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ABSTRACT

Multimodal medical image fusion has attained immense popularity in recent years due to its robust technology
for clinical diagnosis. It fuses multiple images into a single image to improve the quality of images by retaining
significant information and aiding diagnostic practitioners in diagnosing and treating many diseases. However,
recent image fusion techniques have encountered several challenges, including fusion artifacts, algorithm com-
plexity, and high computing costs. To solve these problems, this study presents a novel medical image fusion
strategy by combining the benefits of pixel significance with edge-preserving processing to achieve the best fusion
performance. First, the method employs a cross-bilateral filter (CBF) that utilizes one image to determine the kernel
and the other for filtering, and vice versa, by considering both geometric closeness and the gray-level similarities
of neighboring pixels of the images without smoothing edges. The outputs of CBF are then subtracted from the
original images to obtain detailed images. It further proposes to use edge-preserving processing that combines linear
lowpass filtering with a non-linear technique that enables the selection of relevant regions in detailed images while
maintaining structural properties. These regions are selected using morphologically processed linear filter residuals
to identify the significant regions with high-amplitude edges and adequate size. The outputs of low-pass filtering
are fused with meaningfully restored regions to reconstruct the original shape of the edges. In addition, weight
computations are performed using these reconstructed images, and these weights are then fused with the original
input images to produce a final fusion result by estimating the strength of horizontal and vertical details. Numerous
standard quality evaluation metrics with complementary properties are used for comparison with existing, well-
known algorithms objectively to validate the fusion results. Experimental results from the proposed research
article exhibit superior performance compared to other competing techniques in the case of both qualitative and
quantitative evaluation. In addition, the proposed method advocates less computational complexity and execution
time while improving diagnostic computing accuracy. Nevertheless, due to the lower complexity of the fusion
algorithm, the efficiency of fusion methods is high in practical applications. The results reveal that the proposed
method exceeds the latest state-of-the-art methods in terms of providing detailed information, edge contour, and
overall contrast.
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1 Introduction

Numerous developments have been revolutionized in the domain of medical imaging systems for
clinical applicability due to technological advancements, including growth in the number of imaging
modalities. To accurately diagnose diseases, doctors need details from different imaging sources [1,2].
In particular, computed tomography (CT) images provide information about dense bone structures;
however, they cannot provide any details of internal organs. Similarly, the hard tissue contrast is visible
in the magnetic resonance imaging (MRI) images, but bone information is missing. As a result of the
limitations of a single image, it is incapable of providing all of the necessary information. Thus, medical
image fusion plays a pivotal role for doctors or radiologists because it fuses two or multiple medical
images of different modalities that provide high-quality images for better disease diagnosis. MRI and
CT image fusion allows us to fuse images of connective tissue details obtained from MRI images and
details of vertebral anatomy from images, allowing physicians to better interpret and treat patients
[3,4]. Image fusion attempts to fuse the requisite details from both images into a single image by taking
care not to introduce artifacts in the images [5]. Different fusion algorithms have been developed
to solve the issues of medical imaging images over the past several decades [6]. The conventional
image fusion strategies in general are grouped into spatial and transform domain techniques. The
fusion of images based on blocks, pixels, or regions is known as spatial domain algorithms [7,8].
In addition, transform domain methods are based on the principle of transforming an image into
another domain by using the domain’s characteristics to accomplish the objective more accurately [9–
11]. These techniques, however, are not very good at fusing specific information from images, resulting
in the generation of artifacts. Research on pixel-level fusion has been performed over the past 30 years,
with over 1000 affiliated scientific papers published during this period. In recent times, deep learning-
based techniques [12,13] have made massive advancements in numerous areas of image processing and
computer vision, i.e., segmentation, super-resolution, classification, detection, denoising, and others.
Numerous algorithms are proposed based on cross-bilateral filters [14,15]. Like a bilateral filter, cross
bilateral filter considers both grey level similarities and geometric closeness of the neighboring pixels
without smoothing edges, but it uses one image for finding the kernel and another to filter, and vice
versa. In these methods, an image is decomposed into an energy layer with pure intensity information
and a structure layer with rich details. Then, the visual saliency detection map (VSDM) is used to
guide the fusion of the energy layers to take full advantage of the edge contour extraction to improve
the edge contour sharpness of the fused image and to retain the image detail information fully. They
use average cross-bilateral filtering (ACBF) to decompose the source image into smooth layers (SL)
and detail layers (DL). Then, the traditional ABS-MAX method is used to fuse the smooth layer, and
the neighborhood energy sum (NES) method is used to fuse the detail layer. Finally, the final fused
image is obtained by adding the fused smooth layer and detail layer.

Deep learning algorithms have become an active topic in recent times in the domain of image
fusion technology. Wide-ranging deep learning-based algorithms have been developed in recent
years. In addition, generative adversarial network (GAN)-based image fusion has recently become
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increasingly significant. GANs are a new generative modal proposed by Goodfellow [16], which
aims to compute target distributions and generative information that match a point distribution
without depending on any prior assumptions. In the past few years, GANs have been often utilized in
numerous visual interpretation applications with excellent results [17,18]. While current approaches
have achieved optimistic performance in the majority of problems, many features could still be
improved. In general, earlier methods needed manual construction of activity-level calculations
and fusion regulations that limited fusion performance due to their difficulty in considering all
the components in a single manual design process. Secondly, several current algorithms perform
multisensory/multifocus image fusion by creating a decision map, which usually provides classification
problems based on sharpness detection. Near the boundary lines, these approaches usually fail to
distinguish between a focused and unfocused region. Third, when creating a decision map, almost all
deep learning-based approaches need post-processing, i.e., consistency checks, which greatly enhances
the complexity of techniques. Further, these approaches usually require the manual development of a
decision map as ground truth for training the network which further limits their applications.

In addition, transformer-based models are playing a pivotal role in medical imaging analysis
[19,20]. Zhang et al. [21] introduced TransFusion, a transformer-based end-to-end architecture for
medical picture fusion. The suggested TransFusion fusion approach introduces the transformer
as the fusion strategy, which uses its self-attention mechanism to incorporate global contextual
information from multimodal aspects and fuse them appropriately. Furthermore, unlike classic parallel
multibranch designs or shared networks used for many inputs, they construct branch networks that
interact at multiple scales using fusion transformers to better utilize information from different
modalities. Yu et al. proposed an end-to-end image fusion network based on the Swin-Transformer
mechanismcapable of fusing both local and long-range (or global context) image information [22]. The
proposed network is trained in two stages. In the first step, it trains a multi-layer transformer-based
autoencoder network to extract shallow and multi-scale deep features. In the second phase, numerous
features are fused using transformers and convolutional neural networks (CNNs), which have the
potential to collect both local and long-range features. For multimodal medical image fusion, a model
that combines the CNN module and the transformer module is presented [23]. The CNN module is
used to extract image detail texture information, whereas the transformer module is used to extract
image pixel intensity distribution information. Extensive experimental results in the Harvard Brain
Atlas test dataset show that the proposed method outperforms comparable methods.

