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ABSTRACT

Model checking is an automated formal verification method to verify whether epistemic multi-agent systems
adhere to property specifications. Although there is an extensive literature on qualitative properties such as
safety and liveness, there is still a lack of quantitative and uncertain property verifications for these systems. In
uncertain environments, agents must make judicious decisions based on subjective epistemic. To verify epistemic
and measurable properties in multi-agent systems, this paper extends fuzzy computation tree logic by introducing
epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge (FCTLK). We represent
fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems. In addition, we
provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures, as well
as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic (FCTL) formulas. Accordingly,
we transform the FCTLK model checking problem into the FCTL model checking. This enables the verification
of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational
overheads. Finally, we present correctness proofs and complexity analyses of the proposed algorithms. Additionally,
we further illustrate the practical application of our approach through an example of a train control system.
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1 Introduction

Model checking [1,2] is a formal method employed for the automatic verification of whether a
model satisfies specific properties. This approach finds extensive application in multi-agent systems
[3,4]. Property specifications for finite state systems are typically formalized using temporal logics
like Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) [5]. In contrast, multi-agent
systems comprise interacting agents and place greater emphasis on the formalization of agents’ mental
attitudes, such as knowledge, beliefs, and desires [6]. As a result, multi-agent system verification focuses
on broadening the scope of classical model checking techniques by incorporating epistemic modalities
that characterize agents’ knowledge and motivational attitudes.
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Previous research has mainly demonstrated meta-logical outcomes across various temporal and
epistemic combinations, with a particular emphasis on completeness and computational complexity.
To enhance expressive capabilities, epistemic logic has undergone multi-directional expansion. In one
research domain, scholars have adopted axiomatic approaches to extend temporal epistemic logic,
with a focus on the meta-logical properties of the resultant logic, all without specific validation
algorithms [7]. In another line of inquiry, a separate group of researchers have studied epistemic logic
at the predicate level [8,9]. Recent years have seen a notable shift in research orientation towards the
development of model checking techniques integrated with these formal languages, implying that
researchers are moving away from traditional theorem-proving methods to the utilization of model
checking methods for system verification. The knowledge in multi-agent systems has been widely
modeled through the extension of temporal logic [10,11]. Despite the success of these methods in
specifying and verifying multi-agent systems from different domains, current approaches overlook
the uncertainty in multi-agent systems and tend to assume ideal behavior [12].

Real-world scenarios are uncertain, particularly when it comes to open systems that interact
with complex environment. Uncertainties within such systems arise due to the ambiguity and limited
knowledge of the environment. In such complex contexts, tools for uncertainty solving, such as
probability theory [13] and fuzzy logic [14,15], become indispensable. Probability logic has been widely
researched in epistemic multi-agent systems [16,17]. Epistemic itself is a complex and multifaceted
concept involving numerous sources of uncertainty, including individual subjective judgments and
emotions [18]. Since epistemic is often considered fuzzy, using precise probability logic for accurate
description becomes nearly impossible. For instance, an individual’s perception of weather conditions
could be described as ‘somewhat hot’ or ‘a bit cold,’ both expressions laden with ambiguity. It is
difficult to represent such epistemic with precise probability values. Fuzzy logic is an approach for
handling these situations, where fuzzy sets could be defined to capture the probabilistic uncertainty
of epistemic. A fundamental model for tackling probabilistic uncertainty is by defining interpreted
systems [18]. However, there is still a lack of sufficient exploration on how to effectively resolve
fuzziness in epistemic multi-agent systems. Furthermore, there is currently a lack of logical language
that can describe fuzzy epistemic attributes. This accentuates the importance of model checking in the
context of fuzzy epistemic multi-agent systems and how to represent and verify quantified epistemic
properties. Therefore, the purpose of this research is to address the verification issues of properties in
fuzzy epistemic multi-agent systems.

The contributions of this paper can be divided into three major aspects: (i) the Fuzzy Computation
Tree Logic of Knowledge (FCTLK) has been defined. This logical framework not only accommodates
path fuzziness but also represents knowledge regarding quantification and uncertainty. Fuzzy Kripke
structures (FKS) [19,20] have been combined with an interpreted system [18] for S5 epistemic logic
to model fuzzy multi-agent systems. Fuzzy Kripke structures are widely applied in modeling systems
with fuzziness. They serve as the formal model for Fuzzy Computation Tree Logic (FCTL); (ii) a
method has been proposed to address epistemic property verification in fuzzy multi-agent systems.
It employs an indirect fuzzy model checking algorithm that transforms the FCTLK model checking
problem into the FCTL model checking. During this process, the fuzzy epistemic interpreted system
(FEIS) is transformed into a Fuzzy Decision Process (FDP) [21] model. In addition, a scheduler is
applied to eliminate the non-determinism of actions. Subsequently, the FDP model is transformed
into an FKS model; (iii) the equivalence between the satisfiability of formulas in the FCTLK model
and the FCTL model has been theoretically demonstrated using matrix synthesis operations. The
algorithm time complexity analysis results show that formulas in FCTLK can be verified using the
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synthesis operations of fuzzy matrices without additional computational overheads. Furthermore, this
computational process exhibits greater conciseness with improved readability.

1.1 Related Work

As an automated formal verification technique, model checking has been widely employed for
the verification of various critical properties, including security [22], fairness [23], and reachability
[24]. In recent years, this technique has found extensive application in the verification of multi-agent
systems. Skorupski [10] proposed an efficient model checking technique that reduces the problem of
Computation Tree Logic of Knowledge (CTLK) model checking in multi-modal logic to the problem
of model checking Action-Restricted CTL (ARCTL) [25]. In [11], Penczek et al. introduced group
knowledge and applied verification techniques using bounded model checking to validate group
knowledge attributes. However, this approach solely focuses on the absolute accuracy of properties in
the model and ignores the influence of stochastic phenomena on the system. Additionally, it did not
consider the relationships among the three types of group knowledge. In contrast, the work presented
in this paper not only considers the uncertainty of the system but also extends the scope of the study
from individual agents to the entire group.

Termine et al. [16] introduced an uncertain probabilistic interpreted system model for the
modelling of epistemic multi-agent systems. They proposed an iterative process-based model checking
algorithm to verify multi-agent systems with non-stationary characteristics. In [17], a different
approach is employed to study the model checking problem of Probabilistic Epistemic Temporal
Logic (PETL) logic and propose a symbolic model checking algorithm designed for in-memory
schedulers. This algorithm simplifies the model checking problem into a mixed-integer nonlinear
programming problem. It demonstrates particular advantages, especially in addressing cyclic aspects
within the state space. Probability model checking primarily addresses model checking problems
caused by uncertainty in stochastic processes to determine the accuracy of probabilistic systems under
quantitative probability specifications.

While in fuzzy systems where data is uncertain, traditional probability logic might not always work
effectively. Therefore, fuzzy logic has become a specialized tool for dealing with factual imprecision,
particularly demonstrating excellent performance in situations where it is difficult to describe using
precious true/false values. Many scholars have suggested a type of fuzzy epistemic logic that allows
evaluating the robustness of knowledge without strictly relying on probability. They have chosen
possible world models as semantic models, utilizing t-norms to tackle the ambiguity of logical
connectors [26,27]. In this research, interpreted system were adopted as semantic models, and fuzzy
interpretations of epistemic attributes were conducted within the framework of Zadeh’s fuzzy logic.

