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ABSTRACT

In a cloud environment, outsourced graph data is widely used in companies, enterprises, medical institutions, and
so on. Data owners and users can save costs and improve efficiency by storing large amounts of graph data on cloud
servers. Servers on cloud platforms usually have some subjective or objective attacks, which make the outsourced
graph data in an insecure state. The issue of privacy data protection has become an important obstacle to data
sharing and usage. How to query outsourcing graph data safely and effectively has become the focus of research.
Adjacency query is a basic and frequently used operation in graph, and it will effectively promote the query range
and query ability if multi-keyword fuzzy search can be supported at the same time. This work proposes to protect the
privacy information of outsourcing graph data by encryption, mainly studies the problem of multi-keyword fuzzy
adjacency query, and puts forward a solution. In our scheme, we use the Bloom filter and encryption mechanism to
build a secure index and query token, and adjacency queries are implemented through indexes and query tokens on
the cloud server. Our proposed scheme is proved by formal analysis, and the performance and effectiveness of the
scheme are illustrated by experimental analysis. The research results of this work will provide solid theoretical and
technical support for the further popularization and application of encrypted graph data processing technology.
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1 Introduction

The widespread existence of cloud computing and its powerful applications has brought great
changes and convenience to people’s lives and work. With the continuous growth of data scale,
outsourcing massive graph data to cloud servers is an important choice for data owners, and this
can save space and cost [1,2]. The powerful computing and processing power of cloud computing has
become an important reason for the favor of many outsourcing services [3,4]. Graph data is widely
used in many fields, and the complex graph structure contains rich information [5,6]. As cloud servers
are insecure and unreliable, the outsourced graph data cannot be directly stored in the cloud servers
[7,8], otherwise there will be a risk of privacy information being leaked. Generally speaking, encrypting
outsourcing data is a frequently used and effective strategy [9,10]. Accordingly, another problem is that
it is very troublesome to process and operate the graph data outsourced to the cloud servers. In the
existing adjacency queries for outsourced encrypted graphs, the requirement for multi-keyword fuzzy
queries in query requests is ignored. This will expand the scope of the query and give the user more
choices of query results. Therefore, it is very valuable to execute privacy-preserving adjacency query
supporting multi-keyword fuzzy search on encrypted graphs in the cloud environment.

In graph data processing, an adjacency query is a very elementary and general operation. Many
queries and other operations are performed based on adjacency queries [11–13]. The adjacency query
supporting multi-keyword fuzzy search can take multiple keywords as query trapdoors, and finally
get fuzzy query results. This allows users to get more diversified query results and meets more query
scenarios [14,15]. Take an example of a scientific research cooperation graph, each vertex of the graph
represents a researcher, and each edge represents that two vertices have cooperation. The adjacency
query supporting multi-keyword fuzzy search is to process multiple keywords as query tokens to realize
an adjacency query. To implement a multi-keyword fuzzy search, we use the Bloom filter to construct
index and query tokens in the paper [16,17]. This work considers performing adjacency queries on
encrypted graph of cloud servers. Considering the cost, it is not cost-effective to download all the
graph data to execute the query locally. For this reason, it is urgent and necessary to study adjacency
queries supporting multi-keyword fuzzy search on cloud servers.

Performing queries on encrypted data in the cloud environment, searchable encryption is a very
effective processing mechanism [18–22]. Searchable encryption has become a useful cryptographic
primitive in cryptography, and cloud servers cannot obtain sensitive information of outsourced data
when performing queries. Searchable encryption has evolved over the years, with many extensions and
enhancements [23–27]. It makes the query operation of outsourced data more convenient and secure.
Due to the existing searchable encryption methods mainly studying processing techniques on text
datasets, they cannot be utilized directly to implement adjacency queries supporting multi-keyword
fuzzy search. Latterly some research results of graph-related ciphertext queries have been put forward
[28–32]. The relevant query on ciphertext graph was studied in the literature [28], and the query idea
of structured encryption and controlled disclosure was proposed. The research on subgraph queries
on remote outsourcing graphs was studied in the pieces of literature [29–31], and the corresponding
solutions were proposed. A graph encryption scheme was proposed to implement constrained shortest-
distance query in the literature [32]. However, all these query schemes cannot solve the problem of
adjacency queries supporting multi-keyword fuzzy search on cloud servers.