In this study, an upgraded version of the image fusion strategy is proposed by integrating all the
vital information found in each input image and utilizing a cross-bilateral filter to obtain detailed
images after subtracting them from the source images. Then the method employs a combination of a
linear lowpass filter and nonlinear processing of residuals to find and reconstruct meaningful edges
in lowpass-filtered images. Thus, residuals are then computed and divided into two fractions, one
for the positive portion of pixels and the other for the absolute value of the negative portion. To
locate the strong edges, i.e., high-contrast ones, thresholding is applied to both fractions. The results
of thresholding are then utilized as markers for the morphological reconstruction of residuals. To
recover meaningful edges, restored residuals that do not hold meaningful imaging elements are applied
to low-pass filtered images. The edge-recovered images are then used for the computation of weights.
The estimated weights are integrated with the input images to obtain the final fusion output.
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The main contributions were as follows:

1. This study develops a competent image fusion strategy by combining multimodal medical
images using pixel significance with edge-preserving processing, which is capable of performing
image fusion tasks effectively.

2. This methodology boosts the fusion results by incorporating relevant visual information by
estimating weights from the detailed images. Further, this technique is incredibly simple in
implementation and computation.

3. In addition, it uses non-linear filtering that considers localizing and recovering relevant edges
from the source images, thereby preventing the development of artifacts within the image
regions and boosting visual perception.

4. This methodology can be utilized for implementing a manageable edge-aware image blur with
contrast enhancement, thus improving the image quality while maintaining a precise amount
of information.

5. Lastly, our methodology is compared with other state-of-the-art image fusion algorithms by
considering benchmark medical image fusion datasets.

The remainder of the study is structured as follows: In Section 2, we briefly illustrate existing
literary works based on image fusion. The proposed method is systematically described in Section 3.
Section 4 demonstrates quality evaluation metrics, experimental details, and both qualitative and
quantitative findings. Section 5 concludes with the proposed method.

2 Related Works

Several image fusion approaches have been introduced in recent decades [24,25]. The majority of
prior fusion techniques consist of decomposition and learning-based techniques [9,26]. The multiscale
transform is a broadly used decomposition algorithm for the fusion of images that contains three
stages in fusion practice: decomposition, fusion, and restoration [27]. The multiscale transform
generally employs wavelet-based, pyramid-based, and multi-geometric analysis-based approaches. The
non-subsampled contourlet transform (NSCT) [10] and non-subsampled shearlet transform (NSST)
[28] domain-based algorithms have shown promising image representations. Moreover, during image
transformation, a pivotal problem of the multiscale transform-based fusion approach is the analysis
of frequency components. The activity level of high-frequency components has traditionally been
determined by their absolute values. It is measured in a window- or pixel-based manner, and the
fused coefficient is obtained using a simple function scheme, including a selection of the maximum
or weighted average.

Early research found that averaging a coefficient of numerous source images was a prominent
low-frequency image fusion strategy. More complex image conversions and fusion approaches have
been introduced in recent years [29,30]. Zhang et al. introduced a fusion strategy related to combining
convolutional sparse representation and multiscale transformation [31]. Zhu et al. introduced a
multimodality decompositions approach related to NSCT that uses local Laplacian energy and phase
consistency to combine the low-pass and high-pass subbands [10]. To improve fusion performance,
Lepcha et al. [32] introduced a technique based on a cross-bilateral filter (CBF) with a rolling guidance
filter that combines with weight normalization to enhance medical images. Dogra et al. [33] developed
a method for minimizing distortions or abnormalities in bones and vasculature or arterial image fusion
investigations. Goyal et al. [34] recently developed an approach that integrates poor-quality images,
maintains less complexity for increasing target detection consistency, and offers a foundation for
medical applications. In the NSST domain, Yin et al. incorporated a multimodality fusion of images
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algorithm by including the use of a pulse-coupled neural network (PCCN) [35] for fusing images.
Lei et al. developed a new multisensory fusion architecture relating to PCNN and NSST to enhance the
image fusion efficiency of multimodal images [36]. A learning-based approach has been widely utilized
in fusion strategy in recent times. The most widely used fusion approaches are sparse representation
(SR) and deep learning-related fusion methods [37]. The sparse representation-related fusion strategy
utilized typical sparse coding modality related to a single image element and local image block in the
early stages. The input image is segmented into overlapping image blocks in the initial spatial domain
for sparse coding approaches. Most of the current sparse coding-related image fusion approaches try
to boost their efficiency in the following ways: by adding detailed constraints, creating a highly effective
dictionary learning technique, and representing multiple sub-dictionaries [38].

Kim et al. introduced a dictionary learning approach using the SR-based model based on joint
image block clustering. Zhu et al. developed a fusion of medical images recently [39]. However, all
of the methods mentioned above involved complicated fusion rules or several sparse representation-
based modalities. These particular rules, however, do not generalize to every form of medical image
fusion. Deep-learning-related fusion has become a popular research topic with the fast advancement
of artificial intelligence [40,41]. In recent years, deep learning has achieved significant success in
various fields, including image recognition, natural language processing, speech recognition, and
recommendation systems. Some of the popular deep learning architectures include convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and deep belief networks (DBNs).
The CNN-based local connection with weight-sharing characteristics will increase the efficiency of
the fusion technique by simultaneously reducing network complexity and weights. At the moment,
CNNs are becoming more and more strategic in their fusion strategies. Xia et al. combined a
multiscale transform and CNN to develop a multimodal medical image fusion modality that utilizes
a deeper stacked neural network for dividing input images into low- and high-frequency elements and
corresponding image fusion [42].