Li et al. [28] had previously proposed a model checking approach Generalized Possibilistic
Computational Tree Logic (GPoCTL) based on Generalized Possibilistic Kripke Structures (GPKS), it
overlooked non-deterministic choices in fuzzy systems. Addressing this gap, Li et al. [29] employed Pos-
sibility Decision Processes (PDPs), facilitating the modeling of unpredictability in fuzzy systems, and
introduced Possibility Strategy Computational Tree Logic (PoSCTL) to handle attributes with non-
deterministic choices, aiming to calculate the probability of model satisfaction. In a different approach,
Pan et al. [30] suggested another model checking method based on FCTL with fuzzy Kripke structures.
This method emphasis the actual values of attributes, addressing a distinct form of uncertainty caused
by the vagueness in conceptual expansion. Consequently, this study proposes a simplified method for
fuzzy model checking by transforming fuzzy-epistemic attributes into quantifiable ones that are easier
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to measure and analyze. This approach aims to facilitate the verification process of epistemic attributes
in intricate, fuzzy multi-agent systems.

Furthermore, Fuzzy logic is widely used across various disciplines such as budget management
[31], decision-making processes [32,33], and organizational management [34,35]. For instance, it has
been integrated into TOPSIS method to better handle uncertain and complex decisions, enhancing the
method’s effectiveness [32,33]. In budget management, El-Morsy [31] demonstrated the application of
fuzzy logic in innovating zero-based budgeting (ZBB) within ambiguous environments. This approach
involved the use of triangular fuzzy numbers to depict uncertain budget data, presenting an alternative
method for those seeking more precise outcomes. In organizational management, Abolfazl et al. [35]
applied the fuzzy Delphi method for eliciting expert opinions on requirements, which were then
organized using Kano’s model and the Alpha-cut technique, with fuzzy AHP deployed for prioritizing
them. The adaptability of fuzzy logic stems from its unique ability to quantify and manage ambiguity,
making it a valuable tool in numerous fields.

Table 1 provides an overview of the comparison between this study and previous research in terms
of formalization, uncertainty, complexity analysis, knowledge, group knowledge, and verification. It
highlights the limitations of earlier works [7–9,16,17,22,25–31] in addressing the validation issues of
attributes in fuzzy epistemic multi-agent systems.

Table 1: Comparison between our approach and the related work

Approach Formal Uncertainty Verification Complexiy Knowlede Group knowledge
Probabilistic Fuzzy

[7,8,9,22] √
[25] √ √ √
[16] √ √ √ √
[17] √ √ √ √
[26] √ √ √ √
[27,28] √ √ √
[29] √ √ √
[30] √ √ √
[31] √ √ √ √
Ours √ √ √ √ √ √

2 Preliminaries

To model and validate fuzzy epistemic multi-agent systems, we offer essential knowledge, including
fuzzy sets, fuzzy set operations, fuzzy matrix operations, and group epistemic accessibility relations.

Definition 1 ([36]). Let X be a universal set. A fuzzy set A of X is a function that associates each
element in X with a value in the interval [0, 1], i.e., A : X → [0, 1]. For x ∈ X , A (x) is the membership
of x in the fuzzy set A. We use F (X) to represent all fuzzy sets in X , i.e., F (X) = {A|A : X → [0, 1]}

Definition 2 ([36]). Let A, B ∈ F (X), we use A ∪ B, A ∩ B, to represent the union, intersection,
and complement of A and B. The definition is as follows:

(A ∪ B) (x) = A (x) ∨ B (x) = max {A(x), B (x)}
(A ∩ B) (x) = A (x) ∧ B (x) = min {A(x), B (x)}
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Definition 3 ([37]). Let R be a fuzzy matrix with m rows and n columns, S be a fuzzy matrix
with n rows and l columns, i.e., R = (

rij

)
m×n

, S = (
sij

)
n×l

. The composition operation of R and S is

R◦S = (
tij

)
m×l

, where tij = n∨
k=1

(rik ∧ skj), (i = 1, 2, · · · , m, j = 1, 2, · · · , l). For fuzzy matrixes R, S, T the

composition operation has some laws.

(R ◦ S) ◦ T = R ◦ (S ◦ T)

(R ∪ S) ◦ T = (R ◦ T) ∪ (S ◦ T)

Definition 4 ([38]). Group Epistemic Accessibility Relations.

(1) ≈E� = ∪
i∈�

≈i is the union of epistemic accessibility relation for each agent in the group �.

(2) ≈C� is the transitive closure of ≈E� .

(3) ≈D� = ∩
i∈�

≈i is the intersection of epistemic accessibility relation for each agent in the group �.

3 Models Description
3.1 Interpreted System

The interpreted system is a framework used to model the interactions among multiple autonomous
agents, with the aim of describing the temporal evolution process among these agents. The specific
formal definition is as follows:

Definition 5([18]). An interpreted system (IS) is composed of n agents Agt = {1, . . . , n} that can
interact with each other. The IS can be formally defined as IS = (

(Li, acti, Pi)i∈Agt , G, g0, Act, τ
)
, where

(1) Each agent i ∈ Agt is characterized by countable sets Li and acti of local states and actions,
respectively, in which the set acti is mainly used to account for the temporal evolution of the system.
Also, a given local state, li ∈ Li represents the state of agent i at a certain moment. In addition, based
on a local protocol Pi : Li → 2Acti , each agent assigns a set of enabled local actions to each local state,

(2) G ⊆ L1 × L2 × · · · × Ln, where a state g = (l1, l2, · · · ln) ∈ G can be seen as the instant state of
all agents in the system at a given time,

(3) g0 is the initial state,

(4) Act = act1 × act2 × . . . × actn is the set of joint actions that all agents in the system, where can
execute, ∂ = (∂1, ∂2, ∂3, · · · ∂n) ∈ Act,

(5) τ : G × Act × G → {0, 1} is the transition function of the time evolution process. For each
g ∈ G, ∂ ∈ Act there exists g′ ∈ G such that τ (g, ∂, g′) = 1.

3.2 Fuzzy Kripke Structures

Kripke structures are fundamental models commonly used in model checking. When conducting
fuzzy model checking, we extend the concept of fuzzy Kripke structures, defined as follows:

Definition 6 ([19,20]) A fuzzy Kripke structure (FKS) is a tuple K = (S, P, s0, AP, L), where

(1) S is a countable, non-empty set of states,

(2) P : S×S → [0, 1] is the fuzzy transition. For each s ∈ S, there exist t ∈ S such that P (s, t) > 0,

(3) s0 is the initial state,

(4) AP is the set of atomic propositions,
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(5) L : S × AP → [0, 1] is a fuzzy labeling function. L (s, p) is the truth value to the atomic
proposition p in state s.

3.3 Fuzzy Epistemic Interpreted System

We will integrate fuzzy Kripke structures with an interpreted system to construct a fuzzy epistemic
interpreted system (FEIS) for modeling fuzzy epistemic multi-agent systems. The formal definition of
the FEIS model is as follows:

Definition 7. FEIS is a six-tuple consisting of a set of n agents Agt = {1, . . . , n} that can interact.
The FEIS can be formally defined as M = (G, g0, δ, AP, �, ≈i), where the definitions of G, and g0 are
the same as before defined in IS (see Definition 5). The main distinction between IS and FEIS lies in
the fact that in FEIS, three new tuples, AP, �, and δ, are introduced by extending the corresponding
tuples from the fuzzy Kripke structure with the inclusion of agent characteristics. Additionally, we
incorporate epistemic accessibility relation ≈i to describe the knowledge of agents.

