
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.047240

REVIEW

A Review of Computing with Spiking Neural Networks

Jiadong Wu, Yinan Wang*, Zhiwei Li*, Lun Lu and Qingjiang Li

College of Electronic Science and Technology, National University of Defense Technology, Changsha, 410073, China

*Corresponding Authors: Yinan Wang. Email: wangyinan@nudt.edu.cn; Zhiwei Li. Email: lizhiwei@nudt.edu.cn

Received: 30 October 2023 Accepted: 19 January 2024 Published: 26 March 2024

ABSTRACT

Artificial neural networks (ANNs) have led to landmark changes in many fields, but they still differ significantly
from the mechanisms of real biological neural networks and face problems such as high computing costs, excessive
computing power, and so on. Spiking neural networks (SNNs) provide a new approach combined with brain-like
science to improve the computational energy efficiency, computational architecture, and biological credibility of
current deep learning applications. In the early stage of development, its poor performance hindered the application
of SNNs in real-world scenarios. In recent years, SNNs have made great progress in computational performance
and practicability compared with the earlier research results, and are continuously producing significant results.
Although there are already many pieces of literature on SNNs, there is still a lack of comprehensive review
on SNNs from the perspective of improving performance and practicality as well as incorporating the latest
research results. Starting from this issue, this paper elaborates on SNNs along the complete usage process of
SNNs including network construction, data processing, model training, development, and deployment, aiming
to provide more comprehensive and practical guidance to promote the development of SNNs. Therefore, the
connotation and development status of SNN computing is reviewed systematically and comprehensively from four
aspects: composition structure, data set, learning algorithm, software/hardware development platform. Then the
development characteristics of SNNs in intelligent computing are summarized, the current challenges of SNNs
are discussed and the future development directions are also prospected. Our research shows that in the fields
of machine learning and intelligent computing, SNNs have comparable network scale and performance to ANNs
and the ability to challenge large datasets and a variety of tasks. The advantages of SNNs over ANNs in terms
of energy efficiency and spatial-temporal data processing have been more fully exploited. And the development
of programming and deployment tools has lowered the threshold for the use of SNNs. SNNs show a broad
development prospect for brain-like computing.

KEYWORDS
Spiking neural networks; neural networks; brain-like computing; artificial intelligence; learning algorithm

1 Introduction

In the past decade, artificial neural networks (ANNs) have made great achievements in the field of
machine learning, and their performance is a revolutionary breakthrough compared to the traditional
machine learning methods based on expert systems. ANNs have been successfully applied in many

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.047240
https://www.techscience.com/doi/10.32604/cmc.2024.047240
mailto:wangyinan@nudt.edu.cn
mailto:lizhiwei@nudt.edu.cn


2910 CMC, 2024, vol.78, no.3

fields, including medical diagnosis [1], network security detection [2], image processing [3], agricultural
production [4], and so on. However, although existing ANNs are brain-inspired, they are mainly
modeled by abstracting neural structures at the mathematical level and still lack biological plausibility
in terms of structure, information transfer, learning rules, and so on. In addition, ANNs require a large
amount of energy consumption during its computation, for example, the backbone network of the
large language model, ChatGPT, contains 175 billion learnable parameters, and it’s estimated that the
training process consumes about 190,000 kWh of energy [5]. In contrast, the power consumption of the
human brain is only about 20 W [6]. To bridge the gap between artificial neural networks and biological
neural networks, the concept of spiking neural networks (SNNs) is gradually developed. SNNs are
known as the third generation of neural networks. Compared with ANNs, SNNs are more bionic to the
biological brain. SNNs simulate the propagation of biological signals in neural networks in the form
of spike sequences, which are sparse and event-driven. This makes SNNs more energy-efficient than
ANNs which use continuous values to represent information. Spike sequences are discrete events in the
time dimension, which means that SNNs can capture information in the time domain like biological
neurons, not only in the spatial dimension. In addition, SNNs are constructed based on neuron models
that have closer modeling of neural dynamics, which is to say SNNs fully simulate the biological neural
network system in terms of network construction.

As an interdisciplinary field between neuroscience and artificial intelligence, there are two main
research directions in the development of SNNs. One is in the field of neuroscience and brain
science to understand the mechanism of brain action by simulating the computational model of the
nervous system. The other is to develop and apply SNNs in the field of intelligent computing and
machine learning, etc. Therefore, SNNs provide a powerful approach for the cross-fusion of artificial
intelligence and neuroscience to establish true brain-like computing.

Currently, research related to SNNs is in a rapidly developing state. Earlier, some scholars
have reviewed and summarized the research progress of SNNs. However, in the past several years,
SNNs have continuously made new achievements in supervised learning algorithms, software and
hardware platforms, etc., and have pushed the performance of SNNs to a new level. It is urgent to
sort out the latest research directions and achievements of SNNs. There are also literature reviews
such as reference [7] which focus more on introducing SNNs from the interdisciplinary perspective
of biological neuroscience and computational science, emphasizing the interdisciplinary advantages
of SNNs. Currently, there is still a lack of SNN review literature focusing on enhancing processing
performance and improving the practicality of development and application, which is not conducive
to beginners, and application researchers to obtain an efficient way to start with SNNs. Starting from
this issue, this paper elaborates on SNNs along the complete usage process of SNNs including network
construction, data processing, model training, development, and deployment. And this paper focuses
on the development of SNNs in the field of intelligent computing and machine learning in recent years,
to provide more comprehensive and practical guidance to promote the development of SNNs.

The rest of this paper is organized as follows. Section 2 describes the network structure of SNNs,
including its neuron model, synapses, and network topology. Section 3 describes the dataset used by
SNNs and the data process methods. Section 4 focuses on the learning algorithms of SNNs, and
introduces the research results of the training algorithms of SNNs so far from the perspectives of
unsupervised and supervised learning. Section 5 introduces the software programming framework
and the specific hardware platform, which is important for improving the research efficiency and
promoting the application of SNNs. Section 6 summarizes the work of this paper, sorts out the main
problems to be solved in SNNs, and looks forward to the future development direction.



CMC, 2024, vol.78, no.3 2911

2 Network Components

In the network construction aspect of SNNs, this chapter presents the basic components of spiking
neural networks, including the neuron model, the spiking neuron synapses, and the neural network
topology. We will review the basic knowledge and research progress of SNNs network components
from the perspective of SNN’s computing performance and practicability.

2.1 Neuron Model

The neuron model is the basic unit of the neural network. The input and output of traditional
artificial neural network neurons are continuous real values. As shown in Fig. 1a, The neurons perform
weighted sum operations on the input signal and then output the signal xOUT through a nonlinear
activation function f . Compared to ANNs, the neurons in SNNs provide a more in-depth and detailed
simulation of biological neuronal behavior. As shown in Fig. 1b, like biological neurons, spiking
neurons are divided into three parts: dendrites, cell body, and axons. And neurons are connected by
synapses. In SNNs, the behavior of spike neurons is mainly controlled by membrane potential V and
activation threshold Vth. The spike signal received by the neuron dendrites changes the membrane
potential of the neuron. When the membrane potential accumulated by the neuron reaches the
activation threshold, the neuron fires a spike signal sOUT from the axon to the neuron at the next layer.
It can be seen that the spiking neuron can better simulate the membrane potential change and charge-
discharge mechanism of biological neurons, and this is completely different from the artificial neuron
based on addition and multiplication operations and nonlinear activation functions.

Figure 1: A comparison between artificial neuron and spike neuron

There are several specific neuron models for building SNNs. Among them, the integrate-and-fire
(IF) model, leaky integrate-and-fire (LIF) model, and spike response model (SRM) are widely used in
intelligent computing research due to their high computational efficiency.

2.1.1 Integrate-and-Fire Model and Leaky Integrate-and-Fire Model

The Integrated-and-fire model is one of the earliest neuron models, which was proposed in the
early 20th century. Limited by the level of research at that time, the behavior of neurons was simply
described as following [8]. Charging: the input spikes are integrated to the membrane potential. Firing:
if the accumulation exceeds the set threshold, the output spike will be fired. Reset: After firing, the
membrane potential resets to the resting state. The charging, firing, and reset behavior can be expressed
as the following three equations:



2912 CMC, 2024, vol.78, no.3

I (t) = CM

dV
dt

X (t) =
{

1, if V ≥ Vth

0, if V < Vth

}

V ← Vrest, if V ≥ Vth (1)

where CM is the membrane capacitance, V is the membrane potential, V th is the threshold potential,
V rest is the resting potential, I (t) represents the input current of the cell membrane, and X (t) denotes
the output from the axon of the neuron.

The LIF model [9] adds a potential leakage mechanism to the IF model. Under the action of
the potential leakage mechanism, when there is no new input stimulus, the membrane potential of the
neuron will gradually return to the resting potential. This makes the LIF model closer to the operation
mechanism of biological neurons than the IF model. At this time, the LIF model can be expressed as:

τM

dV
dt

= Vrest − V + RMI (t)

X (t) =
{

1, if V ≥ Vth

0, if V < Vth

}

V ← Vrest if V ≥ Vth (2)

where τM = RMCM is the leakage time constant, RM denotes the impedance of the cell membrane.
And the meanings of the remaining parameters are consistent with the IF model. In the above reset
equation of IF and LIF model, the membrane potential is restored to the resting potential, and this
type of reset now called hard reset. Correspondingly, there is another reset method called soft reset,
which is proposed by Rueckauer et al. [10], i.e., after releasing the spike, the membrane potential is
subtracted from the threshold voltage as shown in Eq. (3):

V ← (V − Vth) if V ≥ Vth. (3)

The soft reset approach can make the performance of IF neuron’s firing rate close to the ReLu
function in ANNs [10], which is widely used in SNNs trained by the ANN converting method.

The IF and LIF models do not model the dynamic changes of ion channels in biological
neurons, but only describe the key features of membrane potential such as accumulation, firing, and
leakage (leakage is only in the LIF model). Therefore, they are computationally simple, with a low
computational cost of only 5 floating point operations per second (FLOPS) per 1-ms simulation
[11]. And they are easy to implement in large-scale network and hardware designs, and have the
lowest power consumption. However, the IF and LIF models still have the disadvantage of insufficient
biological plausibility and are not suitable for simulations that require high biological realism.

For intelligent computing and machine learning scenarios, some scholars have also improved the
IF or LIF neuron structure to improve the practicability of SNNs. Besides the soft reset approach
mentioned earlier, another route is to make the hyperparameters in the neurons trainable, such as
the Parametric-LIF (PLIF) model proposed by Fang et al. [12], which has a learnable time constant
τM to enhance the learning effect of SNNs. There are also attempts to expand the representation
range of neurons to the negative domain to enhance the network’s expression ability, such as in
references [13–15]. These neurons usually achieve the expression of negative information such as
negative threshold voltage and negative excitation. For the hardware implementation of LIF neurons,



CMC, 2024, vol.78, no.3 2913

the Euler equation is usually used to convert the original differential equation into a difference
equation. While Ye et al. [16] used optimization method of extended prediction correction (EPC) and
proposed the EPC-LIF model, to provide higher stability and smaller transformation error compared
to the direct use of Euler equations.

2.1.2 Spike Response Model

There is refractory period for a biological neuron in the short time after firing, that means the
neuron does not respond to the input signal during this period. The Spike Response Model [17,18]
adds the simulation of the refractory period to the LIF model. And the filters (kernel functions),
rather than the differential equations in LIF model, are used to describe the effects and responses of
external inputs or its own activation state on the membrane potential. The mathematical formulation
is as follows:

V (t) =
∑

f

η
(
t − t(f )

) + Vrest +
∫ ∞

0

κ (s) I (t − s) ds (4)

where V (t) is the membrane potential, V th is the threshold potential, V rest is the resting potential,
t(f ) is the time when the f -th spike of a neuron is generated. η is called the kernel function of the
refractory period, which describes both the effect of the spike at t(f ) time on the action potential and
the subsequent potential changes. κ is a linear filter describing the effect of the input current, I (t − s),
at time (t − s) on the membrane potential.

