TR.2020.3047396.
[4] S. Tang, S. Huang, C. Zheng, E. Liu, C. Zong and Y. Ding, “A novel cross-project software defect

prediction algorithm based on transfer learning,” Tsinghua Sci. Technol., vol. 27, no. 1, pp. 41– 57, 2022.
doi: 10.26599/TST.2020.9010040.

[5] T. Mahesh Kumar, F. H. Sjahin, and P. Rajesh, “Survey on software defect prediction techniques,” Int. J
Appl. Sci. Eng., vol. 17, no. 4, pp. 331–344, 2020.

[6] D. L. Miholca, V. I. Tomescu, and G. Czibula, “An in-depth analysis of the software features’ impact on the
performance of deep learning-based software defect predictors,” IEEE Access, vol. 10, pp. 64801–64818,
2022. doi: 10.1109/ACCESS.2022.3181995.

[7] T. Chakraborty and A. Kumar Chakraborty, “Hellinger net: A hybrid imbalance learning model to
improve software defect prediction,” IEEE Trans. Reliab., vol. 70, no. 2, pp. 481–494, 2021. doi:
10.1109/TR.2020.3020238.

[8] K. Tameswar, G. Suddul, and K. Dookhitram, “A hybrid deep learning approach with genetic and coral
reefs metaheuristics for enhanced defect detection in software,” Int. J. Inf. Manag. Data Insights, vol. 2, no.
2, pp. 1–10, 2022. doi: 10.1016/j.jjimei.2022.100105.

[9] L. Chen, C. Wang, and S. Song, “Software defect prediction based on nested-stacking and heterogeneous
feature selection,” Complex Intell. Syst., vol. 8, pp. 3333–3348, 2022. doi: 10.1007/s40747-022-00676-y.

[10] F. H. Alshammari, “Software defect prediction and analysis using enhanced random forest (extRF)
technique: A business process management and improvement concept in IoT-based application processing
environment,” Mob. Inf. Syst., vol. 2022, pp. 1–11, 2022. doi: 10.1155/2022/2522202.

[11] N. Zhang, S. Ying, K. Zhu, and D. Zhu, “Software defect prediction based on stacked sparse denoising
autoencoders and enhanced extreme learning machine,” IET Softw., vol. 16, no. 1, pp. 29–47, 2022. doi:
10.1049/sfw2.12029.

https://www.kaggle.com/code/semustafacevik/software-defect-prediction-data-analysis/data
https://www.kaggle.com/code/semustafacevik/software-defect-prediction-data-analysis/data
https://doi.org/10.1109/ACCESS.2022.3144598
https://doi.org/10.1016/j.infsof.2022.106985
https://doi.org/10.1109/TR.2020.3047396
https://doi.org/10.26599/TST.2020.9010040
https://doi.org/10.1109/ACCESS.2022.3181995
https://doi.org/10.1109/TR.2020.3020238
https://doi.org/10.1016/j.jjimei.2022.100105
https://doi.org/10.1007/s40747-022-00676-y
https://doi.org/10.1155/2022/2522202
https://doi.org/10.1049/sfw2.12029

CMC, 2024, vol.78, no.3 3487

[12] K. Shi, G. Liu, Y. Lu, Z. Wei, and J. Chang, “MPT-embedding: An unsupervised representation learning
of code for software defect prediction,” J. Softw.: Evol. Process, vol. 33, no. 4, pp. 1–20, 2021. doi:
10.1002/smr.2330.

[13] H. S. Munir, S. Ren, M. Mustafa, C. N. Siddique, and S. Qayyum, “Attention based GRU-LSTM for
software defect prediction,” PLoS One, vol. 16, no. 3, pp. 1–19, 2021. doi: 10.1371/journal.pone.0247444.

[14] X. L. Xu, W. Chen, and X. H. Wang, “RFC: A feature selection algorithm for software defect prediction,”
J. Syst. Eng. Electron., vol. 32, no. 2, pp. 389–398, 2021. doi: 10.23919/JSEE.2021.000032.