(1) δ : G × G → [0, 1] is the fuzzy transition function. For each g ∈ G there exists g′ ∈ G,
such that δ (g, g′) > 0 if and only if there exists a joint action ∂ = (∂1, ∂2, ∂3, · · · ∂n) ∈ Act such that
δ (g, g′) = τ (g, ∂, g′) in fuzzy interpreted systems,

(2) AP: Is the set of atomic propositions for n agents, where {APi}i∈Agt represents the set of atomic
propositions for agent i,

(3) � : Agt×G ×AP → [0, 1], is a fuzzy labeling function. � (i, g, p) is the truth value of the atomic
proposition of agent i in state s,

(4) ≈i ⊆ G × G represents the epistemic accessibility relation for the agent i, p ∈ APi such that for

two global states g0 = (l1, · · · , ln) and g′ =
(

l‘

1
, · · · , l‘

n

)
, we have g0 ≈i g′ iff � (i, g, p) = � (i, g′, p). The

possibility value of transition between g and g′ through epistemic accessibility relations is δ (g, ≈i, g′).

The fuzzy transition function δ : G × G → [0, 1] can also be represented by a family of fuzzy
matrixes (δ (g, g′))g,g′∈G. The possibility of moving from state g to its successors is shown on the rows
δ (g, ·) of the matrix, while the possibility of entering state g from other states is shown on the columns
δ (·, g) of the matrix.

Computation paths: If G, ≈i and AP are finite, then it is guaranteed that M are also finite. For
each g ∈ G there exists a state g′ ∈ G such that δ (g, g′) > 0. π̂ = g0g1 · · · gn−1gn denotes a finite path
of M. π = g0g1 · · · denotes an infinite path of M. Paths (g) denotes the set of the infinite paths which
begin from state g. Paths (M) denotes the set of finite paths which begin from all states of M.

Fuzzy measure: If M = (G, g0, δ, AP, �, ≈i) is a finite FEIS, π = g0g1 · · · ∈ Paths (M),  ⊆
Paths (M), the definition of FM : 2Path(M) → [0, 1] is as follows:

FM () = ∨
π∈

(
∧
e≥0

δ (ge, ge+1)

)

This function is referred to as a fuzzy measure on K = 2Path(M), with K representing a sample set.

For finite M = (G, g0, δ, AP, �, ≈i), define r : G → [0, 1] as

r (g) = ∨
{

∧
e≥0

δ (ge, ge+1) |g1 = g, ge ∈ G
}
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For each g ∈ G there exists r (g) = ∨
{

∧
e≥0

δ (ge, ge+1) |g1 = g, ge ∈ G,
}

represent the maximum fuzzy

measure of the path starting from state g. Below is the calculation method for r.

Let M = (G, g0, δ, AP, �, ≈i) be a finite FEIS, for any g ∈ G,

r (g) = ∨
t∈G

(
δ+ (g, t) ∧ δ+ (t, t)

)
Using the fuzzy matrix calculation form r = δ+ ◦ C, where C = (δ+ (t, t))t∈G.

The fuzzy matrix δ induces a fuzzy space on the set of infinite paths, which start in the state g,
using the cylinder construction as follows. An observation of a finite path determines a basic event
(cylinder). Suppose g = g0 for π̂ = g0g1 · · · gn, we define the fuzzy measure FMg

{
π̂

}
for the π̂ -cylinder

as follows:

FM
{
π̂

} =
{

r (g0) if π̂ consists of a single state
n−1∧
e=0

δ (ge, ge+1) ∧ r (gn) otherwise

Example 1. Fig. 1 represents a FEIS model containing two agents. G = {g0, g1, g2, g3} is the set
of reachable global states. APi = {p}, APj = {q} consists of atomic propositions for agents i and j.
� is a fuzzy label function such that for state g0, � (i, g0, p) = 0.4, � (j, g0, q) = 0.6. For the epistemic
accessibility relations, we have {(g0, g2), (g1, g2)} ⊆ ≈i and {(g1, g2), (g2, g0), (g2, g3)} ⊆ ≈j.

Figure 1: FEIS model M

Based on the epistemic accessibility relations of individual agents i and j, we can derive the group
epistemic accessibility relations as follows:

{(g0, g2), (g1, g2), (g2, g0), (g2, g3)} ⊆ ≈E�

{(g0, g0), (g0, g2), (g0, g3), (g1, g0), (g1, g2), (g1, g3), (g2, g0), (g2, g2), (g2, g3)} ⊆ ≈C�

{(g1, g2)} ⊆ ≈D�

The numerical values on the arrows in the diagram represent the possibility of a state transitioning
to another state through epistemic accessibility relationships or joint actions. The resulting fuzzy
transition function can be represented as a 4 × 4 matrix, as shown below:

δ =

⎛
⎜⎜⎝

0 0 0 0
0.8 0 0.9 0
0.6 0 0 0.3
0 0 0 0

⎞
⎟⎟⎠ δ≈i =

⎛
⎜⎜⎝

0 0 0.7 0
0 0 0.8 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ δ≈j =

⎛
⎜⎜⎝

0 0 0 0
0 0 0.6 0
0.3 0 0 0.4
0 0 0 0

⎞
⎟⎟⎠
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4 Fuzzy Computation Tree Logic of Knowledge

To describe the specification of FEIS, we introduce FCTLK. Here we present the syntax of
FCTLK and its semantic interpretation in FEIS.

Definition 8. (FCTLK syntax). Let Agt = {1, . . . , n} be a set of agents and � ⊆ Agt be a group of
agents. The FCTLK state formula is defined inductively as follows:

ϕ ::= true|p|ϕ1 ∧ ϕ2|¬ϕ| [℘] ϕ|FM (ψ) |K
where ϕ and ℘ denote the state formulas, [℘] ϕ represents formula ϕ will hold true after event ℘ is
announced, ψ denotes the path formulas, while K stands for epistemic formulas. they are special state
formulas within FCTLK capable of describing epistemic properties.

The following is the FCTLK path formula:

ψ ::= ©ϕ|ϕ1 ∪ ϕ2

where ϕ, ϕ1 and ϕ2 are state formulas.

• ©ϕ denotes the second state on the path where ϕ holds.

• ϕ1 ∪ ϕ2 denotes the existence of a state satisfying ϕ2 on a path, and all the states before it on the
path satisfy ϕ1.

The following are the FCTLK social formula and epistemic formula:

K ::= Kiϕ|E�ϕ|C�ϕ|D�ϕ

• Kiϕ, E�ϕ, C�ϕ and D�ϕ that represent respectively “agent i knows”, “every agent in the group
� knows”, “common knowledge”, and “distributed knowledge”.

Definition 9. (FCTLK semantics). Let M = (G, g0, δ, AP, �, ≈i) be a finite FIS, ‖ϕ‖ : G → [0, 1]
be a function. For the FCTLK state formula ϕ, the semantic is defined as follows:

‖true‖ (g) = 1
‖p‖i (g) = � (i, g, p)

‖ϕ1 ∧ ϕ2‖ (g) = ‖ϕ1‖ (g) ∧ ‖ϕ2‖ (g)

‖¬ϕ‖ (g) = 1 − ‖ϕ‖ (g)

‖[℘] ϕ‖ (g) = ‖℘ ∧ ϕ‖ (g)

‖FM (ψ)‖ (g) = FM (g| = ψ)

‖Kiϕ‖ (g) = FMg {π ∈ Paths (g) |g ≈i g′ and π = g · · · g′ and ‖ϕ‖ g′}
‖E�ϕ‖ (g) = FMg {π ∈ Paths (g) |g ≈E� g′ and π = g · · · g′ and ‖ϕ‖ g′}
‖C�ϕ‖ (g) = FMg {π ∈ Paths (g) |g ≈C� g′ and π = g · · · g′ and ‖ϕ‖ g′}
‖D�ϕ‖ (g) = FMg {π ∈ Paths (g) |g ≈D� g′ and π = g · · · g′ and ‖ϕ‖ g′}

Given a fuzzy interpreted system model, ‖ψ‖ : Paths (M) → [0, 1] indicates the possibility that
the path π satisfies ψ . The semantics of path formula ψ is defined below:

‖©ϕ‖ (π) = δ(g0, g1) ∧ ‖ϕ‖ (g1)

‖ϕ1 ∪ ϕ2‖ (π) = ‖ϕ2‖ (g1) ∨ ∨
e>0

(‖ϕ1‖ (g0) ∧ ∧
k<e

(δ (gk−1, gk) ∧ ‖ϕ1‖ (gk) ∧ δ (ge−1, ge) ∧ ‖ϕ2‖ (ge))
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FM (g| = ψ) represents the probability of satisfying the path formula ψ starting from state g. It
is defined as follows:

FM (g| = ψ) = ∨
π∈Paths(g)

(FM (π) ∧ ‖ψ‖ (π))

5 Model Checking FCTLK Based on FEIS

Given a fuzzy multi-agent system represented as a FEIS M and a specification ϕ in FCTLK
describing a desirable property, the problem of fuzzy model checking FCTLK is to compute the value
of state g satisfying the state formula ϕ. Building upon the works shown in [38], this section presents an
indirect fuzzy model checking method. The method consists of two main processes: Model conversion
and formula simplification.