SRM model is better than LIF model in biological plausibility, but its computational cost also
increases, requiring 50 FLOPS per 1-ms simulation [19]. When implemented in a digital system, the
calculation of SRM model is relatively complex. However, the equations of this model can be modeled
with analog circuits because its postsynaptic potential function can be considered as the charging and
discharging of an resistor-capacitance circuit [20]. In addition, because the SRM model uses explicit
equations rather than differential equations to describe the activity of neurons, the output of neurons
can be calculated directly after a given input. Thus, the behavior of neurons can be easily studied by
analyzing the equation.

In addition to the above models, there are also models such as the Hodgkin Huxley (H-H) model
[21] and Izhikevich model [22] that focus more on simulating the characteristics of biological neurons,
but their computational efficiency is relatively low. The summary of these neuron models is shown in
Table 1.

Table 1: Summary of main neuron models

Neuron model Mathematical expressions Implementation cost
[19,11] (FLOPS/ms)

Biological
plausibility

H-H 4-dimensional differential equation system 1200 High
IF/LIF 1-dimensional differential equation 5 Low
Izhikevich 2-dimensional differential equation system 13 Medium
SRM 1-dimensional integral equation 50 Relatively low



2914 CMC, 2024, vol.78, no.3

2.2 Synapses of Spiking Neurons

Synapses are the connecting nodes between neurons and are the basic storage elements that
enable memory and learning in neural networks. As shown in Fig. 1b, spiking signals generated by
a presynaptic neuron, si (i = 0, 1, 2, . . .), are transmitted through the synapse to the dendrites of a
postsynaptic neuron. For the postsynaptic neuron, the input signal is regulated by wi (i = 0, 1, 2, . . .),
the weight of the corresponding synapse, and finally converged into an input current I , which has an
excitatory or inhibitory effect on the postsynaptic neuron to change its membrane potential. Therefore,
the learning of a spiking neural network is a process of constantly adjusting the synaptic weights of
neurons according to a specific training rule in order to achieve an optimal solution.

2.3 Network Topology

Multiple neurons are interconnected to form a hierarchical structure of spiking neural networks.
Depending on the type of connections used, spiking neural networks have a variety of topology
types. Like traditional artificial neural networks, the main topologies of SNNs are feedforward neural
networks, recurrent neural networks, and hybrid network structures.

Feedforward SNNs contain input layers, hidden layers and output layers, as shown in Fig. 2a.
Each layer has several neurons, and each neuron is only connected with the neurons in the previous
layer by synapses with adjustable weights. Therefore, in feedforward networks, information is trans-
mitted backwards layer by layer from the input layer to the output layer. Like ANNs, hidden layers are
not mandatory for feedforward SNNs. And the network structure with only input and output layers is
also called a single-layer SNN, which has been used in many SNN-related studies due to its simplicity.

Figure 2: Schematic diagram of the main topologies of SNNs

Compared with the feedforward networks, recurrent SNNs add recurrent or feedback loops within
the layers, as shown in Fig. 2b. The addition of these loops allows the output of the neuron to be
influenced by the input in conjunction with the output of the previous moment, giving the network a
memory function and the ability to extract connections between successive inputs. Thus, this kind of
networks are suitable for processing contextual, sequence-like tasks. However, training large recurrent
networks is also more difficult than the training of large feedforward networks due to the complexity
of the structure.

Hybrid SNNs, on the other hand, contain both structures described above. Depending on the ease
of implementation and training of the network, the most dominant are the feedforward SNNs.



CMC, 2024, vol.78, no.3 2915

3 Datasets

ANNs express information through precise floating-point numbers, only achieving information
transfer in the spatial domain. In SNNs, on the other hand, information is input to neurons in the form
of discrete spike sequences with precise timing. Currently, traditional image datasets such as MNIST
[23] and CIFAR-10 [24] as well as neuromorphic datasets are mainly used in SNN research.

3.1 Traditional Image Datasets and Information Coding

Conventional image datasets consist of image samples constructed from pixels with continuous
values. They need to be encoded into spike sequences in order to be input into the SNNs, and this
process is called information coding. Therefore, what kind of spike sequence is encoded to express
information is an important research direction in spiking neural networks. Since the terminology and
classification methods used in many coding methods are often not uniform across publications, it is
easy to confuse the difference between these coding schemes. For these coding methods, it is urgent
to give a clear and effective categorization scheme. Therefore, in this paper, we categorize the current
major information coding methods into three main categories, rate coding, time coding and trainable
coding, based on whether the coding rules are set artificially, and whether the information is included
in the specific timing of the spike. And the main information coding methods of SNNs are introduced
from the perspective of serving SNN computing research.

3.1.1 Rate Coding

In rate coding the information is expressed mainly through the spike firing rate, which is the
average number of spikes emitted by neurons within a certain sampling time. The larger the value
to be expressed, the more spikes there are within the same sampling time window. The exact timing
of spikes and the order between spikes do not determine the representation of the information in rate
coding. The most common way to realize rate coding is to convert the value into the average rate
of spike generation, i.e., the number of spikes emitted within each sampling time window [25]. The
specific distribution of the spikes within the sampling time window can be done directly by means of
equally spaced distribution, called count rate coding or frequency coding, as shown in Fig. 3. It can
be also done by means of random distribution according to a probabilistic model, usually using the
Poisson distribution model, which is known as Poisson coding.

(a) Stimulus

(b) Count rate coding 

Figure 3: Schematic diagram of rate coding

The rate coding is currently the most widely used coding method due to its simplicity, ease of
operation, and strong robustness. Especially in the scenario of converting the trained ANN to SNN,
the continuous output values in the ANNs can be directly regarded as the spike firing rate of the
SNNs. However, because it adopts the sampling method of taking the mean value in the time window,
it ignores a lot of detailed information on the time structure. This makes the information capacity of



2916 CMC, 2024, vol.78, no.3

rate coding relatively insufficient, and a sufficiently long timing window needs to be guaranteed, which
may require longer recording time or more neurons to be involved.

3.1.2 Temporal Coding

If the information conveyed by the neuron is contained in the specific moment of issuance of the
spike, then such a coding method is known as temporal coding. That means that temporal coding uses
differences in the structure of time as a carrier of information as well. There are many different types:

Time-to-first-spike Coding (TTFS): The information is encoded as the time difference Δt between
the starting point of the excitation (i.e., the reference point) and the neuron’s first spike. Usually the
larger the original value, the smaller the time difference Δt, i.e., the earlier the spike is issued [26]. There
is no unique way of mapping real values to the TTFS, and the commonly used mapping functions
include linear functions, reciprocal functions, logarithmic functions, and so on. TTFS is one of the
most basic temporal coding methods.

Phase Coding [27]: In contrast to TTFS where the excitation start point is used as the reference
point, phase coding encodes information based on the relative time difference between the spike and
the reference oscillation.

Rank-Order Coding (ROC) [28]: The information is represented by the relative order in which the
spikes are fired between neurons, so that rank-order coding does not actually require precise timing of
the spikes.

Inter-Spike Interval Coding (ISI): Information is encoded into the relative time difference between
successive spikes within a time window, also known as delay coding [29,30].

These temporal coding methods are summarized in Table 2 and their schematic diagram is shown
in Fig. 4. In addition to the above methods, there are various kinds of temporal coding such as
population-based temporal coding [30], temporal contrast coding (TCC) [31], etc., which will not be
elaborated here.

Table 2: Summary of main time coding methods

Coding method Information representation

TTFS The time difference between the excitation starting point and
the first spike of the neuron

Phase coding The relative time difference between the spike and the
reference oscillation

ROC The relative order of firing spikes between neurons
ISI The relative time difference between successive spikes
Population-based temporal coding Neurons that simultaneously emit spikes and their firing time
TCC Represent the change of signal over time as the excitation

time of the spikes



CMC, 2024, vol.78, no.3 2917

Figure 4: Schematic diagram of major time coding methods, adapted from the reference [30]

Compared to rate coding, temporal coding has higher information capacity, faster response
time and higher transmission speed. In addition, temporal coding supports local learning rules and
its temporal characteristics are closer to the information transfer mechanism in biological nerves.



2918 CMC, 2024, vol.78, no.3

However, temporal coding also has disadvantages such as difficulty in implementation and sensitivity
to noise. It is mainly used in shallow networks, and is not effective in larger-scale networks and datasets.

3.1.3 Trainable Coding

With the gradual development of deep SNNs, trainable coding has been proposed and rapidly
gained wide application [32–34]. Trainable coding is also referred to as direct coding in some literature.
Compared to rate encoding and temporal coding, which are manually formulated with specific
encoding methods, trainable coding directly uses the first layer of the network as a coding layer, and
transforms the input, real-valued image pixel into spiking output images. The specific process is shown
in Fig. 5. The input image undergoes a layer of convolution operation. For T time steps of SNN, the
above convolution operation is repeated T times. Subsequently, the convolution results are put into
the spike neuron layer, and the excited neurons emit spikes. The weights in the encoding layer can then
be trained along with the network.

Figure 5: Schematic diagram of trainable coding

Trainable coding has demonstrated higher accuracy than rate coding in deep network structures
because the loss function can be minimized by training. As a result, trainable coding has gained
widespread attention and applications in recent years. And as the network gets deeper and the time step
is set shorter, the accuracy advantage of trainable coding becomes greater. However, the robustness
of trainable coding is still not as good as rate coding under adversarial and interference conditions
[32]. In addition, because trainable coding is essentially a network layer with real-valued inputs, its
implementation requires more energy and is more costly to deploy in hardware than rate coding and
time coding, which have simpler rules.

Rate coding, temporal coding and trainable coding provide their own advantages and disadvan-
tages, and it is necessary to flexibly choose based on these characteristics and specific application
scenarios.

3.2 Neuromorphic Datasets

Although traditional image datasets are now widely used in SNN research, they lack information
in the time domain and cannot fully utilize the spatio-temporal processing properties of SNNs. And
these data need to be encoded into spike sequences before they can be used by SNNs, which may
lose some information in the image. Therefore, applying SNNs to process new datasets with temporal
information and SNN-compatible properties can more fully utilize SNNs’ advantages over ANNs.
Among them, the datasets generated based on neuromorphic vision sensors, such as dynamic vision



CMC, 2024, vol.78, no.3 2919

sensors (DVS), are considered to be one of the most suitable datasets for spiking neural network
applications at present.

Conventional cameras output frame-based images. Neuromorphic vision sensor, on the other
hand, is inspired by the neural structure of the retina. It captures only the brightness change of a single
pixel and outputs a stream of spike events containing more temporal features. So it also called as event
cameras. This is a natural fit with SNN’s characteristics. Whereas ANNs need to integrate these spike
event streams into frame-based images when processing such datasets, losing the temporal information
in them [35]. Such datasets mainly include datasets obtained from photographing traditional image
datasets by DVS, such as N-MNIST [36], CIFAR10-DVS [37], datasets transformed from traditional
images using software algorithms, like ES ImageNet [38], and datasets directly captured from real
scenes using neural morphological visual sensors, such as the DVS128 Gesture [39], DVS Benchmark
[40], DSEC [41]. Fig. 6 represents the images obtained by integrating the event stream in the DVS128
Gesture dataset over a certain period of time, which represent the gestures of rotating the arm up and
down, clapping, and waving the left hand, respectively.

Figure 6: Schematic diagram of the DVS128-Gesture dataset

In addition, data from event-based audio sensor (like N-TIDIGITS dataset [42]), pulse activity
recorded from real biological nervous systems, and other data also have the potential to be applicable
to SNNs [43]. However, including datasets captured by neuromorphic visual sensors, these datasets
are generally small in scale and there is no unified processing standard for them. This means that
such datasets still need to be developed. Of course, some scholars have tried to apply small-sample
learning methods in ANNs such as active learning [44] and transfer learning [45] to such datasets. For
example, Wang et al. [46] used transfer learning to generate a transplanted network that can handle
the neuromorphic dataset N-TIDIGITS from a network trained by the traditional audio dataset
TIDIGITS [47].

4 Learning Algorithms

Compared to the training of ANNs, there are still many problems and challenges in the efficient
training of SNNs, and there has not yet been a recognized optimal training method in the field of
SNNs. According to different emphases such as computational performance or biological feasibility,
as well as differences in network structure, there are currently many training methods for SNNs. The
recent training methods have shown significant differences in focus and performance compared to
early training methods, and the training results are still continuously improving. It is necessary to
review and organize these training methods. These training algorithms can be mainly categorized into
unsupervised learning algorithms and supervised learning algorithms.