One of the major problems in current deep learning-based image fusion is computing the weight
maps that fuse the pixel activity details from different sources. Most current fusion algorithms
contain a two-step process that includes activity-level calculation and weight assignments. The absolute
values of decomposition coefficients are employed to calculate its operation initially in conventional
transform domain methods. The maximum or weighted average is then selected using a fusing rule,
i.e., the choose-max or weighted-average rule. The corresponding weights are eventually assigned
to various sources based on the obtained measurements. Different complex decomposition methods
and detailed weight assignment methods have been introduced recently to improve fusion efficiency
[43,44]. However, constructing an optimal activity-level calculation or weight assignment technique
that takes into account all of the important factors is challenging. Jose et al. [28] introduced a novel
multimodality algorithm for an NSST-related adolescent identity search (AISA) to achieve image
optimization while reducing computational cost and time. Li et al. [45] introduced a fusion technique
that helps with medical analysis and increases target recognition precision and fused image quality.
NSCT and CNN are combined by Wang et al. [46]. They incorporated the benefits of both NSCT and
CNN to boost fusion performance. A hybrid medical image fusion system combines LatLRR and
FCNs by Xu et al. [47]. Liu et al. [48] designed an effective technique using a spectral total variation
transform (STVT). A STVT algorithm is utilized for decomposing the input images into a set of texture
signatures, which refers to the dependent components and deviation components.
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3 Methodology

This section illustrates the proposed multimodal fusion strategy using pixel significance with edge-
preserving processing in detail. Fig. 1 represents a detailed framework for the proposed methodology.
It can be observed from Fig. 1 that our fusion algorithm contains three crucial steps: cross-bilateral
filtering, low-pass filter with morphological processing of residuals, and pixel-based fusion rule.
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Figure 1: Methodological flowchart of the proposed algorithm

3.1 Cross-Bilateral Filter (CBF)

CBF [49] represents a nonlinear and non-iterative technique that integrates an edge stopping
function and a lowpass filter, which minimizes the filter kernel if the magnitude variation between
pixels is greater. Both levels of gray similarity and the geometric closeness of the surrounding pixels
are taken into consideration. The weight of filters does not only depend on the Euclidean distance but
also depends on the distance of color or gray space. The process benefits as it smooths the edges by
conserving the edges while considering neighborhood pixels.
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Mathematically, in the case of source image A, the output of the bilateral filter (BF) at position p
could be estimated as [50]

AF (p) = 1
w

∑
q ∈ S

.

Gσs (‖p − q‖) Gσr(|A (p) − A (q)| A(q) (1)

where Gσs (‖p − q‖) = e
−
‖p − q‖2

2σ 2
s is a geometric closeness function.

Gσr (|A(p) − A (q)|) = e
− |A(p)−A (q)|2

2σ
2
r is a gray-level similarity.

W =
∑

q∈S
Gσs (‖p − q‖) Gσr (|A (p) − A(q)|) is a normalization constant.

where ||p − q|| denotes a Euclidean distance between p and q, S indicates the spatial neighborhood of
p.

Similarly, we can calculate BF using Eq. (1) in the case of source image B. Here, σs and σr manages
the performance of BF, the dependence of σs/σr value and derivative of original images on the behavior
of BF are demonstrated in [51]. The value of σs is selected based on the optimal output of a lowpass
filter and blur highly for more σs, since it integrates values from highly distant locations [51]. In
addition, if the images get scaled down and scaled up, σs should be adjusted to obtain optimal outputs.
It also defines that, the desired good range for σs is (1.5–2.1); similarly, the optimal values of σr rest on
the quantity of the edges to be preserved. In cases where the image gets attenuated and amplified it,
σr should be adjusted to obtain a similar output. CBF considers both the level of gray similarity and
geometric closeness of neighborhood pixels in image A for shaping the filter kernel and filter image
B. The CBF output of image B at a pixel position p is defined by [52]

BCBF (p) = 1
W

∑
q∈S

Gσs (‖p − q‖) Gσr(|A (p) − A (q)| B(q) (2)

where Gσr (|A (p) − B (p)|) = e
− |A(p)−A(q )|2

2σ2
r is a gray-level similarity

W = ∑
q∈S Gσs (‖p − q‖) Gσr (|A (p) − A(q)|) is a normalization constant.

Similarly, we can compute ACBF using Eq. (2) from the corresponding source image. The detailed
images are generated through the subtraction of CBF output from the input images. In the case
of images A and B, the detailed images can be obtained as AD = A−ACBF and BD = B−BCBF . In medical
images, the unfocused region in image A could be in image B, and using CBF in image B could blur
focus regions higher as compared to that of the unfocused region of the image B. Since the unfocused
region in the image A somehow seems blurred, having nearly the same gray value in the region therefore
forms a kernel filter the same as a Gaussian. However, the concept is to obtain highly focused area
information in a detailed image BD in such a way that this information would be utilized to determine
the weights utilizing weighted averaging. Likewise, in the medical image, the details in image B are not
present in image A, and using CBF in the image B could blur the details in image B. Consequently, the
details in image A are absent.
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3.2 Edge-Preserving Processing

This section illustrates edge-preserving processing that is based on lowpass filtering with morpho-
logical processing of its residuals (LPMPR) [53]. It is mainly based on residual Gaussian filtering and
is expressed as

Ilf = AD ∗ L (3)

where ∗ is a convolutional operator and AD is the detailed image obtained after subtracting CBF output
from original image A. While L represents a Gaussian filter or any other low-pass filtering mask.
Henceforth, a linear filter residual is defined as

Ires = AD − Ilf (4)

The residual is then put through another processing step utilizing functions that are described
using positive value images. In that case, the contents, which Ires contain both negative and positive
values, are decomposed into two portions ∼ negative and positive:

Ires+ = 0.5 (Ires + |Ires|) ;

Ires− = 0.5(|Ires| − Ires) (5)

The residual fraction follows the related relationship described below:

Ires = (Ires+) + (Ires−) (6)

Similarly, we can obtain a residual image of detailed image B using similar procedures.

Both fractions of the residual (Ires+, Ires−) are processed to cut off the irrelevant dissimilarity of
the residual while maintaining relevant ones. The processing method that selects the most significant
residue regions and preserves their original structures is based on morphological function M and
reconstruction. Lastly, significant residual areas are added in the image for recovering meaningful
edges, while simultaneously, images remain blurred across irreverent image regions as

Iout1 = Ilf + M (Ires+) − M (Ires−) (7)

A function M remains similar for both residuals and is described as

M (I) = RI

(
min

(
I , St (I) |{min{I},max{I}}

))
(8)

when RI(A) represents morphological restoration of gray level mask image I from markers A and
‘|’ represent mapping operator where the image is recovered by transforming a binary image by
substituting primary values of 0’s and 1’s by two stated ones. A ‘min’ represents the pointwise minimal
function of two images. A binary masker S that consists of significant regions where contrast can be
maintained is the key aspect for the interpretation of M. The substitute in these areas is related to the
amplitude of the residue as

St (I) = (I ≥ t) (9)

where S stands for the selection operator that extracts regions of I with an amplitude higher than the
given threshold t. In addition, the number of portions where the original sharpness is reconstructed.
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3.2.1 Size Criteria for Selection of Meaningful Regains