5.1 Model Conversion

During the process of model transformation, FEIS is converted into FDP. FDP is a formal model
employed to depict the fuzzy and uncertain behaviors of a system, wherein there is at least one enabled
action in each state. To address the issue of action uncertainty in FDP, the introduction of scheduler
transforms FDP into FKS.

Before showing how to transform FEIS into an FDP, we recall the definition of the FDP model
as follows:

Definition 10 ([21]). A fuzzy decision process (FDP) is a tuple F = (S, s0, AP, υ, ACT , P), where:

(1) S is a countable, non-empty set of states.

(2) s0 is the initial state.

(3) AP is the set of atomic propositions.

(4) υ : S × AP → [0, 1] is a fuzzy labeling function. υ (s, p) is the truth value of the atomic
proposition p in state s.

(5) ACT is the set of actions.

(6) P : S ×ACT ×S → [0, 1] is the fuzzy transition. For each s ∈ S and θ ∈ ACT there exist t ∈ S
which let P (s, θ , t) > 0.

We say that action ACT is enabled in state s if there exists a state s‘ ∈ S such that P (s, θ , s‘) > 0.
ACT (s) denotes the set of actions that can be enabled in state s.

It is evident from Definition 10 that the FDP model possesses a set of actions, ACT , which
does not have an equivalent in the FEIS model. Therefore, one of the key steps in the FEIS-to-
FDP transformation process is defining the set ACT . The specific approach involves transforming
the transition relation and epistemic accessibility relation from M into distinct actions in F. Assuming
there are n agents, 1 ≤ i ≤ n and 1 ≤ j ≤ n, the transition relation is marked as action ∂, and the
four epistemic accessibility relations are marked as four different actions: βi, βE

�
, βC

�
and βD

�
. The fuzzy

transition P is jointly defined by transitions labeled as action ∂ and transitions labeled as actions βi,
βE

�
, βC

�
and βD

�
. The specific definition is as follows:
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P : S × ACT × S → [0, 1] is a fuzzy transition function for all s, s‘ ∈ S,

P (s, θ , s‘) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τ(g, ∂, g′), if θ = ∂

δ(g, ≈i, g′), if θ = βi

δ(g, ≈E� , g′), if θ = βE
�

δ(g, ≈C� , g′), if θ = βC
�

δ(g, ≈D� , g′), if θ = βD
�

In addition, In the process of being transformed into FDP, the states, atomic propositions, and
label functions remain unchanged. Algorithm 1 describes the specific process of transforming FEIS
into FDP.

Algorithm 1: An FCTLK model M = (G, g0, δ, AP, �, ≈i): An FCTL model F = (S, s0, AP, υ, ACT, P)
1: S := G
2: s0 := g0

3: AP := AP
4: υ := �

5: The action ACT set is defined as : ACT = {
Act, β, βE

�
, βC

�
, βD

�

}
– ∂ = (∂1, ∂2, ∂3, · · · ∂n) ∈ Act represents a set of joint actions by interacting agents.
– The set β = {β1, β2, · · ·βn} while each action βi labels the transitions obtained from the epistemic

accessibility relation ≈i .
– Actions βE

�
, βC

�
and ∼ βD

�
respectively mark transitions obtained from the epistemic accessibility

relationships ≈E� , ≈C� and ≈D� .
6: The fuzzy transition function P combines the temporal transition function with the transition function

of epistemic accessibility relations for states s, s‘ ∈ S, θ ∈ ACT ,
If θ = ∂

P (s, θ , s‘) := τ (g, ∂, g′)
Else if θ = βi

P (s, θ , s‘) := δ (g, ≈i, g′)
Else if θ = βE

�

P (s, θ , s‘) := δ
(
g, ≈E�

, g′)
Else if θ = βC

�

P (s, θ , s‘) := δ
(
g, ≈C�

, g′)
Else θ = βD

�

P (s, θ , s‘) := δ
(
g, ≈D�

, g′)
end

Example 2. Following the model transformation rules, we convert the FEIS model in Fig. 1 into
the FDP model in Fig. 2.

The fuzzy transition matrix under group epistemic actions is as follows:

PβE
�

=

⎛
⎜⎜⎝

0 0 0.7 0
0 0 0.6 0
0.3 0 0 0.4
0 0 0 0

⎞
⎟⎟⎠PβC

�
=

⎛
⎜⎜⎝

0.3 0 0.7 0.4
0.3 0 0.6 0.4
0.3 0 0.3 0.4
0 0 0 0

⎞
⎟⎟⎠PβD

�
=

⎛
⎜⎜⎝

0 0 0 0
0 0 0.6 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠
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Figure 2: FDP model

To address the uncertainty of actions in FDP. We defined five different schedulers to convert FDP
to FKS. The specific definition of the scheduler functions is provided below.

Definition 11. Let F = (S, s0, AP, υ, ACT , P) be a finite FDP. σ : S → ACT is a function of F. For
each s ∈ S, there is σ (s) ⊆ ACT (s). We have defined σ into five different schedules. σt to be used for
interpreting temporal formulae, σi, σ E

�
, σ C

�
, and σ D

�
are used to capture different epistemic formulas.

(1) σt : S → Act. For any state s ∈ Q, and given a scheduler function σt. We select the operation
in the joint action set Act, i.e., σt (s) = ∂. For the scheduler function σt, its fuzzy transition matrix can
be defined as Pσt such that

Pσt (s, t) = P (s, σt(s), t)s,t∈S

(2) σi : S → β. For any state s ∈ S, and given a scheduler function σi. We select action βi i.e.,
σi (s) = βi. For the scheduler function σi, its fuzzy transition matrix can be defined as Pσi such that

Pσi (s, t) = P (s, σi(s), t)s,t∈S

(3) σ E
�

: S → βE
�

. For any state s ∈ S, and given a scheduler function σ E
�

. We select action βE
�

i.e.,
σ E

�
(s) = βE

�
. For the scheduler function σ E

�
, its fuzzy transition matrix can be defined as PσE

�
such that

PσE
�

(s, t) = P
(
s, σ E

�
(s), t

)
s,t∈S

(4) σ C
�

: S → βC
�

. For any state s ∈ S, and given a scheduler function σ C
�

. We select action βC
�

i.e.,
σ C

�
(s) = βC

�
. For the scheduler function σ C

�
, its fuzzy transition matrix can be defined as PσC

�
such that

PσC
�

(s, t) = P
(
s, σ C

�
(s), t

)
s,t∈S

(5) σ D
�

: S → βD
�

. For any state s ∈ S, and given a scheduler function σ D
�

. We select action βD
�

i.e.,
σ D

�
(s) = βD

�
. For the scheduler function σ D

�
, its fuzzy transition matrix can be defined as PσD

�
such that

PσD
�

(s, t) = P
(
s, σ D

�
(s), t

)
s,t∈S

Under the scheduler σ , Pathsσ (s) denotes the set of paths which start from the state s, Pathsσ (F)

denotes the set of paths which start from all initial states in F. By selecting different actions based on
the schedule, we can obtain the FKS model of FCTL.