4.1 Unsupervised Learning

Unsupervised learning algorithms use unlabeled datasets, rely on the network itself to learn the
features and associations in the data, and adaptively adjust the synaptic weights of neurons to complete



2920 CMC, 2024, vol.78, no.3

the functions of recognition and classification. The unsupervised learning methods in SNNs are mainly
centered around the Spike Timing Dependent Plasticity (STDP) rule [48,49].

The STDP rule is a manifestation of Hebb’s learning rule [50], which describes the following
phenomenon found in the brain: the connection between two linked neurons will be strengthened
if the presynaptic neuron also emits spikes shortly before the firing of the postsynaptic neuron. On
the contrary if the presynaptic neuron emits spikes shortly after postsynaptic neuron emits spikes,
the connection strength between them will be reduced. That is to say, the logic that exists in time will
determine the direction and magnitude of synaptic changes. The neurons that have a strong forth-and-
back relationship will strengthen the connection, and vice versa, they will drift away from each other,
so as to establish the connection with sequential relationship. The STDP rule uses the time difference
between the activation of the two neurons to update the neuron weight. The typical mathematical
model of the STDP rule is as follows:

Δw =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A+exp
(

Δt
τ+

)
, if Δt < 0

−A−exp
(−Δt

τ−

)
, if Δt ≥ 0

,

Δt = tpre − tpost (5)

where Δw is the amount of weight change, τ+ and τ− are the time window constants, A+ and A− are the
gain of weight enhancement and attenuation, respectively. And tpre and tpost are the spike firing moments
of the presynaptic neuron and postsynaptic neuron, respectively.

The STDP rule can effectively reflect biological characteristics and is one of currently the most
widely used unsupervised learning method for SNNs. It is the training method that can best demon-
strate the higher biological plausibility of SNNs compared to ANNs. Several studies have proposed
variants of STDP, such as anti-STDP [51], Triplet-STDP [52] and Stable-STDP [53]. However, due to
the dependence on the connection between each layer and its previous layer, STDP lacks the ability
to effectively coordinate with other parts of the network, and has poor classification performance in
multilayer network structures. Thus, its application is mainly limited to shallow networks. In order
to improve the recognition accuracy of STDP in real-world problems, some related studies have used
STDP rules in combination with other methods like layer-by-layer training, Winner Take All (WTA).
For example, Kheradpisheh et al. [54] and Paredes-Valles et al. [53] used such methods to achieve
unsupervised learning in three-layer networks. Tavanaei et al. [55] applied STDP with spike sparse
self-encoder in layer-by-layer greedy training. Li et al. [56] adopted a multilayer network with a locally-
connected structure and trained the network using STDP method combined with the spatial and
temporal information-based neuron adaptive activation mechanism. All these schemes achieved more
satisfactory results on the MNIST dataset.

4.2 Supervised Learning

Supervised learning algorithms rely on labeled datasets and compare the error between the output
results and the actual labels to update the weights. In this paper, we will categorize the main SNNs
supervised learning methods from the perspective of algorithmic principles.



CMC, 2024, vol.78, no.3 2921

4.2.1 Learning Algorithms Based on Biological Synaptic Plasticity

Biological synaptic plasticity rules such as STDP belong to unsupervised learning algorithms and
are applicable to limited scenarios, so they need to be generalized to supervised learning. An early
typical representative is the remote supervised method (ReSuMe) [57], proposed by Ponulak et al. This
algorithm combines the STDP rule with remote supervision, and adjusts the synaptic weights through
the combination of STDP and anti-STDP, so that the neuron output is as close as possible to the
desired spike signal. The algorithm mainly uses the correlation between the desired spike signal and
the input signal, and there is no direct physical connection between the desired signal and the output
signal of the trained neurons, which reflects its “remote supervision”. ReSuMe has online learning
capabilities that can be applied to various neuron models and can process spike series, but it only
supports single neuron or single-layer network. Sporea et al. proposed Multi-ReSuMe algorithm [58],
which extends the ReSuMe algorithm to multilayer feedforward SNNs.

Some scholars have also combined STDP with other biological mechanisms such as forgetting
phenomenon and reward regulation, such as Li et al. [59] applied forgetting phenomenon in STDP
to improve the training recognition rate and accelerate the convergence speed. Mozafari et al. [60]
combined STDP rules with reward and punishment signals to train SNNs. While one approach widely
adopted in the current research is to train different layers of the network separately by STDP and
other supervised learning methods to deepen the number of layers of the network. Lee et al. [61]
initialized the weights of the network by STDP and then used gradient descent method to fine-tune
the synaptic weights to complete the training of the network. Xu et al. [62] proposed a hybrid network
of convolutional neural networks (CNNs) and SNN, called Deep CovDenseSNN, and used a hybrid
training method of error backpropagation to train the convolutional layer and STDP to train the
SNN part. Shao et al. [63] proposed a joint learning method called excitatory inhibition loop iterative
learning (EICIL), where STDP is used as an inhibitory mechanism and gradient backpropagation is
used as an excitatory mechanism to train the convolutional layer and the other layers, respectively, in
order to realize deep SNNs with higher biological plausibility.

4.2.2 Learning Algorithms Based on Gradient Descent

Bohte et al. applied the ideas of error backpropagation and gradient descent to simplified SRM
models and proposed the SpikeProp algorithm [64], which was one of the earliest supervised learning
methods used for spike neurons. SpikeProp supports a multilayer feedforward network with SRM
neurons. To overcome discontinuities in the internal state variables of spike neurons, the method
approximates the threshold function and restricts all neurons in the SNN to fire only a single spike.
Since then, many researchers have proposed variant algorithms of SpikeProp to improve its limitations
in different ways, such as Multi-SpikeProp [65], SpikeProp Through Time (SPTT) [66], etc. Tempotron
[67] is another early gradient descent-based SNN learning algorithm. The algorithm uses gradient
descent for the error function of membrane potential vs. threshold potential to adjust the synaptic
transmission efficiency to realize binary classification. Despite the high biological plausibility of this
method, it is only applicable to a single spike with a single neuron, which greatly limits its application.
Then Florian proposed the Chrontron [68] algorithm based on Tempotron, which can train the
monolayer network with spike sequences.

With the great achievements of error backpropagation (BP) and gradient descent in deep learning
in recent years, the idea of applying gradient descent directly to SNNs has received renewed attention.
To solve the problem that the error function is not continuously differentiable, the surrogate gradient
method (also called gradient approximation) has been widely adopted in recent years and has gradually



2922 CMC, 2024, vol.78, no.3

become one of the current mainstream direct training methods for SNNs. Therefore, unless otherwise
indicated as early gradient descent methods, the terms gradient descent method and direct training
method in the following text both refer to various training algorithms based on gradient descent
with gradient approximation. As shown in Fig. 7, the core idea of the surrogate gradient method is to
approximate the non-differentiable activation function of spike neurons, H (x), with a similar shape
but smooth differentiable function [69], S (x). The algorithm uses the original activation function in
forward propagation, while in backward propagation, it replaces the gradient of the original non-
differentiable activation function with the gradient of the surrogate function, S′ (x). For example,
the Spike Layer Error Reassignment (SLAYER) training method proposed by Shrestha et al. [70]
combines gradient approximation with temporal credit assignment. Wu et al. proposed the Spatio-
Temporal Backpropagation (STBP) [71] training method, which combines the layer-by-layer spatial
and temporal domain information to train the network. They also introduced four approximation
curves of the SNN’s gradient for error backpropagation. STBP offered the possibility of investigating
high-performance SNNs that can handle neuromorphic datasets with complex spatiotemporal prop-
erties. Lee et al. [72] proposed an approximate derivative algorithm to account for the leakage behavior
of the LIF neurons and implemented the training of SNNs that reached VGG9 or ResNet11 structures.

Figure 7: Schematic diagram of the surrogate gradient

However, there are some problems with the surrogate gradient method. there is an obvious
gradient mismatch between the gradient of the excitation function and the surrogate gradient [73],
which easily leads to under-optimization of SNNs and serious performance degradation. And the
problem of exploding or vanishing gradients is still serious. This makes SNNs only relied on surrogate
gradient training remain in shallow structures and difficult to apply on large datasets (such as
ImageNet [74]). However, the ability demonstrated by deep neural networks also made researchers
eager to find suitable training methods for deep SNNs. Zheng et al. proposed a batch normalization
method called threshold-dependent Batch Normalization (tdBN) [75] based on the STBP method,
which to some extent avoided the problem of gradient vanishing or exploding during training. They
increased the number of trained network layers from less than 10 to 50, and for the first time achieved
direct training of large-scale SNNs on ImageNet. Fang et al. [76] proposed a residual SNN structure
called Spike Element Wise (SEW) ResNet to alleviate the model degradation problem when directly
training ultra-deep networks, and directly trained a network model with more than 100 layers for the



CMC, 2024, vol.78, no.3 2923

first time. Feng et al. [77] designed the Multi-Level Firing (MLF) method based on the STBP and
proposed the spiking dormant-suppressed residual network (spiking DS-ResNet), which effectively
solves the problem of gradient vanishing and network degradation when directly training deep SNNs.
Deng et al. proposed the Temporary Efficient Training (TET) algorithm [78], which improved the
generalization ability of SNNs by compensating for momentum loss during gradient descent, and
further improved the training performance on datasets such as ImageNet and CIFAR10-DVS.

With the continuous improvement of the training effect, SNN models trained with gradient
descent are becoming more and more diverse. In object detection tasks, the YOLO series is one of
the most classic models. Su et al. [79] proposed the first directly trained spiking YOLO network
structure, Energy-efficient Membrane-Shortcut-YOLO (EMS-YOLO), based on the residual module
with a full spike structure, and successfully applied it in the object detection task. Recently, the large
language model has received a lot of attention and it is based on Transformer architecture and
self-attention mechanism. So combining them with SNNs has become a recent research hotspot.
Zhou et al. [80] proposed the Spiked Self-Attention (SSA), which uses sparse spikes to represent
the query, key, and value of the self-attention mechanism, Based on this, they designed a spike-
based transformer, Spikformer, and for the first time implemented the self-attention mechanism and
Transformer architecture in directly-trained SNNs. Wang et al. [81], on the other hand, proposed a
spatio-temporal self-attention (STSA) mechanism that captures dependencies from both temporal
and spatial domains while maintaining the asynchronous information transmission capability of
SNNs. Based on this, they developed the spatio-temporal spiking transformer (STS-Transformer)
architecture, which achieved breakthrough results of SNNs on speech datasets. The integration of
many excellent network architectures in ANNs into SNNs significantly increases the information
capacity of SNNs and thus improves the performance of SNNs.

4.2.3 Indirect Learning Algorithm Based on ANN Conversion

With the rise of deep learning, there are also more and more scholars nowadays who utilize
the mature learning algorithms of ANNs to train SNNs indirectly. Such schemes firstly perform
backpropagation training in a designed ANN, and subsequently transform the trained ANN into
a similarly structured SNN, to circumvent the difficulties faced by the direct training of SNNs. This
utilizes the strong similarity between the spike firing rate of IF neurons in SNNs and the nonlinear
activation of ReLU functions in ANNs. Of course, to achieve ANNs conversion to SNNs and minimize
performance loss, certain constraints need to be placed on the original ANN, such as using only the
ReLU function, disabling bias, not being able to use batch normalization and maximum pooling, and
needing to normalize different layers of the network.

The method of converting ANN to SNN (hereafter referred to as the ANN conversion method)
has strong scalability, making it easy to convert newly emerging large-scale ANN network structures
into corresponding SNN versions, enabling large-scale deep spike neural networks and processing
large-scale datasets. Sengupta et al. [82] for the first time achieved 69.96% accuracy of SNNs on
complete ImageNet datasets through the method of converting SNNs by ANNs, implemented an
SNN network based on ResNet architecture, and explored the conversion of ANN to SNN for event-
driven operations to reduce computational overhead. Hu et al. [83] achieved the construction of a
spike ResNet network with more than 100 layers by scaling the continuous-valued activations in the
ANNs to match the firing rate in the SNNs and proposing a compensating mechanism to reduce the
error caused by discretization.