According to the initial implementation of this strategy, the edges of relevant areas are present in
the binary mask that is extracted via thresholding. Using the amplitude residual, meaningfulness is
calculated. So far, amplitude is not the only factor that affects how significant an image component
is. It is easy to envision an image component with a greater residual amplitude specification that has
no impact on how the image should be perceived. For instance, the addition of salt and pepper to the
image would result in the generation of several smaller image components with larger amplitudes and
the addition of high-amplitude components, which would alter the original image. Subsequently, they
could be detected as relevant parts that are not optimal. Thus, another set is incorporated into the
original approach to tackle this problem. The binary mask is filtered by the area opening filter [54].
The binary image is removed by this filter as are all related components with a size smaller than the
given threshold s (size coefficient). Subsequently, Eq. (9) is expressed as

St,s (I) = (I ≥ t) o (s) (10)

where o (s) represents an area opening that removes elements smaller than those of the specific size
specified by s. As compared to the initial method, one can notice that in both situations, when the
coefficient (s in terms of the modified method and t in terms of the initial method) is enhanced,
the number of selected regions reduces. On the contrary, in the case of the original situation, when
the coefficient s is employed, the parts are eliminated based to their sizes. It permits thus rejecting
smaller pixels and objects from residuals, even if their amplitudes are higher. Finally, it offers to
maintain these parts blurry in the output image.

3.2.2 Contrast Control

Subtraction (Addition ∼ depending on the components) of high-pass filtering from the original
image is one of the most well-known methods for improving contrast in images. It has to do with high
pass filtering properties to distinguish local differences in the value of image pixels. An additional
method to get high-pass filter results is to compare differences across low-pass filtering and the image
itself. High-frequency components of images with amplitude areas exceeding threshold t are referred to
as morphologically processed residuals. To manage the contrast of the final denoised image, a contrast
control coefficient is presented in Eq. (7), which provides an updated formulation as

Iout1 = Ilf + (M (Ires+) − M (Ires−)). c. (11)

By depending on c, can be further enhanced, preserved, and reduced. Also shown are the
results of contrast enhancement without morphological processing of its residual. How morphological
processing affects this information can be realized in the number of small image features that are visible
in the output [53]. The contrast of the relevant regions is improved by this processing method since
it enables the unimportant elimination of information. This strategy is controlled by the main three
factors t, s, and c. The amount of information obtained depends on the amplitude of the residual (t)
and the particle size of the residual (s) . The parameter c allows the contrast of an output image to be
controlled. Similarly, we can compute detailed image BD using a similar process to obtain Iout2.

3.3 Pixel Significance-Based Fusion Rule

The fusion rule in [55] is presented to fulfill the completeness of our method. As demonstrated in
[55], the weight is estimated employing the statistical characteristics of the neighborhood detailed com-
ponents instead of wavelet components. The window dimension w × w around the detail coefficients
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Iout1(i, j) or Iout2(i, j) by considering the neighborhood for estimating the weights. The neighborhood is
represented by the matrix M. Every row of the matrix M is regarded as the observation and the column
for computing an unbiased estimate Ci,j

h of its covariance matrix [56] while i and j denote the spatial
coordinates of the detail components Iout1(i, j) and Iout2(i, j).

covariance (M) = E[(M − E[M])(M − E[M]T ] (12)

Ci,j
h =

∑w

k=1 (xk − x)
(
xk − x)T

(w − 1)
(13)

where xk represents kth observation of w-dimensional variable and x denotes an observational mean. It
has been discovered that the diagonal of Ci,j

h represents a variance of vector for every column of M. The
eigenvalues of Ci,j

h is estimated and the number of eigenvalues usually depends on the dimension of the
matrix Ci,j

h . The summation of these eigenvalues is directly relative to the horizontal detail strength of
the neighbors as stated by HdetailStrength [55]. In a similar manner, the unbiased covariance estimates
Ci,j

v is produced by considering every column of M as the observation and every row as the variable
(i.e., the inverse of how Ci,j

h is calculated), and the summation of eigenvalues of Ci,j
v generates vertical

detail strength VdetailStrength, which is defined as follows:

HdetailStrength (i, j) =
w∑

k=1

eigenk of Ci,j
h

VdetailStrength (i, j) =
w∑

k=1

eigenk of Ci,j
v (14)

where eigenk denotes the kth eigenvalue of the unbiased matrix estimate. Moreover, weights for
particular detail components have been calculated by combining the corresponding detail strengths.
Generally, weights are usually based on the strengths of detail, not on the actual intensity values.

wt (i, j) = HdetailStrength (i, j) + VdetailStrength (i, j) (15)

After weight computation for all the detailed coefficients based on both assigned source images,
the weighted average is employed for obtaining fusion results. Where wtA and wtB are the weights of the
detailed coefficients obtained from the output of edge-preserving processing Iout1 and Iout2 that belong
to corresponding input images A and B, respectively. Thus, the weighted average on both detailed
images is estimated as a fusion result utilizing Eq. (16) as illustrated below:

F (i, j) = A (i, j) wtA (i, j) + B (i, j) wtB(i, j)
wtA (i, j) + wtB(i, j)

(16)

The proposed algorithm validates competency using a variety of medical datasets. The proposed
method reduces computational complexity and execution time while improving diagnostic computing
accuracy. Our method exhibits a major boost in efficiency compared to other competing algorithms.
It can be observed that the qualitative interpretation of all the fused images retrieved through the
proposed algorithm has superior visual quality.

4 Experiments and Results

In this study, eight pairs of medical images are employed during the experiments to validate
the practicability and feasibility of our algorithm. A total of eight pairs of CT-MRI images are
demonstrated in Fig. 2. All these test datasets contain a spatial resolution of 256 × 256 pixels.
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Further, seven existing comparative methods are utilized for comparison to assess the robustness of our
approach, including the adolescent identity search algorithm in the NSST domain (AISA-NSST) [28],
the medical image fusion method by deep learning (MIFDL) [40], multi-objective differential evolution
based deep neural networks (MDE-DNN [41], geometric algebra discrete cosine metrics (GADCT)
[43], medical assistive technology management based on hybrid domain filtering (MATM-HDF)
[8], FDGNet [57] and sparse representation and Siamese convolutional neural network (SRSCNN
[58]. All the experiments are performed on a PC with an Intel (R) Core (TM) i3-7020 CPU @ 2.3
GHz and 8 GB of RAM using MATLAB 2022a. Following [49], the parameter values are fixed at
σs ∼ 1.8, σr ∼ 4 and kernel size (n) ∼ 7 for some pairs of medical images, and δs ∼ 1.2, δr ∼ 0.06
and kernel size (n) ∼ 9 ccs. The neighboring window of 11 × 11 for the cross-bilateral filter and the
neighboring window of 5 × 5 is used to find the detail strengths. Details of parameter consequences are
studied subsequently. Further, in [53], the edge-preserving processing parameters are set to amplitude
threshold t = 0.15, threshold size s = 5, coefficient c = 1.2, and sigma of the Gaussian filter σ = 72.