The FDP can be transformed into an action-determined FKS, with the transformation algorithm
as follows:
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Remark 1: As epistemic attributes are challenging to directly quantify and calculate, we utilize a
conversion algorithm to transform fuzzy-epistemic attributes into computable quantitative attributes.
Thereby transforming the model checking problem of FCTLK into the model checking problem
of FCTL. Subsequently, it is essential to adapt the models and logical formulas describing system
properties accordingly.

Algorithm 2: FDP F = (S, s0, AP, υ, ACT, P): FKS K = (S, s0, AP, L, P)
1: S := G
2: s0 := s0

3: AP := AP
4: L := υ

5: The fuzzy transition function P is composed of five distinct fuzzy transition functions, each
corresponding to different scheduler scenarios : for states s, s‘ ∈ S,

Case σt

P (s, ∂, s‘) = Pσt (s, s‘)
Case σi

P (s, βi, s‘) = Pσi (s, s‘)
Case σ E

�

P
(
s, βE

�
, s‘

) = PσE
�

(s, s‘)
Case σ C

�

P
(
s, βC

�
, s‘

) = PσC
�

(s, s‘)
Case σ D

�

P
(
s, βD

�
, s‘

) = PσD
�

(s, s‘)

Example 3. For the FDP in Fig. 3, the scheduler functions are defined as σ E
�

(g0) = βE
�

, σ D
�

(g1) =
βD

�
, σ C

�
(g2) = βC

�
, and σt (g3) = ∂. Fig. 3 represents the action-deterministic FKS.

Figure 3: FKS model

5.2 Formula Simplification

This section presents proofs for the equivalence relationships among three epistemic formulas
and simplifies FCTLK formulas through a scheduler function. Before the formula simplification, we
briefly reviewed the syntax definition of FCTL logic [30].

ϕ ::= true|p|ϕ1 ∧ ϕ2|¬ϕ|FM (ψ)

ψ ::= ©ϕ|ϕ1 ∪ ϕ2
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The state formulas and path formulas are similar to FCTLK, excluding the knowledge operator.
However, the FCTL logic we are transforming differs slightly from what is presented in the literature.
We have introduced the fuzzy operator FM as a replacement for the path universal quantifier and path
existential quantifier in FCTL.

Before simplifying the formulas, we can establish equivalence relationships between knowledge
based on the semantics and epistemic accessibility relationship of the four knowledge types, and then
prove them.

Theorem 1. Equivalence among epistemic logics:

E�ϕ = ∧
i∈�

Kiϕ (1)

C�ϕ = E�ϕ ∨ E2

�
ϕ ∨ · · · ∨ Ek

�
ϕ (2)

D�ϕ = ∧
i∈�

Ki ([℘] ϕ) (3)

Proof of the first equation in Theorem 1.

Consider a set of Agt, where � is a subset of the Agt set and i1, i2 · · · are elements in the subset �.
The possibility value of epistemic formula E�ϕ on state g.

Therefore, the calculation of E�ϕ can be done as follows:

‖E�ϕ‖ (g)

= FMg {π ∈ Paths (g) |g ≈E� g′ and π = g · · · g′ and ‖ϕ‖ g′}
= FMg

{
π ∈ Paths (g) |g∪

i∈�
≈i g′ and π = g · · · g′ and ‖ϕ‖ g′

}
= ∨

t∈G

(
∧
h≥0

P
(
th, βE

�
, th+1

) ∧ P
(
g, βE

�
, t1

) ∧ ‖ϕ‖ (t1)

)

= ∨
t∈G

(
∧
h≥0

(
P

(
th, βi1

, th+1

) ∧ P
(
th, βi2

, th+1

) ∧ · · · ) ∧ (
P

(
g, βi1

, t1

) ∧ P
(
g, βi2

, t1

) ∧ · · · ) ∧ ‖ϕ‖ (t1)

)

= ∧
i∈�

∨
t∈G

(
∧
h≥0

(
Pσi (th, th+1)

) ∧ (
Pσi (g, t1)

) ∧ ‖ϕ‖ (t1)

)
= ∧

i∈�

‖Kiϕ‖ (g)

In conclusion, it can be concluded that E�ϕ = ∧
i∈�

Kiϕ holds true.

Proof of the second equation in Theorem 1.

C�ϕ represents common knowledge, where every agent in the group knows content ϕ, and
everyone knows that everyone knows ϕ, etc., ≈C� is the transitive closure of ≈E� .

The possibility value of epistemic formula C�ϕ on state g.

‖C�ϕ‖ (g) = FMg {π ∈ Paths (g) |g ≈C� g′ and π = g · · · g′ and ‖ϕ‖ g′}
For finite M = (G, g0, δ, AP, �, ≈i), define η : G → [0, 1] as

η (g) = ∨
{

∧
e≥0

δ (ge, ≈C� , ge+1) |g1 = g, ge ∈ G, ≈C�⊆ G × G
}
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For each g ∈ G there exists η (g) = ∨
{

∧
e≥0

δ (ge, ≈C� , ge+1) |g1 = g, ge ∈ G, ≈C�⊆ G × G
}

represent

the maximum likelihood of the sequence starting from state g.

Therefore, the calculation of C�ϕ can be done as follows:

‖C�ϕ‖ (g)

= FMg {π ∈ Paths (g) |g ≈C� g′ and π = g · · · g′ and ‖ϕ‖ g′}
= ∨

t1∈G

(
P

(
g, βC

�
, t1

) ∧ ‖ϕ‖ (t1)
) ∧ ∨

t2,t3···∈G

(
P

(
t1, βC

�
, t2

) ∧ P
(
t2, βC

�
, t3

) ∧ · · · )
= ∨

t1∈G

(
PσC

�
(g, t1) ∧ ‖ϕ‖ (t1)

)
∧ ησC

�
(t1)

= ∨
t1∈G

((
PσE

�
(g, t1) ∨ P2

σE
�

(g, t1) · · · ∨ Pk

σE
�

(g, t1)

)
∧ ‖ϕ‖ (t1)

)
∧

(
ησE

�
(t1) ∨ η2

σE
�

(t1) · · · ∨ ηk

σE
�

(t1)

)
=

∥∥∥E�ϕ ∨ E2

�
ϕ ∨ · · · ∨ Ek

�
ϕ

∥∥∥ (g)

In conclusion, it can be concluded that C�ϕ = E�ϕ ∨ E2

�
ϕ ∨ · · · ∨ Ek

�
ϕ holds true.

Proof of the third equation in Theorem 1.

D�ϕ represents distributed knowledge, where members of the group � publicly declare their
knowledge as announcements in language [℘] to achieve sharing. As a result, each member in the
group can know content ϕ based on announcement [℘]. This announcement mechanism is akin to the
blackboard structure in multi-agent systems, enabling individual agents to store local information in
an accessible shared space, thus facilitating the sharing of local data [39].