2924 CMC, 2024, vol.78, no.3

Although many papers have now demonstrated the ability of the ANN conversion method
to achieve state of the art (SOTA) classification performance. However, its essence is to perform
backpropagation in ANNs to circumvent problems such as non-differentiable neuron equations
encountered by backpropagation in SNNs. The constraints imposed on the original ANN will
inevitably result in performance degradation compared to the original ANN. The converted SNN
requires longer time steps compared to networks trained by the gradient descent method, which is
inefficient. It cannot be applied to online learning methods, which cannot achieve continuous learning
and real-time adaptation. In addition, it is difficult to extract the temporal dimension features from
the ANN training, and thus the method is not yet applicable to spatio-temporal data classification.
At present, many scholars have begun to focus on solving these problems of ANN conversion method
methods. For example, Kugele et al. [84] introduced the Streaming Rollouts method [85] in the process
of ANN conversion, so that the generated SNN can effectively integrate temporal information, and
ultimately achieve good results on neuromorphic datasets. Li et al. [86] proposed lateral inhibition
pooling and a neuron model that releases bursts of spikes to reduce the maximum pooling output error
and the residual information error in the conversion process, respectively. The former is an important
reason why the transformation method cannot use maximum pooling. Bu et al. [87] optimized the
initial membrane potential of spike neurons to reduce the conversion loss at each layer of the network,
and realized a nearly lossless ANN conversion or significantly improved the performance at low
inference time steps.

From the above, it is easy to see that in the last decade, the development and prosperity of deep
neural networks have also exerted great influence on the research of SNNs. Many structures, learning
algorithms, and ideas of ANNs have been introduced into SNNs, making the performance pursuit and
application scenarios of SNNs computation in recent years very different from those in the early days.
The summary of early SNNs supervised learning methods and the summary of SNN learning methods
in recent years described in the previous section are shown in Tables 3 and 4, respectively. As can be
seen from Table 4, more and more researchers in the SNN learning algorithm field in the last two years
have started to use SNNs to challenge large-scale datasets such as CIFAR100, ImageNet, etc. SNN
learning algorithm research has also started to concentrate on these two methods, namely, indirect
training based on the ANN conversion and direct training based on the gradient descent. Among
them, the performance of the ANN conversion method has been further improved. In addition to
improving the recognition accuracy, other objectives like reducing the conversion loss, inference step
size, and constraints have also been paid more attention. In the past two years, many SNN learning
algorithms based on gradient descent have also developed the ability to challenge large datasets
such as ImageNet and achieved good results. Meanwhile, thanks to the spatio-temporal information
processing capability of training methods such as STBP, the deep SNNs trained by these methods is
more suitable for processing neuromorphic datasets compared to ANNs as well as SNNs trained by
ANN conversion methods. The performance of SNNs trained by these methods has made significant
progress in neuromorphic datasets such as CIFAR10-DVS. Overall, these two methods have gradually
become the mainstream SNN learning algorithms in recent years, and they are also the two algorithms
with the best performance on real tasks. The emergence of these two learning algorithms also promotes
the development of SNNs towards deeper network structures and higher performance.



CMC, 2024, vol.78, no.3 2925

Table 3: Summary of early SNNs supervised learning methods

Type Algorithm Network structure Spikes form

Learning algorithms
based on biological
synaptic plasticity

ReSuMe [57]
Single neuron or monolayer
network

Spike sequence

Multi-ReSuMe [58] Multilayer feedforward
network

Spike sequence

Learning algorithms
based on gradient
descent

SpikeProp [64]
Multilayer feedforward
network

Single spike

Multi-SpikeProp [65] Multilayer feedforward
network

Spike sequence in input
and output layer

SPTT [66] Recurrent SNN Single spike
Tempotron [67] Single neuron Single spike
Chrontron [68] Monolayer network Spike sequence

Table 4: Summary of multi-layer SNN learning methods and performance

Dataset Literature (Year) Training
algorithm∗

Neuron
model

Network structure∗∗ Accuracy/%
(T∗∗∗)

MNIST Tavanaei et al. [55] (2017) STDP LIF SCNN 98.36
Kheradpisheh et al. [54] (2018) STDP IF SCNN 98.40
Lee et al. [61] (2018) STDP + BP LIF SCNN 99.28
Shrestha et al. [70] (2018) SLAYER SRM SCNN 99.36
Wu et al. [71] (2018) STBP LIF Multilayer perceptron 98.89
Xu et al. [62] (2020) STDP + BP LIF SCNN 91.40
Lee et al. [72] (2020) Spike-based BP LIF LeNet 99.59 (50)
Li et al. [56] (2021) STDP LIF Locally connected

multilayer perceptron
97.4

Shao et al. [63] (2023) STDP + BP IF ResNet-18 99.35

CIFAR-10 Sengupta et al. [82] (2018) ANN conversion IF VGG-16 91.55 (2500)
Wu et al. [33] (2019) STBP LIF CIFARNet 90.53 (12)
Lee et al. [72] (2020) Spike-based BP LIF ResNet-11 90.95 (100)
Zheng et al. [75] (2021) STBP-tdBN LIF ResNet-19 93.16 (6)
Hu et al. [83] (2021) ANN conversion IF ResNet-110 93.02 (350)
Bu et al. [87] (2022) ANN conversion IF ResNet-18 95.92 (64)
Deng et al. [78] (2022) TET LIF ResNet-19 94.50 (6)
Feng et al. [77] (2022) STBP + MLF LIF DS-ResNet-20 (Large) 94.25 (4)
Li et al. [86] (2022) ANN conversion IF ResNet-20 96.49 (64)
Shao et al. [63] (2023) STDP + BP IF ResNet-18 90.39
Zhou et al. [80] (2023) Spike-based BP LIF Spikformer-4-384 95.51 (4)

CIFAR-100 Hu et al. [83] (2021) ANN conversion IF ResNet-110 70.62 (350)
Bu et al. [87] (2022) ANN conversion IF ResNet-18 79.20 (128)
Deng et al. [78] (2022) TET LIF ResNet-19 74.72 (6)
Li et al. [86] (2022) ANN conversion IF ResNet-20 80.57 (256)
Shao et al. [63] (2023) STDP + BP IF ResNet-18 56.20
Zhou et al. [80] (2023) Spike-based BP LIF Spikformer-4-384 78.21 (4)

(Continued)



2926 CMC, 2024, vol.78, no.3

Table 4 (continued)

Dataset Literature (Year) Training
algorithm∗

Neuron
model

Network structure∗∗ Accuracy/%
(T∗∗∗)

Image-Net Sengupta et al. [82] (2018) ANN conversion IF VGG-16 69.96 (2500)
Zheng et al. [75] (2021) STBP-tdBN LIF ResNet-34 63.72 (10)
Hu et al. [83] (2021) ANN conversion IF ResNet-50 73.77 (350)
Fang et al. [76] (2021) Spike-based BP IF ResNet-152 69.26 (4)
Bu et al. [87] (2022) ANN conversion IF VGG-16 74.62 (256)
Deng et al. [78] (2022) TET LIF ResNet-34 64.79 (6)
Li et al. [86] (2022) ANN conversion IF VGG-16 74.25 (256)
Zhou et al. [80] (2023) Spike-based BP LIF Spikformer-8-768 74.81 (4)

N-MNIST Shrestha et al. [70] (2018) SLAYER SRM SCNN 99.20
Wu et al. [33] (2019) STBP LIF CIFARNet 99.53
Lee et al. [72] (2020) Spike-based BP LIF LeNet 99.09 (100)
Kugele et al. [84] (2020) ANN conversion IF DenseNet 99.56

DVS128
Gesture

Shrestha et al. [70] (2018) SLAYER SRM SCNN 93.64

Kugele et al. [84] (2020) ANN conversion IF DenseNet 97.16
Zheng et al. [75] (2021) STBP-tdBN LIF ResNet-17 96.87
Fang et al. [76] (2021) Spike-based BP PLIF 7B-Net 97.92 (16)
Feng et al. [77] (2022) STBP + MLF LIF DS-ResNet-20 (small) 97.29
Zhou et al. [80] (2023) Spike-based BP LIF Spikformer-2 98.3 (16)
Wang et al. [81] (2023) TET LIF STS-Transformer-2-256 98.72 (16)

CIFAR10-
DVS

Wu et al. [33] (2019) STBP LIF CIFARNet 60.5 (40)

Kugele et al. [84] (2020) ANN conversion IF DenseNet 66.75 (10)
Zheng et al. [75] (2021) STBP-tdBN LIF ResNet-19 67.80 (10)
Fang et al. [76] (2021) Spike-based BP PLIF Wide 7B-Net 74.4 (16)
Deng et al. [78] (2022) TET LIF VGG-11 77.33 (10)
Feng et al. [77] (2022) STBP + MLF LIF DS-ResNet-14 (middle) 70.36
Zhou et al. [80] (2023) Spike-based BP LIF Spikformer-2 80.9 (16)
Wang et al. [81] (2023) TET LIF STS-Transformer-2-256 79.93 (16)

Notes: ∗To distinguish traditional BP, we use Spike-based BP to refer to the gradient descent and error backpropagation methods in SNNs
∗∗For spiking convolutional neural networks (SCNN) with no given name, SCNN is used to refer to.
∗∗∗T means time step.

5 Software and Hardware Platforms

The reason why deep learning has been able to achieve rapid development and land in various
industries in recent years, cannot be separated from various deep learning frameworks represented
by Tensorflow and PyTorch. For the large amount of arithmetic power demand brought about by
neural network development, hardware platforms represented by artificial intelligence (AI) hardware
accelerators such as NVIDIA A100, GOOGLE TPU, and AI units integrated in various types of SoCs
(System on Chip), provide a reliable guarantee for the actual landing of ANNs in various types of
devices from the data center to the edge side. However, in the field of SNNs, the current software
programming frameworks and specific hardware platforms are still in the early stage of development,
providing different functionalities and covering different scenarios. This increases the development
difficulty of SNNs and restricts the application and promotion of SNNs. Therefore, reviewing and
organizing existing software programming frameworks and specialized hardware platforms is of great
help in selecting suitable platforms and applying SNNs in practical applications.



CMC, 2024, vol.78, no.3 2927

5.1 Software Programming Frameworks

There are a variety of programming frameworks in the SNN field, but the overall development
level is in the early stages, and the focus of the application scenarios of these frameworks is
also different. Some SNN frameworks are mainly applied to realize the functional simulation and
behavioral simulation of neurons and small-scale network models, i.e., the main goal is to understand
the mechanisms of biological systems. These frameworks include Neuron [88], Genesis [89], Nest [90],
Brian2 [91], Nengo [92], GeNN [93], etc. Neuron and Genesis are mainly based on C or C++ and
also provide visual interfaces that can be used to achieve precise simulation of neuronal behavior
models, such as multi-compartment neuron models, modeling of multiple synaptic types, and so
on. Nest, Brian2, and Nego are mainly developed in Python language. In addition to supporting
neural simulation, they also support various neural network-level simulations, as well as SNN learning
algorithms such as STDP, and even have a certain degree of machine learning ability. GeNN, on the
other hand, is written in C and C++ language based on CUDA, to implement the simulation of SNNs
using GPU.

The other part of the SNN framework mainly focuses on the realization of machine learning
tasks and large-scale SNN computing, such as BindsNet [94], SpyKetorch [95], Norse [96], snnTorch
[97] and SpikingJelly [98] and so on. Such platforms can accelerate the construction of SNNs
in tasks such as bionic learning, supervised learning, etc., and can support SNN applications in
scenarios such as image classification and speech recognition. This kind of platform can support many
kinds of training algorithms such as STDP. Emerging development platforms such as NengoDL (a
variant of Nengo), Norse, snnTorch, and SpikingJelly can even support deep learning algorithms like
gradient descent methods or ANN conversion methods. Most of such frameworks are extended from
current mainstream deep learning platforms such as Tensorflow, Pytorch, etc., and integrate SNN
representation, computation, and other functions into these platforms. An example is the SpikingJelly
framework shown in Fig. 8. Therefore, such SNN frameworks can directly utilize the existing resources
and optimization techniques of these deep learning platforms, such as using the tensor calculation of
the deep learning platform to model SNNs to make it easier to use the framework, and using parallel
processing extensions like NVIDIA’s CUDA to significantly increase the simulation speed [99].