4.1 Objective Evaluation Metrics

This study employs twelve quality evaluation metrics for quantitative assessment to determine
the validity of our method, namely spatial frequency (SF), average pixel intensity (API), or mean
(F), mutual information (MI), fusion symmetry (FS), entropy (H), average gradient (AG), standard
deviation (SD), and correlation coefficient (CC) [49,59]. Along with these, objective fusion metrics [49]
based on gradient details are also considered. To provide a detailed study of fusion efficiency through
evaluation of overall fusion efficiency (QAB/F), information loss during the fusion process (LAB/F ) and
noise or artifact-produced fusion process (NAB/F or NAB/F

m ). The higher values in terms of some metrics
and the lower values in terms of other metrics indicate better fusion quality. The process for computing
the parameters and their symbolic representation is given below:

(A) (B) (C) (D)

(E) (F) (G) (H)

Figure 2: Source paired images (A–H): CT-MRI image pairs. Top ∼ CT image; Bottom ∼ MRI
image [60]
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1) The standard deviation represents the variance square root and is defined as the spread of
information. It is expressed as

SD =
√∑m

i=1

∑n

j=1

(
f (i, j) − F

)
)2

mn
(17)

2) The average gradient computes the degree of clarity and sharpness. It is expressed as

AG =
∑

i

∑
j((f (i, j) − f (i + 1, j)) 2

. . + (
f (i, j) − f (i, j + 1)) 2

. .
) 1

2
. .

mn
(18)

3) Mutual information computes the total mutual information between a source and the fused
image. It is denoted by

MI = MIAF + MIBF (19)

where

MIAF = ∑
k

∑
l

pA,F (k, l) log2

(
pA,F (k, l)

pA (k) pF (l)

)

MIBF =
∑

k

∑
l

pB,F (k, l) log2

(
pB,F (k, l)

pB (k) pF (l)

)

4) Entropy (H) is the information quantity present in the image.

H = −
∑255

k=0
pk log2(pk) (20)

where pk represents the value of the intensity probability k in the image.

5) Spatial frequency computes the total information present in image regions and is denoted as

SF =
√

RF2 + CF2 (21)

where

RF =
√∑

i

∑
j (f (i, j) − f (i, j − 1)) 2

mn
(22)

and

CF =
√∑

i

∑
j (f (i, j) − f (i − 1, j)) 2

mn
(23)

6) Average pixel intensity (APF) represents the contrast index and is denoted as

API = F =
∑m

i=1

∑n

j=1 f (i, j)

mn
(24)

where m × n represents the image dimension and f (i, j) represents the intensity of the pixel at (i, j).

7) The correlation coefficient estimates the relevance of representing fusion output to the original
image. It is defined by

CC = (rAF + rBF)/2 (25)
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where rAF =
∑

i

∑
j(a (i, j) − A)( f (i, j) − F)√(∑

i

∑
j(a (i, j) − A)2

) (∑
i

∑
j(f (i, j) − F)2

) (26)

and rBF =
∑

i

∑
j

(
a (i, j) − B

) (
f (i, j) − F

)
√(∑

i

∑
j

(
a (i, j) − B

)2
) (∑

i

∑
j

(
f (i, j) − F

)2
)

8) Fusion symmetry represents the amount of symmetry where the fused image corresponds to
the input image. It is denoted as

FS = 2 − |MIAF

MI
− 0.5| (27)

9) QAB/F = overall information transferred from input images to the fusion result.

10) LAB/F = overall information loss during the fusion process.

11) NAB/F = noise or artifacts add up to the fusion result during the fusion process.

In particular, QAB/F , LAB/Fand NAB/F are complementary, and the summation of all these parameters
should result in 1 [49], i.e.,

QAB/F + LAB/F + NAB/F = 1 (28)

In particular, for most of the situations, it has been noticed that the above summation may not
lead to unity. For this purpose, the technique has been modified, and a revision has been advised for
performance parameters for fusion artifacts [49]. The revised computation is denoted by

NAB/F
m =

∑
∀i

∑
∀j AMi,j

[(
1 − QAF

i,j

)
wA

i,j +
(
1 − QBF

i,j

)
wB

i,j

]
∑

∀i

∑
∀j(wA

i,j + wB
i,j)

(29)

where AMi,j =
{

1, gF
i,j > gA

i,j and gF
i,j > gB

i,j

0, otherwise
indicates the location of fusion artifacts where fuse-

gradient is more powerful than input.

gA
i,j, gB

i,j & gF
i,j represents edge strengths of A, B, and F , respectively.

QAF
i,j and QBF

i,j represent gradient details preservation estimates of original-images A & B, respec-
tively.

wA
i,j and wB

i,j represent perceptual weights of original images A & B, respectively.

With the revision of fusion artifacts measure Nm
AB/F , we could re-write Eq. (28) as

QAB/F + LAB/F + NAB/F
m = 1 (30)

4.2 Qualitative and Quantitative Analysis

To investigate the efficiency of our proposed strategy, this study utilizes eight pairs of publicly
accessible images from the Whole Brain Atlas [60]. The eight pairs of medical images in Figs. 2A–2H
are represented by Set A to Set H, respectively. Statistical numeric indicators to validate the objective
fusion performance is considered, including MI, H, API, CC, AG, API, SF, and SD. Further, in
addition to the above metrics, an objective fusion characterization based on gradient details is also
considered including QAB/F, LAB/F, NAB/F and NAB/F

m [49]. The fused images of MRI and CT datasets
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by comparative eight algorithms and our algorithm are demonstrated in Figs. 3 and 4. Figs. 3 and
4 demonstrate the results of Set (A-H) image datasets and observe he visual results of different
algorithms. The SRSCNN and the proposed method were satisfactory efficient or productive in
extracting the maximum functionality characteristics from input images. In the case of Set A-D; AISA-
NSST, MIFDL, and MDE-DNN lose bone structure information; however, MATM-HDF, FDGNet,
GADCT, SRSCNN, and our approach presents desired contrast, though it has been observed that the
fusion performances of AISA-NSST, MIFDL, and MDE-DNN generate poorcontrasts which make it
challenging to differentiate tissues inside the brain. The efficiency of GADCT seems to have a superior
outcome of contrasting preservation; however, the edge-information throughout the closeup has been
distorted, blurred, smeared, and its contrast has been reduced. FDGNet-generated fusion findings
have enhanced information about the structure and carry appropriate contrasting intensities. However,
certain data and contrast information are lost as displayed in the closeup, and the output generated by
MATM-HDF lost particulars of soft tissues (see Figs. 3 and 4). Considering the fusion results of Set
C and Set D, we notice that the AISA-NSST, MIFDL, MDE-DNN, and GADCT retain information
from two source images somehow, but they maintain poor contrast. However, by highlighting the
zoomed region in Set D, the bone-skeletal region is completely noticeable in our proposed method. The
objective analysis of several fusion algorithms on eight pairs of CT-MRI datasets has been tabulated
in Tables 1 and 2.