To solve this problem, we came up with a solution to perform a privacy-preserving adjacency query
supporting multi-keyword fuzzy search on the encrypted graph in the cloud environment, which is
named PAQM. In our proposed PAQM solution, cloud servers realize the adjacency query with the aid
of encrypted index and encrypted query tokens. We first convert all graph vertices into vectors based
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on unary grammar. We then build a secure index based on the Bloom filter and symmetric encryption
mechanism, and the index is sent to cloud servers. The encrypted query tokens are subsequently built in
a similar way to build the index. Finally, cloud servers perform the adjacency query through the secure
index and the encrypted query tokens. After the query, the encrypted query results are returned, and
cloud servers can not know the privacy information about graph data and retrieval results. Through
formal analysis and experimental evaluation, the proposed PAQM solution is proven to be secure and
efficient.

The contributions of this work are summarized as follows:

(1) We propose a solution to solve this problem of privacy-preserving adjacency query supporting
multi-keyword fuzzy search on the encrypted graph in the cloud environment.

(2) We prove the security of our proposed solution through formal analysis.

(3) The effectiveness of our solution is illustrated by experimental evaluation on real data sets.

The rest of the work is as follows. Section 2 introduces the related work. Section 3 analyzes and
designs our PAQM solution. Section 4 proves the security of our PAQM solution. Section 5 shows the
effectiveness of our PAQM solution through experimental analysis and evaluation. Finally, Section 6
summarizes our work.

2 Related Work

With the development and popularization of cloud computing and cloud services, a large number
of data outsourcing has become a popular trend [33–35]. At the same time, the security of outsourced
data has become an important issue to be urgently considered [36–38]. Considering the complexity
of the cloud environment and the unreliability of cloud servers, the research on privacy protection of
cloud outsourcing services has become a hot research area and a lot of research achievements have
been made. Among them, searchable encryption is an important mechanism to solve the security
problems of cloud outsourcing [39–40]. Due to different encryption methods, there are two modes:
symmetric searchable encryption (SSE) [18–20] and asymmetric searchable encryption (ASE) [22].
In consideration of the higher efficiency of symmetric encryption, we adopt the idea of searchable
symmetric encryption in this work.

A searchable encryption mechanism is a solution to the query problem on the remote server. This
is of great use to queries and related operations on cloud outsourcing data [18–22]. Song et al. put
forward the idea of searchable symmetric encryption for the first time and solved the problem of
data query on remote servers [18]. Goh first proposed the concept of a security index-based on the
Bloom filter to realize outsourcing queries [19]. Later Curtmola et al. proposed more efficient SSE
solutions, one of which can achieve adaptive SSE security [21]. Boneh et al. studied the searchable
encryption mechanism based on a public key cryptography algorithm and proposed the concept of
public key encryption with keyword search for the first time [22]. With the vigorous development of
encryption outsourcing technology, some extended searchable encryption schemes have emerged [23–
27]. The problem of dynamic searchable symmetric encryption was studied in the literature [23], and
the inverted index method of literature [21] was extended to effectively add and delete documents.
Based on binary grammar and the Bloom filter, Wang et al. proposed a multi-keyword fuzzy query
scheme for cloud outsourcing data for the first time [24]. Fu et al. implemented a multi-keyword fuzzy
query on encrypted outsourcing data based on unary grammar and root extraction algorithm, which
improved the query accuracy, but the cost would increase [25]. In the literature [26], a dynamic multi-
keyword fuzzy search scheme was proposed, in which Bloom filter and unary grammar were used, and
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a dynamic update of file set and index was realized. Liu et al. proposed matrix-based multi-keyword
fuzzy search schemes that supported approximate keyword matching in the literature [27]. In summary,
the above schemes have studied the processing methods of searchable encryption on ciphertext text
datasets, but for graph-structured data, these schemes cannot be exploited to implement adjacency
query supporting multi-keyword fuzzy search.