Figure 8: Architecture diagram of SpikingJelly [98]



2928 CMC, 2024, vol.78, no.3

In addition to the different focuses of the application scenarios, these SNN frameworks differ
in their simulation computation methods, which can be roughly categorized into event-driven, clock-
driven, and hybrid-driven types. In clock-driven frameworks, a time step is required to be set for each
iteration, and the state of each neuron is computed and updated at each time step according to the input
at that time [100]. In the event-driven mode, the state update of neurons is triggered by spike events, so
the activities of different neurons can be calculated asynchronously. So, there is no need to calculate
the state of neurons at every moment. Hybrid-driven types include both event-driven mode and clock-
driven mode. Due to the lower implementation difficulty, most frameworks are currently time-driven.
And time-driven mode has high parallelism, which can make full use of the parallel resources of
CPU and GPU, and is suitable for scenarios like triggering a large number of events and simulating
large-scale networks. While the asynchronous nature of event-driven makes its simulation faster and
more suitable for neural network layers with low and sparse activity. However, due to the sequential
nature of the event-driven way, it is difficult to parallelize the execution of event-driven simulation
through current mainstream hardware platforms [101]. The above SNN programming framework is
summarized in Table 5.

Table 5: Summary of main SNN programming frameworks

Framework Programming
language

Driven
mode

Parallel
acceleration

Application
scenarios

Training methods

Neuron [88] C, C++, Fortran,
Python

N/A MPI∗ Bionic simulation N/A

Genesis [89] C N/A N/A Bionic simulation N/A
Nest [90] C++, Python Hybrid MPI Bionic simulation STDP et al.
Brian2 [91] Python Clock N/A Bionic simulation STDP et al.
GeNN [93] C, C++ Hybrid CUDA Bionic simulation STDP et al.
Nengo [92] C++ (packaged

by Python)
Hybrid CUDA, FPGA,

ASIC∗∗
Bionic simulation STDP et al.

Nengo DL C++ (packaged
by Python)

Clock CUDA Neural network
computing, deep
learning

ANN conversion

BindsNet [94] C++ (packaged
by Python)

Clock CUDA Neural network
computing

STDP et al.

SpyKetorch [95] Python, Matlab Clock CUDA Neural network
computing

STDP et al.

Norse [96] Python Clock CUDA Neural network
computing, deep
learning

STDP, gradient
descent

snnTorch [97] Python Clock CUDA Neural network
computing, deep
learning

Gradient descent

SpikingJelly [98] Python Hybrid CUDA Neural network
computing, deep
learning

ANN conversion,
gradient descent

Notes: ∗Message Passing Interface (MPI).
∗∗Field-Programmable Gate Array (FPGA); Application Specific Integrated Circuit (ASIC).



CMC, 2024, vol.78, no.3 2929

5.2 Dedicated Hardware Platforms

ANNs are good at handling problems of dense data, high-precision requirements, and insensi-
tive to computing cost, while SNNs are good at handling problems of sparse data, low accuracy
requirements, and low computing costs. The difference between the two leads to different design
ideas for the corresponding hardware acceleration platform. For the implementation of SNNs, it is
usually inefficient to execute SNNs on the traditional von Neumann architecture CPU, while the
GPU architecture is incompatible with the event-driven asynchronous mechanism of SNNs, which
fails to fully utilize the low-power advantage of asynchronous processing in SNNs. Therefore, it is
necessary to design hardware architectures for SNNs based on the above characteristics to fully utilize
the event-driven, low-power characteristics of SNNs. In recent years, many scholars have proposed
a series of SNN-specific hardware acceleration chips, which are often called neuromorphic chips. To
achieve the characteristics of SNNs, these neural morphology chips can simulate the cell dynamics and
synaptic memory of spike neurons and are designed in an event-driven manner, which triggers the state
update of neurons through spike events. To support the realization of SNNs with different structures
and scales, neuromorphic chips need to be highly configurable and scalable. Such hardware platforms
usually utilize multi-core architectures based on the Network on Chip (NoC). A typical neuromorphic
chip architecture is shown in Fig. 9. The computational cores are the basic units of the architecture,
which can be configured to simulate a certain number of neurons and synapses. Each computational
core has an independent memory and can operate independently without relying on a unified external
memory, thus improving parallelism, avoiding large memory accesses, and breaking the memory
bottleneck in traditional von Neumann architectures [102]. These independent computational cores
are combined with routing units to access the NoC, which accomplishes the data communication
among the compute cores. Such an architecture can be implemented on a single chip, and can also
be deployed in chipsets to implement larger-scale neural networks in combination with multi-chip
interconnections.

Figure 9: Schematic diagram of neuromorphic chip architecture, taking Tianjic [103] as an example



2930 CMC, 2024, vol.78, no.3

According to the different ways of circuit implementation, these hardware platforms can also
be classified into hybrid digital-analog platforms and all-digital platforms. For hybrid digital-analog
computing platforms, since most of the neuron models are presented in the form of differential
equations, analog circuits can be used directly to simulate the cellular dynamics of spike neurons
through the current-voltage characteristics of transistors in the subthreshold or suprathreshold state.
The routing unit and interconnecting network need to ensure that the data can be transmitted stably
over long distances, so this part needs to be completed using digital circuits which are more stable
and reliable compared to analog circuits. The hybrid digital-analog platforms use analog computation
to achieve low power consumption and fast response time. For all-digital platforms, although their
power consumption is higher than that of hybrid digital-analog solutions, they can flexibly adjust
the SNN structure and parameters through compatible programming software and are more design-
convenient and stable. They can even be achieved using the latest advanced process. Therefore, all-
digital computing platforms are more favored in the industry.

Representative neuromorphic chips include BrainScaleS-2 [104] from Heidelberg University,
DYNAPs [105] from the University of Zurich, Neurogrid [106] from Stanford University, TrueNorth
[107] from IBM, Loihi-2 [108,109] from Intel, Zhejiang University’s Darwin-2 [110–112] and Tsinghua
University’s Tianjic [103] and so on. among them, BrainScaleS-2, Darwin-2 and Loihi-2 are their
respective second-generation hardware platforms that have been made public in recent years. In
addition, most research institutions operating these platforms have built their own system-level
neuromorphic hardware platforms based on the aforementioned chips in the form of multi-chip
interconnection. To make it easier to develop SNNs on these platforms, some of them provide
dedicated programming frameworks and model compilers to improve the programmability of the
hardware platform [113]. Taking Loihi as an example, Intel has introduced the supporting software
toolchain, Lava, which greatly improves the ease of use of the Loihi platform and allows researchers
to deploy SNNs in a variety of application scenarios, such as neuromorphic data processing [114],
proportional-integral-differential (PID) [115] closed-loop control [116,117], and so on.

The hardware platforms mentioned above are larger-scale platformed specific SNN hardware
accelerators. The specifications and comparisons of these platforms can be found in Table 6. Their
design concepts and system architectural features enable the system to be configured and used
for a wide range of tasks and operating modes, i.e., they are general-purpose platforms designed
specifically for SNNs. Besides, there are numerous small-scale SNN hardware designs aimed at
hardware acceleration of SNNs in low-power scenarios, e.g., ASIC-based designs such as ODIN from
the University of Leuven [118], ReckOn from the University of Zurich [119], as well as designs based on
FPGA implementations [120–122]. Such hardware is only capable of running smaller scale networks
for simple tasks, and can only support limited network types or even only realize fixed network
topologies. Therefore, most of them do not have complex supporting software kits. In recent years,
utilizing the in-memory computing characteristics of memristor arrays has also become a promising
approach to achieving SNNs. This type of design utilizes memristors to achieve synaptic storage and
integration operations in the analog domain, such as works [123–125] and so on. However, due to the
non-idealities of the device, the current SNN systems based on memristors are very simple, and there
is still a long way to go for being practical.



CMC, 2024, vol.78, no.3 2931

Table 6: Comparison of main large-scale SNN hardware platforms

Name Implementation Process Learning
algorithm

Neurons
scale

Synapse
scale

BrainScaleS-2 [104] hybrid digital-analog 65 nm STDP, BP 512 131,072
Neurogrid [106] hybrid digital-analog 180 nm Only inference 64000 1 million
DYNAPs [105] hybrid digital-analog 180 nm STDP 9,216 589,824
TrueNorth [107] all-digital 28 nm Only inference 1 million 256 million
Loihi-2 [108,109] all-digital 4 nm STDP 1 million 120 million
Darwin-2 [110–112] all-digital 55 nm Only inference 150,000 10 million
Tianjic [103] all-digital 28 nm Only inference 40,000 10 million

6 Conclusions and Future Perspectives

This paper comprehensively introduces the current research results and possible future develop-
ment directions of SNNs from four aspects: the composition structure of SNNs, datasets, learning
algorithms, and software/hardware development platforms.

In terms of network composition structure, this article mainly introduces the neuron models such
as the IF model, LIF model, and SRM model, and the functions of neuron synapses, as well as three
main network topology structures. In terms of the dataset used in SNNs, this article introduces the
two types of information coding methods required for using traditional image datasets: rate coding
and temporal coding, as well as neuromorphic datasets that are more suitable for SNNs. In terms
of learning algorithms, the main learning algorithms in SNNs such as STDP rules, gradient descent
algorithms for SNNs, ANN conversion method, and so on are summarized from two perspectives
of unsupervised learning and supervised learning, and the advantages and disadvantages of these
algorithms are analyzed. In terms of software and hardware development platforms, this article
introduces the development achievements of several major SNN programming frameworks and
neuromorphic hardware platforms.

Comprehensively analyzing the research progress of SNNs in various aspects, we can see that the
current development of SNNs is not yet perfect and there are still many problems to be solved.

In terms of information coding, the challenge still to be solved is how to better realize the
spike coding of information. Information coding has a significant impact on the realization and
performance of SNNs, so it is necessary to find a suitable coding strategy as well as a learning
algorithm that matches it. On the other hand, most of the current deep SNNs use rate coding, which
restricts SNNs from utilizing their advantages in processing temporal-domain information. How to
fully integrate temporal coding with larger information capacity and higher transmission speed with
deep SNNs is also a direction to be explored.

In terms of construction and training of models, with the rise of large-scale models, how
to build SNNs with more complex structures, larger scale, and richer application scenarios, and
successfully train them, will be an important research direction to make SNNs more practical. This
requires researchers to explore how to design SNN network structures that have stronger information
extraction and representation capabilities and are easier to train. This issue also requires improving
the effectiveness of current training algorithms in dealing with such sophisticated networks. However,
learning algorithms like the backpropagation algorithm, which has gained recognized results in ANNs,



2932 CMC, 2024, vol.78, no.3

have not yet been developed in the field of SNNs. At present, the two methods, the surrogate gradient
method and ANN conversion method, have achieved numerous results. SNNs trained based on these
methods still has a certain gap with ANNs in terms of network depth and performance. The former
still has not well solved the problem of gradient disappearance or gradient explosion in deep network
training. The ANN-converted method cannot fully utilize the ability of SNNs to process temporal
information, and the simulation step length is too long, which reduces its efficiency. Both algorithms
still have much room for development. On the other hand, in terms of biological plausibility, there is
still a need to further bridge the gap between neuroscience and intelligent computing. For example,
how to enrich the dynamic model of spike neurons currently used in deep SNNs to improve the
representative ability of neurons. Secondly, neither of these two training methods mentioned above
has good biological plausibility. How to utilize biological rational learning methods, such as STDP
rules, to train high-performance SNNs. These problems remain to be important challenges.

In terms of datasets, information coding is only a conversion method for traditional picture
datasets applied in SNNs, and traditional picture datasets still lack sufficient temporal information for
SNNs. Datasets with rich dynamic temporal information and natural pulse forms are more suitable
for SNNs, but the size of such datasets is currently very small and still needs to be developed. In
addition, most of the datasets used for SNNs at this stage are focused on image recognition scenarios,
and more datasets in different scenarios need to be extensively explored to improve the diversity of
SNN functions.