Figure 3: (Continued)
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Figure 3: Qualitative results of CT-MRI image pairs on Set (A–D). From top to bottom: results
by AISA-NSST, MIFDL, MDE-DNN, GADCT, MATM-HDF, SRSCNN, FDGNet and proposed
algorithm

Figure 4: Qualitative results of CT-MRI image pairs on Set (E–F). From top to bottom: results
by AISA-NSST, MIFDL, MDE-DNN, GADCT, MATM-HDF, SRSCNN, FDGNet and proposed
algorithm
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Table 1: Quantitative indices of different methods based on reference-based metrics for Set (A–D).
The best results are marked in bold, and the second-best results are marked underlined

Datasets Metric AISA-NSST
[28]

MIFDL
[40]

MDE-DNN
[41]

GADCT
[43]

MATM-
HDF [8]

SRSCNN
[58]

FDGNet
[57]

Proposed

Set-A

API 32.22 28.98 40.77 54.54 49.77 38.65 53.25 56.57
SD 35.70 45.98 42.80 46.77 52.88 44.06 58.27 59.66
AG 7.13 10.29 9.76 10.77 10.98 8.43 10.17 11.35
H 4.58 4.53 4.77 5.88 5.98 6.58 6.70 6.76
MI 2.87 2.92 3.98 4.88 4.87 4.10 5.42 5.96
FS 0.67 0.96 1.12 1.34 1.34 1.59 1.58 1.62
CC 0.49 0.49 0.56 0.57 0.60 0.62 0.63 0.65
SF 12.63 16.54 16.88 18.87 18.87 19.85 19.30 20.95

Set-B

API 42.39 42.97 42.77 43.17 43.45 43.63 43.87 44.68
SD 50.10 51.26 51.78 52.77 52.77 53.63 53.23 55.01
AG 7.40 8.25 8.76 8.7763 8.77 8.46 9.00 9.98
H 3.50 3.53 4.43 4.65 5.23 5.18 5.20 5.29
MI 2.76 2.92 3.77 3.77 4.15 4.35 4.60 5.31
FS 0.67 0.97 1.09 1.36 1.56 1.90 1.89 1.98
CC 0.93 0.93 0.94 0.94 0.95 0.95 0.96 0.98
SF 16.92 17.13 16.66 16.77 17.78 19.36 18.15 20.97

Set-C

API 45.62 45.86 47.88 49.88 51.98 50.37 52.75 53.36
SD 45.32 45.90 47.87 49.87 52.28 55.25 57.04 57.23
AG 9.47 10.69 10.87 13.87 13.98 14.00 13.92 14.13
H 3.58 4.53 4.87 5.24 5.98 6.47 6.33 6.53
MI 1.86 2.32 2.98 3.08 3.27 3.76 3.86 3.96
FS 0.89 0.98 1.07 1.45 1.67 1.89 1.90 1.92
CC 0.93 0.91 0.93 0.98 1.05 1.02 1.00 1.13
SF 16.49 19.10 20.87 21.87 23.88 24.38 24.09 25.31

Set-D

API 50.75 51.97 50.87 51.87 52.80 52.89 53.02 53.08
SD 41.03 45.60 50.87 55.77 64.76 62.85 64.17 65.42
AG 7.64 8.28 9.76 10.76 10.87 10.90 11.04 11.24
H 2.64 3.53 3.88 3.89 3.98 4.35 4.24 4.75
MI 2.58 2.92 2.87 3.17 3.40 3.19 3.35 3.65
FS 0.87 0.98 1.08 1.11 1.86 1.82 1.84 2.00
CC 0.70 0.79 0.89 0.90 0.94 0.93 0.95 0.97
SF 16.88 18.96 20.77 21.88 22.26 22.86 23.09 23.49

Table 2: Quantitative indices of different methods based on reference-based metrics for Set (E–H). The
best results are marked in bold and the second-best results are marked underlined

Datasets Metric AISA-NSST
[28]

MIFDL
[40]

MDE-DNN
[41]

GADCT
[43]

MATM-
HDF[8]

SRSCNN
[58]

FDGNet
[57]

Proposed

API 59.38 60.76 62.77 64.65 65.66 67.86 67.40 70.10

(Continued)
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Table 2 (continued)
Datasets Metric AISA-NSST

[28]
MIFDL
[40]

MDE-DNN
[41]

GADCT
[43]

MATM-
HDF[8]

SRSCNN
[58]

FDGNet
[57]

Proposed

Set-E

SD 57.55 58.77 60.66 61.77 60.87 64.53 63.37 67.34
AG 9.88 10.76 11.87 11.88 12.76 12.80 13.45 15.67
H 4.58 4.76 5.12 5.26 5.39 5.45 5.53 6.01
MI 2.98 3.07 3.24 4.06 4.50 3.99 4.40 4.70
FS 1.78 1.78 1.72 1.85 1.87 1.84 1.83 1.91
CC 0.70 0.80 0.82 0.89 0.90 0.89 0.94 0.96
SF 18.36 20.86 19.76 21.87 21.87 24.35 23.02 26.22

Set-F

API 55.66 55.86 56.77 56.79 57.26 57.42 58.47 58.79
SD 60.76 61.77 61.56 62.77 62.76 64.34 64.25 65.75
AG 8.88 9.76 10.76 10.88 11.08 11.21 11.49 11.96
H 3.87 3.98 3.90 4.01 4.14 4.41 4.26 4.87
MI 1.98 1.90 2.00 2.12 2.78 2.89 3.13 3.24
FS 1.78 1.88 1.89 1.90 1.19 1.90 1.89 1.94
CC 0.70 0.80 0.90 0.97 0.98 1.10 1.00 1.23
SF 16.76 18.76 19.73 20.77 20.98 21.15 21.33 21.85