It indicates that on all paths reached through group epistemic accessibility relationship ≈ D�, the
next state satisfies content ϕ. Therefore, the calculation of D�ϕ can be done as follows:

‖D�ϕ‖ (g)

= FMg {π ∈ Paths (g) |g ≈D� g′ and π = g · · · g′ and ‖ϕ‖ g′}

= ∨
t∈G

(
∧
h≥0

P
(
th, βD

�
, th+1

) ∧ P
(
g, βD

�
, t1

) ∧ ‖ϕ‖ (t1)

)

= ∨
t∈G

(
∧
h≥0

(
P

(
th, βi1

, th+1

) ∧ P
(
th, βi2

, th+1

) ∧ · · · ) ∧ (
P

(
g, βi1

, t1

) ∧ P
(
g, βi1

, t1

) ∧ · · · ) ∧ ‖[℘] ϕ‖ (t1)

)
= ∧

i∈�

‖Ki [℘] ϕ‖ (g)

In conclusion, it can be concluded that D�ϕ = ∧
i∈�

Ki [℘] ϕ holds true.

Hereafter, based on different scheduler functions σ , we will apply corresponding simplification
rules to transform FCTLK formulas into FCTL formulas. The correctness and completeness of this
transformation will be proven.

Theorem 2. Given the scheduler σt, letF : ϕ → ϕFKS be a function. The FCTLK temporal formulae
can be transformed into FCTL as follows:

F (p) = p (4)

F (¬ϕ) = ¬ϕ (5)
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F (ϕ1 ∧ ϕ2) = ϕ
1
∧ ϕ

2
(6)

F (FM (ϕ1 ∪ ϕ1)) = (FM (ϕ1 ∪ ϕ1)) (7)

F (FM (©ϕ)) = (FM (©ϕ)) (8)

Proof of Theorem 2.

When the scheduler function is σt, it only captures the temporal transitions for each state in the
model. This FKS model only interprets FCTL formulas. It cannot be used to capture the transformed
formulas of knowledge because it ignores all relations except those labeled by ∂. Therefore, FCTLK
formulas can be directly converted into FCTL formulas without the need for simplification.

Theorem 3. Given the scheduler σi, σ E
�

, σ C
�

, and σ D
�

, let F : ϕ → ϕFKS be a function. The FCTLK
epistemic formulas can be transformed into FCTL as follows:

F (Kiϕ) = FM (©ϕ)σi
(9)

F (E�ϕ) = FM (©ϕ)σE
�

(10)

F (C�ϕ) = FM (©ϕ)σC
�

(11)

F (D�ϕ) = FM (©ϕ)σD
�

(12)

When the scheduler functions are σi, σ E
�

, σ C
�

, and σ D
�

, the FKS model exclusively captures the
transformed formulas related to knowledge, specifically the transitions labeled as β actions. Intu-
itively, transitions labeled as β represent epistemic accessibility relations, and according to epistemic
semantics, all next states reached through epistemic accessibility relations satisfy content ϕ. In other
words, all next states reached through transitions labeled as β satisfy F (ϕ). This explains why the
knowledge formula is transformed into the next operator in all paths emanating from the knowledge
state, followed by the transformation of the knowledge content, i.e., the conversion to F (ϕ). Finally,
it is proven that the truth value of the formulas remains unchanged after simplification.

Let F = (S, s0, AP, υ, ACT , P) be a finite FDP, Dϕ be a |S| × |S| fuzzy diagonal matrix for state
formula ϕ. For each s, t ∈ S,

Dϕ (s, t) =
{‖ϕ‖ (s) s = t

0 otherwise

Pϕ is a |S| × 1 fuzzy matrix. E is a |S| × 1 fuzzy matrix with all elements equal to 1.

In the following, simplify the four epistemic formulas and express them in matrix form.
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Proof of the first equation in Theorem 3.

‖Kiϕ‖ (g) represents the possibility value that agent i knows content ϕ at state g.

‖Kiϕ‖ (g)

= FMg {π ∈ Paths (g) |g ≈i g′ and π = g · · · g′ and ‖ϕ‖ g′}
= ∨

π=g0βig1βig2···∈Paths(g)
(P (g, βi, g1) ∧ P (g1, βi, g2) ∧ · · · ∧ P (g, βi, g1) ∧ ‖ϕ‖ (g1))

= ∨
π=g0βig1βig2···∈Paths(g)

(
Pσi (g, g1) ∧ Pσi (g1, g2) ∧ · · · ∧ Pσi (g, g1) ∧ ‖ϕ‖ (g1)

)
= ∨

g1∈G

(
Pσi (g, g1) ∧ ‖ϕ‖ (g1)

) ∧ ∨
g2,g3···∈G

(
Pσi (g1, g2) ∧ Pσi (g2, g3) ∧ · · · )

= ∨
g1∈G

(
Pσi (g, g1) ∧ ‖ϕ‖ (g1) ∧ rσi (g1)

)
= Pσi ◦ Dϕ ◦ rσi

Therefore, it can be proven that ‖Kiϕ‖ (g) = ∥∥FM (©ϕ)σi

∥∥ (g) = Pσi ◦ Dϕ ◦ rσi holds. This implies
that the epistemic formula Kiϕ can be reduced to the state formula FM (©ϕ)σi

in FCTL.

Proof of the second equation in Theorem 3.

‖EΩϕ‖ (g) represents the possibility value that each agent in group � satisfies content ϕ at state g.

‖EΩϕ‖ (g)

= FMg {π ∈ Paths (g) |g ≈E� g′ and π = g · · · g′ and ‖ϕ‖ g′}
= ∨

π=g0βE
�

g1βE
�

g2 ···∈Paths(g)

(
P

(
g, βE

�
, g1

) ∧ P
(
g1, βE

�
, g2

) ∧ · · · ∧ P
(
g, βE

�
, g1

) ∧ ‖ϕ‖ (g1)
)

= ∨
π=g0βE

�
g1βE

�
g2 ···∈Paths(g)

(
PσE

�
(g, g1) ∧ PσE

�
(g1, g2) ∧ · · · ∧ PσE

�
(g, g1) ∧ ‖ϕ‖ (g1)

)
= PσE

�
◦ Dϕ ◦ rσE

�

Therefore, it can be concluded that ‖EΩϕ‖ (g) =
∥∥∥FM (©ϕ)σE

�

∥∥∥ (g) = PσE
�

◦ Dϕ ◦ rσE
�

holds,

meaning that the epistemic formula EΩϕ can be simplified into the state formula FM (©ϕ)σE
�

in FCTL.
Furthermore, based on the proof results of Theorem 1, we have the equality ‖E�ϕ‖ (g) = ∧

i∈�

‖Kiϕ‖ (g)

holds. Therefore, formula EΩϕ can also be simplified to ∧
i∈�

FM (©ϕ)σi
in FCTL.

Proof of the third equation in Theorem 3.

‖C�ϕ‖ (g) represents the possibility value that everyone in group � knows the common knowledge
ϕ.

‖CGϕ‖σC
�

(g)

= FMg {π ∈ Paths (g) |g ≈C� g′ and π = g · · · g′ and ‖ϕ‖ g′}
= ∨

π=g0βC
�

g1βC
�

g2 ···∈Paths(g)

(
P

(
g, βC

�
, g1

) ∧ P
(
g1, βC

�
, g2

) ∧ · · · ∧ P
(
g, βC

�
, g1

) ∧ ‖ϕ‖ (g1)
)

= ∨
π=g0βC

�
g1βC

�
g2 ···∈Paths(g)

(
PσC

�
(g, g1) ∧ PσC

�
(g1, g2) ∧ · · · ∧ PσC

�
(g, g1) ∧ ‖ϕ‖ (g1)

)
= PσC

�
◦ Dϕ ◦ rσC

�

Therefore, it can be proven that ‖CΩϕ‖ (g) =
∥∥∥FM (©ϕ)σC

�

∥∥∥ (g) = PσC
�

◦ Dϕ ◦ rσC
�

holds. This

implies that the epistemic formula CΩϕ can be reduced to the state formula FM (©ϕ)σC
�

in FCTL.
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Proof of the fourth equation in Theorem 3.

‖D�ϕ‖ (g) represents the possibility value of distributed knowledge ϕ at state g.