In terms of software development tools, classic software frameworks focus on neuroscience rather
than deep learning, while frameworks applicable to deep learning are still in the early stages of iteration.
The modules and APIs of these software are not yet stable enough and the functions covered are not
comprehensive enough. In addition, these software frameworks are usually designed for CPUs and
GPUs and lack support and optimization for different SNN hardware acceleration platforms. On the
other hand, due to the temporal dimension of SNNs, these frameworks require a longer running time
compared to ANNs when performing SNN training and inference, and the running efficiency of the
frameworks needs to be further improved.

In terms of neuromorphic hardware, researching chip architectures that are more efficient
and better utilize the asynchronous characteristics of SNNs is an important direction for future
development. Among them, how to support more on-chip learning methods, how to be compatible
with both ANNs and SNNs paradigms, and how to be integrated with neuromorphic sensors are all
important challenges for the research of neuromorphic chip architecture. Developing neuromorphic
chips through the in-memory computing characteristics of new memory devices, such as memristors,
is also a very promising direction for the realization of SNN hardware acceleration in the future. But
it is also urgently necessary to minimize the adverse effects caused by the non-idealities of the devices
themselves.

Generally speaking, many development achievements in recent years have greatly improved the
practicability of SNN computing, making it possible to apply SNNs to real-world problems. These
problems mentioned above will be the focus of future research on SNNs. It is expected that in the
current research boom of artificial intelligence, SNNs can break through the barriers between artificial
intelligence and biological neuroscience, and realize the cross-fusion of the two. We hope that the
development of SNNs can bring the development of brain-like computing to a new stage, provide more
insights for humans to understand neuroscience, and provide a new paradigm for artificial intelligence.



CMC, 2024, vol.78, no.3 2933

Acknowledgement: All authors sincerely thank all organizations and institutions that have provided
data and resources. Thanks to all the members of our research group, their suggestions and support
have provided important help and profound impact on our research work.

Funding Statement: This work is partly supported by the National Natural Science Foundation of
China (Nos. 61974164, 62074166, 62004219, 62004220, and 62104256).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Jiadong Wu, Yinan Wang, Zhiwei Li and Qingjiang Li; data collection: Jiadong Wu and Lun
Lu; analysis and interpretation of results: Jiadong Wu and Yinan Wang; draft manuscript preparation:
Jiadong Wu. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] K. Shankar et al., “Synergic deep learning for smart health diagnosis of COVID-19 for connected living

and smart cities,” ACM. T. Intsernet Techn., vol. 22, no. 3, pp. 1–14, 2022. doi: 10.1145/3453168.
[2] S. Li et al., “False alert detection based on deep learning and machine learning,” Int. J. Semant. Web. Inf.,

vol. 18, no. 1, pp. 1–21, 2022. doi: 10.4018/IJSWIS.
[3] R. A. Sobbahi and J. Tekli, “Comparing deep learning models for low-light natural scene image

enhancement and their impact on object detection and classification: Overview, empirical evaluation, and
challenges,” Signal Process.-Image, vol. 109, no. 12, pp. 116848, 2022. doi: 10.1016/j.image.2022.116848.

[4] M. Afify, M. Loey, and A. Elsawy, “A robust intelligent system for detecting tomato crop diseases using
deep learning,” Int. J. Softw. Sci. Comp., vol. 14, no. 1, pp. 1–21, 2022. doi: 10.4018/IJSSCI.

[5] T. Brown et al., “Language models are few-shot learners,” in 2020 Neural Inf. Proces. Syst. (NeurIPS),
Dec. 6–12, 2020, pp. 6–12.

[6] D. D. Cox and T. Dean, “Neural networks and neuroscience-inspired computer vision (review),” Curr.
Biol., vol. 24, no. 18, pp. R921–R929, 2014. doi: 10.1016/j.cub.2014.08.026.

[7] J. D. Nunes, M. Carvalho, D. Carneiro, and J. S. Cardoso, “Spiking neural networks: A survey,” IEEE
Access, vol. 10, no. l, pp. 60738–60764, 2022. doi: 10.1109/ACCESS.2022.3179968.

[8] N. Burkitt, “A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input,” Biol.
Cybern., vol. 95, no. 1, pp. 1–19, 2006. doi: 10.1007/s00422-006-0068-6.

[9] W. Gerstner and W. M. Kistler, “Leaky integrate-and-fire model,” in Spiking Neuron Models: Single
Neurons Populations Plasticity, 1 ed., Cambridge, UK: Cambridge University Press, 2002, pp. 94–96.

[10] B. Rueckauer, I. Lungu, Y. Hu, M. Pfeiffer, and S. Liu, “Conversion of continuous-valued deep networks
to efficient event-driven networks for image classification,” Front. Neurosci., vol. 11, no. 11, pp. 682, 2017.
doi: 10.3389/fnins.2017.00682.

[11] E. M. Izhikevich, “Which model to use for cortical spiking neurons?,” IEEE. T. Neural Netw., vol. 15, no.
5, pp. 1063–1070, 2004. doi: 10.1109/TNN.2004.832719.

[12] W. Fang et al., “Incorporating learnable membrane time constant to enhance learning of spiking neural
networks,” in 2021 IEEE Int. Conf. Comput. Vision, Montreal, France, Oct. 10–17, 2021.

[13] Q. Yu et al., “Constructing accurate and efficient deep spiking neural networks with double-threshold
and augmented schemes,” IEEE. T. Neur. Net. Learn., vol. 33, no. 4, pp. 1714–1726, 2022. doi:
10.1109/TNNLS.2020.3043415.

https://doi.org/10.1145/3453168
https://doi.org/10.4018/IJSWIS
https://doi.org/10.1016/j.image.2022.116848
https://doi.org/10.4018/IJSSCI
https://doi.org/10.1016/j.cub.2014.08.026
https://doi.org/10.1109/ACCESS.2022.3179968
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1109/TNNLS.2020.3043415


2934 CMC, 2024, vol.78, no.3

[14] Y. Wang, M. Zhang, Y. Chen, and H. Qu, “Signed neuron with memory: Towards simple, accurate and
high-efficient ANN-SNN conversion,” in 2022 Int. Joint Conf. Artif. Intell. (IJCAI), Vienna, Austria, Jul.
23–29, 2022.

[15] S. Kim, S. Park, B. Na, and S. Yoon, “Spiking-YOLO: Spiking neural network for real-time object
detection,” in 2019 AAAI Conf. Artif. Intell. (AAAI), Honolulu, HI, USA, Jan. 27–Feb. 1, 2019.

[16] W. Ye, Y. Chen, and Y. Liu, “The implementation and optimization of neuromorphic hardware for
supporting spiking neural networks with MLP and CNN topologies,” IEEE T. Comput. Aid. D., vol. 42,
no. 2, pp. 448–461, 2023. doi: 10.1109/TCAD.2022.3179246.

[17] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, “Adaptation and firing patterns,” in Neuronal
Dynamics: From Single Neurons to Networks and Models of Cognition, 1 ed., Cambridge, UK: Cambridge
University Press, 2014, pp. 154–164.

[18] W. Gerstner, R. Ritz, and J. L. Hemmen, “Why spikes? Hebbian learning and retrieval of time-resolved
excitation patterns,” Biol. Cybern., vol. 69, no. 5, pp. 503–515, 1993. doi: 10.1007/BF00199450.

[19] A. Javanshir, T. T. Nguyen, M. A. P. Mahmud, and A. Z. Kouzani, “Advancements in algorithms and
neuromorphic hardware for spiking neural networks,” Neural Comput., vol. 34, no. 6, pp. 1289–1328,
2022. doi: 10.1162/neco_a_01499.

[20] T. Iakymchuk, A. Rosado-Muñoz, J. F. Guerrero-Martínez, M. Bataller-Mompeán, and J. V. Francés-
Víllora, “Simplified spiking neural network architecture and STDP learning algorithm applied to
image classification,” EURASIP. J. Image Vid. Process., vol. 2015, no. 1, pp. 1–11, 2015. doi:
10.1186/s13640-015-0059-4.

[21] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application
to conduction and excitation in nerve,” J. Physiol., vol. 117, no. 4, pp. 500–544, 1952. doi: 10.1113/jphys-
iol.1952.sp004764.

[22] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE. T. Neur. Netw., vol. 14, no. 6, pp. 1569–1572,
2003. doi: 10.1109/TNN.2003.820440.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recogni-
tion,” Process. IEEE., vol. 86, no. 11, pp. 2278–2324, 1998. doi: 10.1109/5.726791.

[24] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Accessed: May 19, 2023. [Online].
Available: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[25] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, “Variability of spike trains and neural codes,” in
Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, 1 ed., Cambridge, UK:
Cambridge University Press, 2014, pp. 172–178.

[26] H. C. Tuckwell and F. Y. M. Wan, “Time to first spike in stochastic Hodgkin-Huxley systems,” Physica.
A., vol. 351, no. 2–4, pp. 427–438, 2005. doi: 10.1016/j.physa.2004.11.059.

[27] C. Kayser, M. A. Montemurro, N. K. Logothetis, and S. Panzeri, “Spike-phase coding boosts
and stabilizes information carried by spatial and temporal spike patterns,” Neuron, vol. 61, no. 4,
pp. 597–608, 2009. doi: 10.1016/j.neuron.2009.01.008.

[28] S. Thorpe and G. Jacques, “Rank order coding,” in Computational Neuroscience: Trends in Research 1998,
1 ed., Boston, MA, USA: Springer, 1998, pp. 113–118.

[29] C. Y. Zhao, Y. Yi, J. L. Li, X. Fu, and L. J. Liu, “Interspike-interval-based analog spike-time-dependent
encoder for neuromorphic processors,” IEEE. T. VLSI. Syst., vol. 25, no. 8, pp. 2193–2205, 2017. doi:
10.1109/TVLSI.2017.2683260.

[30] D. Auge, J. Hille, E. Mueller, and A. Knoll, “A survey of encoding techniques for signal process-
ing in spiking neural networks,” Neural. Process. Lett., vol. 53, no. 6, pp. 4693–4710, 2021. doi:
10.1007/s11063-021-10562-2.

[31] B. Petro, N. Kasabov, and R. M. Kiss, “Selection and optimization of temporal spike encoding methods
for spiking neural networks,” IEEE. T. Neural Net. Lear., vol. 31, no. 2, pp. 358–370, 2020. doi:
10.1109/TNNLS.2019.2906158.

https://doi.org/10.1109/TCAD.2022.3179246
https://doi.org/10.1007/BF00199450
https://doi.org/10.1162/neco_a_01499
https://doi.org/10.1186/s13640-015-0059-4
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/5.726791
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1016/j.physa.2004.11.059
https://doi.org/10.1016/j.neuron.2009.01.008
https://doi.org/10.1109/TVLSI.2017.2683260
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1109/TNNLS.2019.2906158


CMC, 2024, vol.78, no.3 2935

[32] Y. Kim, H. Park, A. Moitra, A. Bhattacharjee, Y. Venkatesha and P. Panda, “Rate coding or direct coding:
Which one is better for accurate, robust, and energy-efficient spiking neural networks?,” in 2022 IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP), Singapore, May 23–27, 2022.

[33] Y. J. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Direct training for spiking neural networks: Faster, larger,
better,” in 2019 AAAI Conf. Artif. Intell. (AAAI), Honolulu, HI, USA, Jan. 27–Feb. 1, 2019.

[34] S. Barchid, J. Mennesson, J. Eshraghian, C. Djéraba, and M. Bennamoun, “Spiking neural networks for
frame-based and event-based single object localization,” Neurocomput., vol. 559, no. 1, pp. 126805, 2023.
doi: 10.1016/j.neucom.2023.126805.

[35] L. Cordone, B. Miramond, and P. Thierion, “Object detection with spiking neural networks on automotive
event data,” in 2022 Int. Jt. Conf. Neural Networks, Padua, Italy, Jul. 18–23, 2022.

[36] O. Garrick, J. Ajinkya, G. K. Cohen, and T. Nitish, “Converting static image datasets to spik-
ing neuromorphic datasets using saccades,” Front. Neurosci., vol. 9, no. 178, pp. 437, 2015. doi:
10.3389/fnins.2015.00437.

[37] H. M. Li, H. C. Liu, X. Y. Ji, G. Q. Li, and L. P. Shi, “CIFAR10-DVS: An event-stream dataset for object
classification,” Front. Neurosci., vol. 11, no. 11, pp. 309, 2017. doi: 10.3389/fnins.2017.00309.