Set-G

API 94.96 94.77 95.77 95.66 96.88 97.44 98.44 98.80
SD 67.95 68.66 68.65 69.76 71.75 71.88 71.22 72.48
AG 19.23 19.77 20.87 20.88 21.67 21.98 22.29 22.72
H 6.58 6.77 6.87 7.09 7.21 7.61 7.57 7.77
MI 2.88 2.99 3.09 3.12 3.22 3.37 3.46 3.78
FS 0.87 0.98 1.07 1.24 1.67 1.73 1.59 1.89
CC 0.65 0.71 0.67 0.71 0.85 0.81 0.79 0.90
SF 25.81 26.76 28.75 27.66 29.67 29.84 30.34 30.77

Set-H

API 39.51 40.28 43.77 44.88 45.87 43.73 47.56 47.81
SD 47.69 43.57 53.73 55.77 55.77 57.90 57.38 58.84
AG 9.05 10.11 11.72 11.35 11.56 10.05 12.15 12.32
H 4.58 4.53 3.98 4.77 5.20 5.06 5.14 5.43
MI 2.88 2.92 2.97 3.07 3.39 3.24 3.36 3.65
FS 0.88 1.10 1.09 1.45 1.56 1.85 1.83 1.90
CC 0.79 0.81 0.83 0.85 0.84 0.87 0.86 0.91
SF 15.10 20.31 17.77 18.77 19.66 18.82 21.13 21.53

As per the experimental results, the outputs retrieved via the proposed method are very efficient
and effective in the case of all quantitative parameters, whereas other algorithms yielded suboptimal
values. Tables 1 and 2 show that our technique ranks first in simulation results for all dataset pairs
when compared to other competing techniques. Even if a few parameters are higher with smaller
margins than other methodologies, the differences in other parameters are higher. Further, the average
result of these quantitative measures are shown in Tables 1 and 2 to provide a more intuitive grasp of
quantitative evaluations in comparison to existing methodologies. In summary, the fusion results of
the proposed algorithm outperform the existing seven comparative approaches in all aspects. Tables 1
and 2 exhibit indices incusing H, AG, SF, API, MI, SD, CC, and FS. At higher values of the above-
mentioned metrics, the efficiency of the fused image is appropriate. Similarly, in addition to objective
analysis, visual interpretation is more significant. Figs. 3 and 4 show the corresponding fused images
to illustrate the performance visually. The proposed algorithm exhibits superior visual interpretation
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when compared to other methods. It also facilitates the process of testing other algorithms, which have
comparably low experimental results. For the assessment of performance and to show the efficiency of
our method, it observed that the effects of change in input for k, σs and σr w.r.t the variation in CC, SD,
FS, MI, AG, H, SF, and API metrics for different pairs of medical images. We have studied the variation
for the value of k, σs and σr and its effects on the performance of our algorithm, as demonstrated
in Figs. 5–7. The given parameters in terms of robustness have shown variation for different values
of k, σs and σr in a wider range. In addition to the consequences of k, σs and σr, we also observe
variation in terms of iteration, threshold size (s), amplitude threshold (t), and contrast coefficient
(c) during an experimental operation. For qualitative evaluation for visual analysis is concerned, the
fusion results of our algorithm show excellent performance where the details transfer rate is higher.
The qualitative results of the proposed algorithm are excellent when compared to other competing
algorithms for all image pairs. When compared to existing comparative fusion algorithms, it can be
noted that the fusion results for both reference and no-reference-based criteria are excellent. Similarly,
the visual interpretation of our method for all the image pairs shows better performance. It can be
stated that our algorithm obtains the advantages of normalized weight computation. In addition to
that, edge-preserving processing and pixel significance further contribute to computing the optimized
weights to generate improved fusion results. Due to this fact, the visibility increases in the fusion
results when compared to other approaches, which show minimal information loss and maximum
information transfer. In addition, the information loss and noise are substantially higher when using
other competing approaches. The proposed method outperforms competing fusion methods across all
image pairs in terms of reference-based criteria. In some cases, the quantitative evaluation performance
is marginally higher for our algorithm as compared to competing algorithms. Hence, it could be
stated that our technique is capable of generating better results than other competing techniques,
both in objective evaluation and qualitative interpretation. The proposed method incorporates large-
scale details from original images into final fusion results, and small-scale details are recovered in
the surrounding of large-scale details. In terms of performance metrics and visual interpretation, it
has been validated that our technique has demonstrated exemplary performance compared to other
comparative algorithms.

Figure 5: Sensitivity analysis of spatial kernel function (σs) in terms of fusion performance on the
proposed algorithm
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Figure 6: Sensitivity analysis of range kernel function (σr) in terms of fusion performance on the
proposed algorithm

Figure 7: Sensitivity analysis of kernel size (k) in terms of fusion performance on the proposed
algorithm

4.3 Further Discussion

In addition to the above eight performance metrics, the results of four fusion performance metrics
based on gradient details have been discussed in this section [39]. These metrics provide a detailed
evaluation of fusion results by evaluating overall details transferred from source images to fusion
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result QAB/F, overall information loss LAB/F, artifacts or noise added in fused images during the fusion
artefacts measure NAB/F

m .

Tables 3 and 4 show that our algorithm nearly always gets ideal values on all objective measures as
compared to other competing algorithms that intuitively adapt to quality judgments. In summary, the
fusion performance of our strategy surpasses all other algorithms in both qualitative interpretation
and quantitative assessment. The overall performance measures of evaluation metrics are tabulated in
Tables 1 and 2 where the fusion performances of our algorithm are superior with ideal scores in all these
eight-objective metrics. The principal aim of image fusion is to produce an output that is highly suitable
for human visualization with adequate, comprehensive, and detailed features in the fusion results.
Further, visual interpretation is quite important, along with objective performance. The fusion results
are demonstrated in Figs. 3 and 4 which interpret performance visually. The proposed approach has
demonstrated superior visualization when compared to other comparable methods. The information
transfer rate in the proposed technique is the highest when compared to other algorithms. according to
the quantitative assessment in the case of gradient-based measures. In addition, the suggested method
has a high QAB/F and small LAB/F, NAB/F NAB/F

m across all pairs of images when comparison to other
competing algorithms which is ideal for better performance. It can be noticed that the suggested
algorithm’s non-reference-based measure values are higher than results obtained from other competing
approaches. The visual interpretation is perceived to a significant extent with the approach outlined
in the manuscript. According to the results obtained from Tables 3 and 4, the fusion results of four
methods named AISA-NSST, MIFDL, MDE-DNN, and GADCT show that the fusion performance
of the mentioned methods suffered from distortions as well as the soft tissues that were missing (see
Figs. 3 and 4). The contrast of the fusion outputs from both MATM-HDF, SRSCNN, and FDGNet
is slightly less than our technique (see Figs. 3 and 4). As with AISA-NSST, MIFDL, MDE-DNN,
and GADCT, the soft tissues of original images by the SRSCNN and FDGNet methods are slightly
missing (see Figs. 3 and 4). The contrast of the MATM-HDF algorithm is slightly low as compared to
our method. Table 5 presents the computational time for execution of all methods (i.e., AISA-NSST,
MIFDL, MDE-DNN, GADCT, MATM-HDF, SRSCNN, FDGNet and the proposed method kernel
size (k)). We can see that the GADCT, MATM-HDF, and SRSCNN methods have the longest running
times. This is so because deep learning models take longer processing time during the training and
testing phases. Other approaches take less time than these three models. Overall, our method requires
much less running time for all of the test images when compared to the other competing methods.
Thus, in the case of all evaluation aspects, our algorithm presents desirable fusion results in terms of
clinical applicability.