‖DGϕ‖ (g)

= FMg {π ∈ Paths (g) |g ≈D� g′ and π = g · · · g′ and ‖ϕ‖ g′}
= ∨

π=g0βD
�

g1βD
�

g2···∈Paths(g)

(
P

(
g, βD

�
, g1

) ∧ P
(
g1, βD

�
, g2

) ∧ · · · ∧ P
(
g, βD

�
, g1

) ∧ ‖ϕ‖ (g1)
)

= ∨
π=g0βD

�
g1βD

�
g2···∈Paths(g)

(
PσD

�
(g, g1) ∧ PσD

�
(g1, g2) ∧ · · · ∧ PσD

�
(g, g1) ∧ ‖ϕ‖ (g1)

)
= PσD

�
◦ Dϕ ◦ rσD

�

Therefore, it can be proven that ‖DΩϕ‖ (g) =
∥∥∥FM (©ϕ)σD

�

∥∥∥ (g) = PσD
�

◦ Dϕ ◦ rσD
�

holds. This

implies that the epistemic formula DΩϕ can be reduced to the state formula FM (©ϕ)σD
�

in FCTL.

Algorithm 3 describes the FCTL model checking algorithm based on the FKS model.

Algorithm 3: FCTL model checking algorithm
Require: a FKSK, a FCTL state formula ϕ.
Ensure: the truth value of ‖ϕ‖ (s).
Procedure FCTL Check (K, s, ϕ) :

1: Case ϕFKS

2: p return (� (i, s, p))s∈S

3: ¬ϕ return 1 − FCTLCheck (K, s, ϕ)s∈S

4: ϕ
1
∧ ϕ

2
return (FCTLCheck (K, s, ϕ1) ∧ FCTLCheck (K, s, ϕ2))s∈S

5: FM (©ϕ) return Pσ ◦ Dϕ ◦ rσ

6: End Case
End Procedure

After model transformation and formula simplification, the model checking algorithm for
FCTLK is converted into the model checking algorithm for FCTL, and Algorithm 3 is invoked for
computation. The model checking algorithm for FCTLK based on the FEIS model is presented in
Algorithm 4.

Algorithm 4: FCTLK model checking algorithm
Require: a FEIS M, a FCTLK state formula ϕ.

Ensure: the truth value of ‖ϕ‖ (s).
1: Call algorithm 1, put FEIS, get FDP
2: Call algorithm 2, put FDP, get FKS
3: If ϕ is a temporal formula
4: return FCTLCheck (K, s, ϕ)

5: Else if ϕ is a epistemic formula Kiϕ

6: return FCTLCheck
(
K, s, FM (©ϕ)σi

)
7: Else if ϕ is a epistemic formula E�ϕ

8: return FCTLCheck
(

K, s, FM (©ϕ)σE
�

)
9: Else if ϕ is a epistemic formula C�ϕ

(Continued)



4146 CMC, 2024, vol.78, no.3

Algorithm 4 (continued)

10: return FCTLCheck
(

K, s, FM (©ϕ)σC
�

)
11: Else ϕ is a epistemic formula D�ϕ

12: return FCTLCheck
(

K, s, FM (©ϕ)σD
�

)
13: end

Example 4. Following the simplification rules of the formula, Next, we will provide the calculation
of the possibility that everyone in the group knows content q.

P+
σE
�

=

⎛
⎜⎜⎝

0.3 0 0.7 0.4
0.3 0 0.6 0.4
0.3 0 0.3 0.4
0 0 0 0

⎞
⎟⎟⎠ rσE

�
=

⎛
⎜⎜⎝

0.3 0 0.7 0.4
0.3 0 0.6 0.4
0.3 0 0.3 0.4
0 0 0 0

⎞
⎟⎟⎠ ◦

⎛
⎜⎜⎝

0.3
0
0.3
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.3
0.3
0.3
0

⎞
⎟⎟⎠

‖EΩq‖ (g) =
∥∥∥FM (©q)σE

�

∥∥∥ (g) = PσE
�

◦ Dq ◦ rσE
�

=

⎛
⎜⎜⎝

0 0 0.7 0
0 0 0.6 0
0.3 0 0 0.4
0 0 0 0

⎞
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6 Time Complexity of Model Checking FCTLK

In this section, we will analyze the time complexity of the fuzzy model checking algorithm
proposed in Section five. The algorithm comprises the following three primary computational steps.

Lemma 1. The time complexity of the model transformation is linear concerning the size of the
input model M, i.e., O (|M|).

Proof of Lemma 1. The problem of model transformation is tackled using a deterministic one-tape
Turing machine (DTM) [40]. The DTM sequentially reads all the states, temporal transition relations,
and epistemic accessibility relation within the input FEIS model, using distinct markers to signify these
relations, and converting them into transition actions. The transformed states and actions are recorded
onto an output tape. Through DTM’s examination, model transformation can be accomplished within
polynomial time, demonstrating a linear relationship between the time complexity of transformation
and the size of the input model.

Lemma 2. The translation from FCTLK formulae to FCTL formulae is linear in time in the size
of the input formula ϕ, i.e., O (|ϕ|).

Proof of Lemma 2.

(1) We divide the FCTLK formula ϕ input into n sub-formulas. The nth formula is a state formula
with epistemic operator, and this step can be executed in linear time, proportional to the size of formula
|ϕ|, i.e., O|ϕ|.
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(2) Apply the relevant reduction rule to the nth formula based on the form of its state sub-formula
to generate an FCTL formula. This process involves straightforwardly applying the rules to each sub-
formula, resulting in a constant time complexity, i.e., O (1).

(3) Replace the nth sub-formula with the translated state formula. This step can also be executed
in constant time.

(4) The preceding process is repeated until no more FCTLK sub-formulas exist in the formula.

(5) Therefore, since each sub-formula needs to be converted according to steps 2 and 3, the process
needs to be iterated n times, where n is the number of sub-formulas. Since the number of sub-formulas
is linearly related to the size of the formula, the time complexity of this step is O (|ϕ|).

Theorem 4. A model checking algorithm exists for FCTLK formulae, which runs in time
O (|M| × |ϕ|).

Proof of Theorem 4.

For a given FKS model and FCTL formula, Pan et al. [30] determined that the time complexity of
the model checking algorithm is O (|MFKS| × |ϕFKS|). We can conclude that the total time complexity
of the algorithm is based on Lemma 1 and Lemma 2 O (|MFKS| × |ϕFKS|) + O (|M|) + O (|ϕ|). Due to
the linear relationship between the size of the fuzzy interpreted system model and formula and the size
of the transformed model and formula, the algorithm’s total time complexity can be reduced.

From Theorem 4, we know that the model checking problem exhibits a polynomial relationship
with both the model size and formula length, indicating an upper bound of P. Through an investigation
of [30], we discover that the FCTL model checking problem based on the FKS model is P-complete,
suggesting a lower bound of P as well. In summary, the FCTLK model checking problem is P-complete.

7 Illustrative Examples

The train control system consists of two trains, a controller, and a tunnel on a circular track. On the
track, there are two trains moving clockwise and counterclockwise. The tunnel can only accommodate
one train, and traffic lights are installed at both ends of the tunnel. These traffic lights can be either
red or green. Each train carries a signal generator used to send signals to the controller when they
approach the tunnel. The controller is responsible for receiving signals from both of two trains and
controlling the traffic lights at both ends of the tunnel to ensure that the two trains never enter the
tunnel simultaneously.

In the real world, controllers perceive their surrounding environment through sensors, but these
sensors may be influenced by various interfering factors such as noise, errors, and communication
delays. These factors introduce randomness and uncertainty, causing fluctuations and errors in sensor
data, which in turn result in biases in the controller’s environmental perception and subsequently
impact its decision-making process. Therefore, modeling with a fuzzy system can better capture the
actual status of the trains, enabling the controller to make more flexible decisions and controls.