[38] Y. Lin, W. Ding, S. Qiang, L. Deng, and G. Li, “ES-ImageNet: A million event-stream classification dataset
for spiking neural networks,” Front. Neurosci., vol. 15, pp. 726582, 2021. doi: 10.3389/fnins.2021.726582.

[39] A. Amir et al., “A low power, fully event-based gesture recognition system,” in 2017 IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 21–26, 2017.

[40] Y. Hu, H. Liu, M. Pfeiffer, and T. Delbruck, “DVS benchmark datasets for object tracking,
action recognition, and object recognition,” Front. Neurosci., vol. 10, no. 49, pp. 405, 2016. doi:
10.3389/fnins.2016.00405.

[41] M. Gehrig, W. Aarents, D. Gehrig, and D. Scaramuzza, “DSEC: A stereo event camera dataset
for driving scenarios,” IEEE. Robot. Autom. Lett., vol. 6, no. 3, pp. 4947–4954, 2021. doi:
10.1109/LRA.2021.3068942.

[42] J. Anumula, D. Neil, T. Delbruck, and S. Liu, “Feature representations for neuromorphic audio spike
streams,” Front. Neurosci., vol. 12, pp. 23, 2018. doi: 10.3389/fnins.2018.00023.

[43] A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L. P. Maguire and T. M. McGinnity, “A review of learning
in biologically plausible spiking neural networks,” Neural Netw., vol. 122, no. 1, pp. 253–272, 2019. doi:
10.1016/j.neunet.2019.09.036.

[44] P. Ren et al., “A survey of deep active learning,” ACM. Comput. Surv., vol. 54, no. 9, pp. 1–40, 2021. doi:
10.1145/3472291.

[45] F. Zhuang et al., “A comprehensive survey on transfer learning,” Proc. IEEE., vol. 109, no. 1, pp. 43–76,
2021. doi: 10.1109/JPROC.2020.3004555.

[46] S. Wang, Y. Hu, and S. Liu, “T-NGA: Temporal network grafting algorithm for learning to process spiking
audio sensor events,” in 2022 IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Singapore, May
23–27, 2022.

[47] R. G. Leonard, “A database for speaker-independent digit recognition,” in 1984 IEEE Int. Conf. Acoust.
Speech Signal Process. (ICASSP), San Diego, CA, USA, Mar. 19–21, 1984.

[48] G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured hippocampal neurons: Dependence on spike
timing, synaptic strength, and postsynaptic cell type,” J. Neurosci., vol. 18, no. 24, pp. 10464–10472, 1999.
doi: 10.1523/JNEUROSCI.18-24-10464.1998.

[49] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through spike-timing-dependent
synaptic plasticity,” Nat. Neurosci., vol. 3, no. 9, pp. 919–926, 2000. doi: 10.1038/78829.

[50] D. O. Hebb, “Development of the learning capacity,” in The Organization of Behavior: A Neuropsycholog-
ical Theory, 1 ed., Montreal, Canada: Wiley, 1949, pp. 107–140.

[51] C. C. Rumsey and L. F. Abbott, “Synaptic equalization by anti-STDP,” Neurocomput., vol. 58–60, pp.
359–364, 2004. doi: 10.1016/j.neucom.2004.01.067.

[52] J. Pfister and W. Gerstner, “Triplets of spikes in a model of spike timing-dependent plasticity,” J. Neurosci.,
vol. 26, no. 38, pp. 9673–9682, 2006. doi: 10.1523/JNEUROSCI.1425-06.2006.

https://doi.org/10.1016/j.neucom.2023.126805
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.3389/fnins.2021.726582
https://doi.org/10.3389/fnins.2016.00405
https://doi.org/10.1109/LRA.2021.3068942
https://doi.org/10.3389/fnins.2018.00023
https://doi.org/10.1016/j.neunet.2019.09.036
https://doi.org/10.1145/3472291
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1038/78829
https://doi.org/10.1016/j.neucom.2004.01.067
https://doi.org/10.1523/JNEUROSCI.1425-06.2006


2936 CMC, 2024, vol.78, no.3

[53] F. Paredes-Valles, K. Y. W. Scheper, and G. C. H. E. de Croon, “Unsupervised learning of a hierarchical
spiking neural network for optical flow estimation: From events to global motion perception,” IEEE. T.
Pattern. Anal., vol. 42, no. 8, pp. 2051–2064, 2020. doi: 10.1109/TPAMI.2019.2903179.

[54] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “STDP-based spiking deep
convolutional neural networks for object recognition,” Neural Netw., vol. 99, no. 6, pp. 56–67, 2018. doi:
10.1016/j.neunet.2017.12.005.

[55] A. Tavanaei and A. S. Maida, “Multi-layer unsupervised learning in a spiking convolutional neural
network,” in 2017 Int. Jt. Conf. Neural Networks, Anchorage, AK, USA, May 14–19, 2017.

[56] J. W. Li et al., “In-Situ learning in multilayer locally-connected memristive spiking neural network,”
Neurocomput., vol. 463, no. 1, pp. 251–264, 2021. doi: 10.1016/j.neucom.2021.08.011.

[57] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural networks with ReSuMe: Sequence
learning, classification, and spike shifting,” Neural Comput., vol. 22, no. 2, pp. 467–510, 2010. doi:
10.1162/neco.2009.11-08-901.

[58] I. Sporea and A. Grüning, “Supervised learning in multilayer spiking neural networks,” Neural Comput.,
vol. 25, no. 2, pp. 473–509, 2013. doi: 10.1162/NECO_a_00396.

[59] J. W. Li et al., “Enhanced spiking neural network with forgetting phenomenon based on electronic synaptic
devices,” Neurocomput., vol. 408, no. 38, pp. 21–30, 2020. doi: 10.1016/j.neucom.2019.09.030.

[60] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S. J. Thorpe, and T. Masquelier, “Bio-inspired digit
recognition using reward-modulated spike-timing-dependent plasticity in deep convolutional networks,”
Pattern. Recogn., vol. 94, no. 9, pp. 87–95, 2019. doi: 10.1016/j.patcog.2019.05.015.

[61] C. Lee, P. Panda, G. Srinivasan, and K. Roy, “Training deep spiking convolutional neural networks with
STDP-based unsupervised pre-training followed by supervised fine-tuning,” Front. Neurosci., vol. 12, pp.
435, 2018. doi: 10.3389/fnins.2018.00435.

[62] Q. Xu, J. X. Peng, J. R. Shen, H. J. Tang and G. Pan, “Deep CovDenseSNN: A hierarchical event-driven
dynamic framework with spiking neurons in noisy environment,” Neural Netw., vol. 121, no. 10, pp. 512–
519, 2020. doi: 10.1016/j.neunet.2019.08.034.

[63] Z. Shao, X. Fang, Y. Li, C. Feng, J. Shen, and Q. Xu, “EICIL: Joint excitatory inhibitory cycle iteration
learning for deep spiking neural networks,” in 2023 Neural Inf. Proces. Syst. (NeurIPS), New Orleans,
LA, USA, Dec. 11–16, 2023.

[64] S. M. Bohte, J. N. Kok, and H. L. Poutré, “Error-backpropagation in temporally encoded networks of
spiking neurons,” Neurocomput., vol. 48, no. 1–4, pp. 17–37, 2002. doi: 10.1016/S0925-2312(01)00658-0.

[65] S. Ghosh-Dastidar and H. Adeli, “A new supervised learning algorithm for multiple spiking neural
networks with application in epilepsy and seizure detection,” Neural Netw., vol. 22, no. 10, pp. 1419–1431,
2009. doi: 10.1016/j.neunet.2009.04.003.

[66] P. Tiňo and A. Mills, “Learning beyond finite memory in recurrent networks of spiking neurons,” Neural
Comput., vol. 18, no. 3, pp. 591–613, 2006. doi: 10.1162/neco.2006.18.3.591.

[67] R. Gütig and H. Sompolinsky, “The tempotron: A neuron that learns spike timing-based decisions,” Nat.
Neurosci., vol. 9, no. 3, pp. 420–428, 2006. doi: 10.1038/nn1643.

[68] R. Florian, “The chronotron: A neuron that learns to fire temporally-precise spike patterns,” PLoS One,
vol. 8, no. 7, pp. e40233, 2012. doi: 10.1371/journal.pone.0040233.

[69] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking neural networks: Bringing
the power of gradient-based optimization to spiking neural networks,” IEEE Signal Process. Mag., vol.
36, no. 6, pp. 51–63, 2019. doi: 10.1109/MSP.2019.2931595.

[70] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reassignment in time,” in 2018 Neural Inf.
Process. Syst. (NeurIPS), Montreal, QC, Canada, Dec. 2–8, 2018.

[71] Y. J. Wu, L. Deng, G. Q. Li, J. Zhu, and L. P. Shi, “Spatio-temporal backpropagation for train-
ing high-performance spiking neural networks,” Front. Neurosci., vol. 12, no. 12, pp. 331, 2018. doi:
10.3389/fnins.2018.00331.

https://doi.org/10.1109/TPAMI.2019.2903179
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1016/j.neucom.2021.08.011
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1162/NECO_a_00396
https://doi.org/10.1016/j.neucom.2019.09.030
https://doi.org/10.1016/j.patcog.2019.05.015
https://doi.org/10.3389/fnins.2018.00435
https://doi.org/10.1016/j.neunet.2019.08.034
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1016/j.neunet.2009.04.003
https://doi.org/10.1162/neco.2006.18.3.591
https://doi.org/10.1038/nn1643
https://doi.org/10.1371/journal.pone.0040233
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2018.00331


CMC, 2024, vol.78, no.3 2937

[72] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy, “Enabling spike-based backpropaga-
tion for training deep neural network architectures,” Front. Neurosci., vol. 14, pp. 119, 2020. doi:
10.3389/fnins.2020.00119.

[73] Y. Guo, X. Huang, and Z. Ma, “Direct learning-based deep spiking neural networks: A review,” Front.
Neurosci., vol. 17, pp. 1209795, 2023. doi: 10.3389/fnins.2023.1209795.

[74] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li and L. F. Fei, “ImageNet: A large-scale hierarchical image
database,” in 2009 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Miami, FL, USA, Jun. 20–25,
2009.

[75] H. L. Zheng, Y. J. Wu, L. Deng, Y. F. Hu, and G. Q. Li, “Going deeper with directly-trained larger spiking
neural networks,” in 2020 AAAI Conf. Artif. Intell. (AAAI), New York, NY, USA, Feb. 7–12, 2020.

[76] W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier and Y. Tian, “Deep residual learning in spiking neural
networks,” in 2021 Neural Inf. Process. Syst. (NeurIPS), Dec. 6–14, 2021.

[77] L. Feng, Q. H. Liu, H. J. Tang, D. Ma, and G. Pan, “Multi-level firing with spiking DS-ResNet: Enabling
better and deeper directly-trained spiking neural networks,” in 2022 Int. Joint Conf. Artif. Intell. (IJCAI),
Vienna, Austria, Jul. 23–29, 2022.

[78] S. K. Deng, Y. H. Li, S. H. Zhang, and S. Gu, “Temporal efficient training of spiking neural network via
gradient re-weighting,” in 2022 Int. Conf. Learn. Represent. (ICLR), Virtual, Apr. 25–29, 2022.

[79] Q. Su et al., “Deep directly-trained spiking neural networks for object detection,” in 2023 IEEE Int. Conf.
Comput. Vision, Paris, France, Vision, Oct. 2–6, 2023.

[80] Z. Zhou et al., “Spikformer: When spiking neural network meets transformer,” in 2023 Int. Conf. Learn.
Represent. (ICLR), Kigali, Rwanda, May 1–5, 2023.

[81] Y. Wang, K. Shi, C. Lu, Y. Liu, M. Zhang and H. Qu, “Spatial-temporal self-attention for asynchronous
spiking neural networks,” in 2023 Int. Joint Conf. Artif. Intell. (IJCAI), Macao, China, Aug. 19–25, 2023.

[82] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in spiking neural networks: VGG and
residual architectures,” Front. Neurosci., vol. 13, pp. 95, 2018. doi: 10.3389/fnins.2019.00095.