Table 3: Quantitative indices of different methods based on gradient-based metrics for Set (A–D). The
best results are marked in bold and the second-best results are marked underlined

Datasets Metrics AISA-NSST
[28]

MIFDL
[40]

MDE-DNN
[41]

GADCT
[43]

MATM-
HDF [8]

SRSCNN
[58]

FDGNet
[57]

Proposed

QAB/F 0.49 0.77 0.73 0.79 0.73 0.82 0.88 0.91
Set-A LAB/F 0.23 0.13 0.14 0.13 0.13 0.09 0.11 0.07

NAB/F 0.21 0.17 0.13 0.12 0.13 0.14 0.13 0.10

NAB/F
m 0.10 0.14 0.11 0.09 0.06 0.04 0.05 0.01

(Continued)
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Table 3 (continued)
Datasets Metrics AISA-NSST

[28]
MIFDL
[40]

MDE-DNN
[41]

GADCT
[43]

MATM-
HDF [8]

SRSCNN
[58]

FDGNet
[57]

Proposed

Set-B

QAB/F 0.52 0.56 0.55 0.69 0.57 0.71 0.76 0.79
LAB/F 0.28 0.26 0.24 0.20 0.27 0.25 0.24 0.18
NAB/F 0.18 0.23 0.20 0.15 0.14 0.09 0.10 0.07

NAB/F
m 0.13 0.12 0.15 0.07 0.17 0.05 0.06 0.02

Set-C

QAB/F 0.56 0.56 0.57 0.67 0.58 0.83 0.82 0.84
LAB/F 0.23 0.21 0.23 0.16 0.23 0.14 0.17 0.12
NAB/F 0.21 0.23 0.23 0.13 0.16 0.11 0.12 0.09

NAB/F
m 0.16 0.12 0.15 0.08 0.1422 0.05 0.04 0.02

Set-D

QAB/F 0.46 0.55 0.56 0.69 0.56 0.81 0.84 0.85
LAB/F 0.17 0.20 0.24 0.14 0.20 0.18 0.15 0.13
NAB/F 0.22 0.23 0.18 0.14 0.21 0.07 0.08 0.04

NAB/F
m 0.13 0.17 0.12 0.08 0.10 0.04 0.06 0.01

Table 4: Quantitative indices of different methods based on gradient-based metrics for Set (E–H). The
best results are marked in bold and the second-best results are marked underlined

Datasets Metrics AISA-NSST
[28]

MIFDL
[40]

MDE-DNN
[41]

GADCT
[43]

MATM-
HDF [8]

SRSCNN
[58]

FDGNet
[57]

Proposed

Set-E

QAB/F 0.39 0.44 0.50 0.65 0.50 0.72 0.76 0.79
LAB/F 0.24 0.24 0.21 0.17 0.22 0.27 0.21 0.16
NAB/F 0.18 0.20 0.22 0.16 0.21 0.11 0.12 0.10

NAB/F
m 0.10 0.15 0.14 0.14 0.17 0.07 0.06 0.03

Set-F

QAB/F 0.53 0.51 0.55 0.67 0.50 0.77 0.80 0.81
LAB/F 0.23 0.23 0.13 0.13 0.25 0.21 0.16 0.14
NAB/F 0.21 0.21 0.25 0.18 0.21 0.17 0.15 0.13

NAB/F
m 0.17 0.14 0.12 0.12 0.16 0.06 0.09 0.04

Set-G

QAB/F 0.49 0.49 0.50 0.61 0.50 0.76 0.75 0.79
LAB/F 0.22 0.23 0.24 0.12 0.22 0.21 0.19 0.18
NAB/F 0.17 0.27 0.26 0.12 0.19 0.09 0.08 0.06

NAB/F
m 0.12 0.12 0.15 0.09 0.12 0.04 0.06 0.01

Set-H

QAB/F 0.49 0.49 0.55 0.67 0.51 0.75 0.76 0.79
LAB/F 0.22 0.23 0.22 0.20 0.23 0.20 0.19 0.17
NAB/F 0.21 0.20 0.18 0.14 0.23 0.12 0.15 0.09

NAB/F
m 0.12 0.12 0.12 0.06 0.14 0.10 0.09 0.03



4338 CMC, 2024, vol.78, no.3

Table 5: Average running times for the different image fusion algorithms

Method Average running time (s)

AISA-NSST [28] 0.0341
MIFDL [40] 0.0485
MDE-DNN [41] 0.0627
GADCT [43] 0.0727
MATM-HDF [8] 0.0667
SRSCNN [58] 0.0586
FDGNet [57] 0.0378
Proposed 0.0267

5 Conclusions

This study presents a competent medical image fusion strategy based on pixel significance with
edge-preserving processing. First, the proposed method obtains detailed images obtained from the
source images after subtracting the outputs of the cross-bilateral filters. These detailed images are then
used for edge-preserving processing that combines a linear low-pass filter with the non-linear tech-
nique, which allows the selection of meaningful regions while preserving edges. The relevant restored
regions are fused with the result of low-pass filtering for the reconstruction of the original shape of the
edges. These images are then used for weight computations. These weights are calculated by estimating
the strength of vertical and horizontal details and are directly merged with source images to retrieve
the final fusion result. The proposed algorithm validates competency by utilizing eight sets of CT-MRI
medical images. The proposed approach decreases computational complexity and execution time while
improving diagnostic computing accuracy. Our method exhibits a major boost in efficiency compared
to other competing algorithms. It can be observed that the qualitative interpretation of all the fused
images retrieved through the proposed algorithm has superior visual quality. The key limitation of the
proposed method is that it is not highly appropriate for fused, sophisticated multimodality images. The
proposed method could be augmented by using other different types of filters that have been left for
future research. Further, image fusion and the importance of this technique have huge prospects for
improvement by proposing several image fusion algorithms to reduce noise and artifacts. In addition,
it is quite realistic to boost the superiority of medical images by further improving the proposed
algorithm in the future.
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