Let the set of agents be Agt = {i1, i2, j}, where i1, i2, j corresponds to Train1, Train2, and Controller
in Fig. 4. The following transforms this instance into a FEIS model, as shown in Fig. 5.

(1) The local state set of agents i1, i2, j are Li1
= {away1, wait1, tunnel1}, Li2

= {away2, wait2, tunnel2}
and Lj = {light1light2}.

(2) G = {s0, s1, s2, s3, s4} is the global state set of the system, including s0 = {away1, r1r2, away2}, s1 =
{tunnel1, g1r2, wait2}, s2 = {tunnel1, g1r2, wait2}, s3 = {away1, r1g2, tunnel2} and s4 = {wait1, r1g2, tunnel2}.
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(3) The initial state is s0.

(4) The set of atomic propositions for agents i1, i2, j is APi1
= {

away1(pi11
), wait1(pi12

), tunnel1(pi13
)
}
,

APi2
= {

away2(pi21
), wait2(pi22

), tunnel2

(
pi23

)}
, and APj = {

pj1,pj2,pj3

}
, respectively, where

• The atomic propositions constituting “away” are pi11
and pi21

, representing the trains moving
away from the tunnel.

• The atomic propositions constituting “wait” are pi12
and pi22

, indicating longer waiting times for
the trains.

• The atomic propositions constituting “tunnel” are pi13
and pi23

, signifying the trains approaching
the tunnel entrance.

• The atomic propositions constituting “light1light2” are pj1
, pj2

, and pj3
, respectively, representing

the controller changing traffic signal lights based on the perception of train information as r1r2, r1g2,
and g1r2.

Figure 4: Train control system

Figure 5: The FEIS model of the train control system

(5) Joint actions are defined as Act = {∂1, · · · , ∂14}, where for an action ∂ ∈ Act, its preconditions
pre (∂) and postconditions post (∂) are both local state sets, representing the prerequisites before and
the state after the execution of action ∂. Agent (∂) denotes the set of agents that may alter local states
when performing action ∂. For example, pre (∂1) = {away1, r1r2}, post (∂1) = {tunnel1, g1r2} Agent (∂1) =
{i1, j}.
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(6) The fuzzy values of atomic propositions under specific states are assumed as follows:

s0 = {
T1(pi11 = 0.8, pi12 = 0.4, pi13 = 0.5), C(pj1 = 0.95, pj2 = 0.3, pj3 = 0.9), T2

(
pi21 = 0.9, pi22 = 0.7, pi23 = 0.3

)}
s1 = {

T1(pi11 = 0.6, pi12 = 0.4, pi13 = 0.7), C(pj1 = 0.5, pj2 = 0.3, pj3 = 0.9), T2
(
pi21 = 0.4, pi22 = 0.8, pi23 = 0.2

)}
s2 = {

T1(pi11 = 0.1, pi12 = 0.2, pi13 = 0.5), C(pj1 = 0.4, pj2 = 0.3, pj3 = 0.9), T2
(
pi21 = 0.5, pi22 = 0.7, pi23 = 0.6

)}
s3 = {

T1(pi11 = 0.9, pi12 = 0.2, pi13 = 0.7), C(pj1 = 0.4, pj2 = 0.8, pj3 = 0.3), T2
(
pi21 = 0.4, pi22 = 0.3, pi23 = 0.6

)}
s4 = {

T1(pi11 = 0.1, pi12 = 0.9, pi13 = 0.7), C(pj1 = 0.4, pj2 = 0.7, pj3 = 0.3), T2
(
pi21 = 0.4, pi22 = 0.7, pi23 = 0.8

)}
Because there is an epistemic accessibility relationship between states, the setting of fuzzy

values needs to satisfy � (i, g, p) = � (i, g′, p). For example, between s0 and s1, there exists epistemic
relationships s0 ≈i1

s1 and s0 ≈j s1, so there must be at least one set of fuzzy label function values that
are equal, i.e., �i1

(
s0, pi12

) = �i1

(
s1, pi12

) = 0.4, �j

(
s0, pj3

) = �j

(
s1, pj3

) = 0.9.

(7) The arrowed lines in Fig. 5 represent fuzzy transitions. For example, s0 ∂1, 0.2−−−→ s1 indicates that

in state s0, the possibility of transitioning to state s1 by executing joint action ∂1 is 0.2. Dashed lines
represent transitions through epistemic accessibility relationships.

Remark 2. In this instance, the degree of satisfaction of atomic propositions and the possibility
of transitions under specific states are both represented as fuzzy values subjectively acquired through
expert experience.

According to the model transformation rules and the definition of group epistemic accessibility
relationships, the FEIS model in Fig. 5 is transformed into the FDP model in Fig. 6, which includes
group epistemic actions, as follows.

Figure 6: The FDP model of the train control system∥∥Ki1
(tunnel2)

∥∥ (s2) = 0.2 represents that T1 predicts the possibility of T2 passing through the tunnel
to be 0.2. This anticipation arises because in state s2, it is highly likely that the Controller, by perceiving
the states of T1 and T2, adjusts the traffic signal to g1r2. At this moment, T1 is passing through the
tunnel, and T2 should be in a waiting state. T1, with its awareness of traffic safety, understands that
if T2 receives the traffic signal, it should also realize the presence of other trains inside the tunnel.
Therefore, for safety reasons, the prudent decision is to wait rather than trying to enter the tunnel.∥∥Ei1 i2

(r1r2)
∥∥ (s0) = 0.6 indicates that each train knows the possibility of the traffic signal being r1r2

is 0.6. This is because in s0, both T1 and T2 are far away from the tunnel, and the Controller perceives
that there is no train information in the vicinity. Therefore, it determines that it is safe to set the traffic
signal to r1r2.
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∥∥Ci1 i2 j (¬ (tunnel1 ∧ tunnel2))
∥∥ (s1) = 0.8 represents that everyone is cognizant of a traffic common

sense fact that two trains cannot enter the tunnel simultaneously, and the credibility of this epistemic
is 0.8. This indicates that in state s1, both the trains and the Controller have a very clear understanding
of this traffic rule and are committed to strictly adhering to it to ensure traffic safety.∥∥Di2 j (wait2)

∥∥ (s0) = ∥∥Kj (r1r2) ∧ Ki2
([r1r2] wait2)

∥∥ (s0) = 0.9 indicates that in state s0, the Controller
adjusts the traffic signal to r1r2 by perceiving the external environment. T2 perceives this change and,
based on the state of the traffic signal, deduces that there may be other trains inside the tunnel at this
time. Therefore, it chooses a probability of 0.9 to wait at the entrance.

8 Conclusions

This paper addresses the verification of attributes in fuzzy epistemic multi-agent systems using
an indirect fuzzy model checking algorithm, which transforms the FCTLK model checking problem
based on FEIS into the FCTL model checking problem based on FKS. It calculates the formulas
of FCTLK through the synthesis operation of fuzzy matrices and proposes a polynomial-time fuzzy
model-checking algorithm. An example of a train control system is presented as an illustration of the
practical application of this algorithm.

In the future, we plan to explore the application of direct fuzzy model checking methods for
verification. Simultaneously, we intend to utilize the decision framework of the FP-SVNSS method
[41] and apply it to the verification of multi-agent systems based on fuzzy epistemic. The core idea of
this method is to enrich the verification process through control processes, addressing the issue of fuzzy
epistemic attributes influencing collaborative behavior among agents in multi-agent systems. In the
application of the decision framework, we need to consider how to verify fuzzy factors in collaborative
behavior to ensure the overall collaborative performance of the system.
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