[83] Y. F. Hu, H. J. Tang, and G. Pan, “Spiking deep residual networks,” IEEE. T. Neur. Netw. Learn. Syst.,
vol. 34, no. 8, pp. 1–6, 2021. doi: 10.1109/TNNLS.2021.3119238.

[84] A. Kugele, T. Pfeil, M. Pfeiffer, and E. Chicca, “Efficient processing of spatio-temporal data streams with
spiking neural networks,” Front. Neurosci., vol. 14, pp. 439, 2020. doi: 10.3389/fnins.2020.00439.

[85] V. Fischer, J. M. Köhler, and T. Pfeil, “The streaming rollout of deep networks—towards fully model—
parallel execution,” in 2018 Neural Inf. Proces. Syst. (NeurIPS), Montreal, QC, Canada, Dec. 2–8, 2018.

[86] Y. Li and Y. Zeng, “Efficient and accurate conversion of spiking neural network with burst spikes,” in
2022 Int. Joint Conf. Artif. Intell. (IJCAI), Vienna, Austria, Jul. 23–29, 2022.

[87] T. Bu, J. H. Ding, Z. F. Yu, and T. J. Huang, “Optimized potential initialization for low-latency spiking
neural networks,” in 2022 AAAI Conf. Artif. Intell. (AAAI), Virtual, Feb. 22–Mar. 1, 2022.

[88] M. L. Hines and N. T. Carnevale, “The neuron simulation environment,” Neur. Comput., vol. 9, no. 6, pp.
1179–1209, 1997. doi: 10.1162/neco.1997.9.6.1179.

[89] C. Kobayashi et al., “GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced
sampling algorithms on multiple computational platforms,” J. Comput. Chem., vol. 38, no. 25, pp. 2193–
2206, 2017. doi: 10.1002/jcc.24874.

[90] H. E. Plesser, M. Diesmann, M. Gewaltig, and A. Morrison, “NEST: The neural simulation tool,” in
Encyclopedia of Computational Neuroscience, 1 ed., New York, USA: Springer, 2019, pp. 1–3.

[91] M. Stimberg, R. Brette, and D. Goodman, “Brian 2, an intuitive and efficient neural simulator,” eLife.,
vol. 8, pp. e47314, 2019. doi: 10.7554/eLife.47314.

[92] T. Bekolay et al., “Nengo: A python tool for building large-scale functional brain models,” Front.
Neuroinform., vol. 7, pp. 48, 2014. doi: 10.3389/fninf.2013.00048.

[93] E. Yavuz, J. Turner, and T. Nowotny, “GeNN: A code generation framework for accelerated brain
simulations,” Sci. Rep., vol. 6, no. 1, pp. 18854, 2016. doi: 10.1038/srep18854.

[94] H. Hazan et al., “BindsNET: A machine learning-oriented spiking neural networks library in python,”
Front. Neuroinform., vol. 12, no. 1, pp. 89, 2018. doi: 10.3389/fninf.2018.00089.

https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2023.1209795
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1109/TNNLS.2021.3119238
https://doi.org/10.3389/fnins.2020.00439
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1002/jcc.24874
https://doi.org/10.7554/eLife.47314
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1038/srep18854
https://doi.org/10.3389/fninf.2018.00089


2938 CMC, 2024, vol.78, no.3

[95] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, and T. Masquelier, “SpykeTorch: Efficient simulation
of convolutional spiking neural networks with at most one spike per neuron,” Front. Neurosci., vol. 13,
pp. 625, 2019. doi: 10.3389/fnins.2019.00625.

[96] C. Pehle and J. E. Pedersen, “Norse—A deep learning library for spiking neural networks,” Zenodo, 2021.
doi: 10.5281/zenodo.4422025.

[97] J. K. Eshraghian et al., “Training spiking neural networks using lessons from deep learning,” Proc. IEEE,
vol. 111, no. 9, pp. 1016–1054, 2023. doi: 10.1109/JPROC.2023.3308088.

[98] W. Fang et al., “SpikingJelly: An open-source machine learning infrastructure platform for spike-based
intelligence,” Sci. Adv., vol. 9, no. 40, pp. i1480, 2023. doi: 10.1126/sciadv.adi1480.

[99] P. Qu, L. Yang, W. M. Zheng, and Y. H. Zhang, “A review of basic software for brain-inspired computing,”
CCF. T. High. Perform., vol. 4, no. 1, pp. 34–42, 2022. doi: 10.1007/s42514-022-00092-1.

[100] R. Brette, M. Rudolph, T. Carnevale, and M. Hines, “Simulation of networks of spiking neurons:
A review of tools and strategies,” J. Comput. Neurosci., vol. 23, no. 3, pp. 349–398, 2007. doi:
10.1007/s10827-007-0038-6.

[101] F. Naveros, J. A. Garrido, R. R. Carrillo, E. Ros, and N. R. Luque, “Event-and time-driven techniques
using parallel CPU-GPU co-processing for spiking neural networks,” Front. Neuroinform., vol. 11, no. 1,
pp. 7, 2017. doi: 10.3389/fninf.2017.00007.

[102] D. A. Nguyen, X. T. Tran, and F. Iacopi, “A review of algorithms and hardware implementations for
spiking neural networks,” J. Low. Power. Electron, vol. 11, no. 2, pp. 23, 2021. doi: 10.3390/jlpea11020023.

[103] L. Deng, G. R. Wang, and G. Q. Li, “Tianjic: A unified and scalable chip bridging spike-based and
continuous neural computation,” IEEE J. Solid.-St. Circ., vol. 55, no. 8, pp. 2228–2246, 2020. doi:
10.1109/JSSC.2020.2970709.

[104] C. Pehle et al., “The BrainScaleS-2 accelerated neuromorphic system with hybrid plasticity,” Front.
Neurosci., vol. 16, pp. 795876, 2022. doi: 10.3389/fnins.2022.795876.

[105] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore architecture with heterogeneous
memory structures for dynamic neuromorphic asynchronous processors (DYNAPs),” IEEE. Trans.
Biomed. Circ. Syst., vol. 12, no. 1, pp. 106–122, 2018. doi: 10.1109/TBCAS.2017.2759700.

[106] D. Khodagholy et al., “NeuroGrid: Recording action potentials from the surface of the brain,” Nat.
Neurosci., vol. 18, no. 2, pp. 310–315, 2015. doi: 10.1038/nn.3905.

[107] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a scalable communication network
and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014. doi: 10.1126/science.1254642.

[108] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-chip learning,” IEEE Micro., vol.
38, no. 1, pp. 82–99, 2018. doi: 10.1109/MM.2018.112130359.

[109] G. Orchard et al., “Efficient neuromorphic signal processing with Loihi 2,” in 2021 IEEE Workshop Signal.
Process. Syst., Coimbra, Portugal, Oct. 19–21, 2021.

[110] D. Ma et al., “Darwin: A neuromorphic hardware co-processor based on spiking neural networks,” J.
Syst. Architect., vol. 77, no. 5, pp. 43–51, 2017. doi: 10.1016/j.sysarc.2017.01.003.

[111] S. Deng et al., “Darwin-S: A reference software architecture for brain-inspired computers,” Comput., vol.
55, no. 5, pp. 51–63, 2022. doi: 10.1109/MC.2022.3144397.

[112] X. Jin, M. Zhang, R. Yan, G. Pan, and D. Ma, “R-SNN: Region-based spiking neural network for object
detection,” IEEE. Trans. Cogn. Dev. Syst., vol. 1, pp. 1, 2023. doi: 10.1109/TCDS.2023.3311634.

[113] A. Basu, L. Deng, C. Frenkel, and X. Y. Zhang, “Spiking neural network integrated circuits: A review
of trends and future directions,” in 2022 Custom Integr. Circuits Conf., Newport Beach, CA, USA, Apr.
24–27, 2022.

[114] A. Viale, A. Marchisio, M. Martina, G. Masera, and M. Shafique, “CarSNN: An efficient spiking neural
network for event-based autonomous cars on the Loihi neuromorphic research processor,” in 2021 Int.
Jt. Conf. Neural Networks, Shenzhen, China, Jul. 18–22, 2021.

[115] A. Laith, E. Serdar, I. Davut, and A. Z. Raed, “Modified elite opposition-based artificial hummingbird
algorithm for designing FOPID controlled cruise control system,” Intell. Autom. Soft. Comput., pp. 1–10,
2023. doi: 10.32604/iasc.2023.040291.

https://doi.org/10.3389/fnins.2019.00625
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.1109/JPROC.2023.3308088
https://doi.org/10.1126/sciadv.adi1480
https://doi.org/10.1007/s42514-022-00092-1
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.3389/fninf.2017.00007
https://doi.org/10.3390/jlpea11020023
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1038/nn.3905
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1016/j.sysarc.2017.01.003
https://doi.org/10.1109/MC.2022.3144397
https://doi.org/10.1109/TCDS.2023.3311634
https://doi.org/10.32604/iasc.2023.040291


CMC, 2024, vol.78, no.3 2939

[116] A. Vitale, A. Renner, C. Nauer, D. Scaramuzza, and Y. Sandamirskaya, “Event-driven vision and control
for UAVs on a neuromorphic chip,” in 2021 IEEE Int. Conf. Rob. Autom., Xi’an, China, Jun. 1–3, 2021.

[117] J. Dupeyroux, J. J. Hagenaars, F. Paredes-Vallés, and G. C. H. E. de Croon, “Neuromorphic control for
optic-flow-based landing of MAVs using the Loihi processor,” in 2021 IEEE Int. Conf. Rob. Autom., Xi’an,
China, Jun. 1–3, 2021, pp. 1–3.

[118] C. Frenkel, M. Lefebvre, and J. Legat, “A 0.086-mm-12.7-pJ/SOP 64k-synapse 256-neuron online-learning
digital spiking neuromorphic processor in 28-nm CMOS,” IEEE T. Biomed. Circ. S., vol. 13, no. 1, pp.
145–158, 2019. doi: 10.1109/TBCAS.2018.2880425.

[119] F. Charlotte and I. Giacomo, “Reckon: A 28nm sub-mm2 task-agnostic spiking recurrent neural network
processor enabling on-chip learning over second-long timescales,” in 2022 IEEE Int. Solid State Circuits
Conf., Feb. 20–26, 2022.

[120] X. Ju, B. Fang, R. Yan, X. Xu, and H. Tang, “An FPGA implementation of deep spiking neural
networks for low-power and fast classification,” Neur. Comput., vol. 32, no. 1, pp. 182–204, 2020. doi:
10.1162/neco_a_01245.

[121] L. Zhang et al., “A cost-efficient high-speed VLSI architecture for spiking convolutional neural network
inference using time-step binary spike maps,”Sens., vol. 21, no. 18, pp. 6006, 2021. doi: 10.3390/s21186006.

[122] J. Wu, Y. Wang, L. Lu, C. Chen, and Z. Li, “A high-speed and low-power FPGA implementation of
spiking convolutional neural network using logarithmic quantization,” in 2023 Int. Conf. Nat. Comput.,
Fuzzy Syst. Knowl. Discov., Harbin, China, Jul. 29–31, 2023.

[123] J. Li et al., “In situ learning in hardware compatible multilayer memristive spiking neural network,” IEEE.
T. Cogn. Dev. Syst., vol. 14, no. 2, pp. 448–461, 2022. doi: 10.1109/TCDS.2021.3049487.

[124] X. Zhang et al., “Experimental demonstration of conversion-based SNNs with 1T1R Mott neurons for
neuromorphic inference,” in 2019 IEEE Int. Electron Devices Meet., San Francisco, CA, USA, Dec. 7–11,
2019.

[125] Y. Zhang, H. Xu, L. Huang, and C. Chen, “A storage-efficient SNN-CNN hybrid network with RRAM-
implemented weights for traffic signs recognition,” Eng. Appl. Artif. Intel., vol. 123, no. 24, pp. 106232,
2023. doi: 10.1016/j.engappai.2023.106232.

https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1162/neco_a_01245
https://doi.org/10.3390/s21186006
https://doi.org/10.1109/TCDS.2021.3049487
https://doi.org/10.1016/j.engappai.2023.106232

	A Review of Computing with Spiking Neural Networks
	1 Introduction
	2 Network Components
	3 Datasets
	4 Learning Algorithms
	5 Software and Hardware Platforms
	6 Conclusions and Future Perspectives
	References