[15] L. Yang, Z. Li, D. Wang, H. Miao, and Z. Wang, “Software defects prediction based on hybrid particle
swarm optimization and sparrow search algorithm,” IEEE Access, vol. 9, pp. 60865–60879, 2021. doi:
10.1109/ACCESS.2021.3072993.

[16] H. Tong, B. Liu, and S. Wang, “Kernel spectral embedding transfer ensemble for heterogeneous defect
prediction,” IEEE Trans. Softw. Eng., vol. 47, no. 9, pp. 1886–1906, 2021. doi: 10.1109/TSE.2019.2939303.

[17] J. Zheng, X. Wang, D. Wei, B. Chen, and Y. Shao, “A novel imbalanced ensemble learning in software
defect predication,” IEEE Access, vol. 9, pp. 86855–86868, 2021. doi: 10.1109/ACCESS.2021.3072682.

[18] J. Lin and L. Lu, “Semantic feature learning via dual sequences for defect prediction,” IEEE Access, vol.
9, pp. 13112–13124, 2021. doi: 10.1109/ACCESS.2021.3051957.

[19] S. Zheng, J. Gai, H. Yu, H. Zou, and S. Gao, “Training data selection for imbalanced cross-project defect
prediction,” Comput. Electr. Eng., vol. 94, pp. 1–11, 2021. doi: 10.1016/j.compeleceng.2021.107370.

[20] J. Ren and Q. Zhang, “A novel software defect prediction approach using modified objective cluster
analysis,” Concurr. Comput. Pract. Exp., vol. 33, no. 9, pp. 1–13, 2021. doi: 10.1002/cpe.6112.

[21] M. S. Alkhasawneh, “Software defect prediction through neural network and feature selections,” Appl.
Comput. Intell. Soft Comput., pp. 1–16, 2022.

[22] X. Dong, Y. Liang, S. Miyamoto, and S. Yamaguchi, “Ensemble learning based software defect prediction,”
J. Eng. Res., vol. 69, no. 104773, pp. 1–15, 2023. doi: 10.1016/j.jer.2023.10.038.

[23] Y. Al-Smadi, M. Eshtay, A. Al-Qerem, S. Nashwan, O. Ouda and A. A. Abd El-Aziz, “Reliable prediction
of software defects using shapley interpretable machine learning models,” Egypt. Inform. J., vol. 24, no. 3,
pp. 1–20, 2023. doi: 10.1016/j.eij.2023.05.011.

[24] E. Borandag, “Software fault prediction using an RNN-based deep learning approach and ensemble
machine learning techniques,” Appl. Sci., vol. 13, no. 3, pp. 1–21, 2023. doi: 10.3390/app13031639.

[25] C. Pan, M. Lu, B. Xu, and H. Gao, “An improved CNN Model for within-project software defect
prediction,” Appl. Sci., vol. 9, no. 10, pp. 1–28, 2019. doi: 10.3390/app9102138.

https://doi.org/10.1002/smr.2330
https://doi.org/10.1371/journal.pone.0247444
https://doi.org/10.23919/JSEE.2021.000032
https://doi.org/10.1109/ACCESS.2021.3072993
https://doi.org/10.1109/TSE.2019.2939303
https://doi.org/10.1109/ACCESS.2021.3072682
https://doi.org/10.1109/ACCESS.2021.3051957
https://doi.org/10.1016/j.compeleceng.2021.107370
https://doi.org/10.1002/cpe.6112
https://doi.org/10.1016/j.jer.2023.10.038
https://doi.org/10.1016/j.eij.2023.05.011
https://doi.org/10.3390/app13031639
https://doi.org/10.3390/app9102138

	Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
	1 Introduction
	2 Related Works
	3 Methodology
	4 Experimental Settings
	5 Results Analysis
	6 Conclusion
	References