Recently, the query problem on outsourcing graph data has attracted a lot of attention, and
some research results have emerged [28–32]. The research [28] put forward the concept of structure
encryption, which could perform query operations on data of any structure, and also studied the query
scheme on graph structure data. Cao et al. proposed and solved the problem of subgraph queries on
an outsourced graph for the first time [29]. In the query, two stages of filtering and verification were
designed, and privacy information was also protected. Zhang et al. used frequent features to calculate
similarity, formalized the query graph and each data graph as vectors, respectively, and realized
privacy-protecting similar subgraph query problems [30]. Fan et al. studied the problem of subgraph
isomorphism query of outsourced graph data and transformed the subgraph isomorphism query into
a series of matrix operations, and the scheme reduced communication overhead and optimized the
query process [31]. Shen et al. presented a graph encryption scheme that achieved the cloud-based
approximate constrained shortest distance queries over encrypted graphs with privacy protection [32].
However, these research methods do not solve the problem of multi-keyword fuzzy adjacency query,
so these schemes cannot solve the problem of adjacency query supporting multi-keyword fuzzy search
in the cloud environment.

In the work, we propose a solution to realize adjacency query by using Bloom filter, unary
grammar based on a searchable encryption mechanism. Our scheme can support multi-keyword fuzzy
search on the encrypted graph and protect the privacy contents in the query process. The vertices in
the outsourcing graph are firstly transformed into vectors by a unary grammar. The security index and
query token are next built based on the generated vectors and transmitted to cloud servers. At last,
cloud servers complete adjacency queries with the help of the index and query token. The security and
effectiveness of the proposed solution are verified by formal analysis and experimental comparison.

3 Construction of PAQM Solution
3.1 Preliminary Information

With the increasing demand for security, the development of cryptography is also progressing.
Among them, semantic security and indistinguishability proposed in the literature [41] are two
important properties. In the work, we use the idea of semantic secure symmetric encryption to
construct our scheme. We use kge to denote a symmetric secret key generation algorithm, and
use Enc and Dec respectively denote a symmetric encryption algorithm and symmetric decryption
algorithm [42].

We utilize unary grammar and Bloom filter to implement multi-keyword fuzzy adjacency query
in this scheme [16,17,25,43]. All graph vertex words are converted into vectors of equal length and
mapped to a Bloom filter by Locality-Sensitive Hashing (LSH) functions [25,26]. We construct a
Boolean filter for the set of adjacency-vertices of each graph vertex, initialize each bit of the Boolean
filter to 0, and then map each element in the set of adjacency-vertices to its corresponding Boolean
filter [17,26]. Some main notations used in this work are listed in Table 1.
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Table 1: Summary of notations

Notations Denotations

G The graph data set
I The secure index
n The number of graph vertices
m The dimensions of vectors and matrices
l The number of hash functions
V The vertices set of the graph G, and V = {v1, . . . , vn}
max The maximum number of adjacent vertices
Qi The encrypted query token, where 1 ≤ i ≤ m
RQi The set of search results about query token Qi

Enckey(·) The symmetric encryption mechanism
Deckey(·) The symmetric decryption mechanism

3.2 Solution Overview

In a cloud outsourcing environment, the system structure of our adjacency query is shown in Fig. 1
which includes cloud servers, graph data owners, and users. The query and processing operations are
implemented through the cloud servers with the help of the encrypted index and query tokens. To
prevent the disclosure of private information, it is necessary to set the security conditions of our
solution to ensure the security of the query process. In the work, we use the existing methods in
searchable encryption for the search authorization and query control of users [21,23].

Data owner Data users

decrypt query results

query results

Cloud  servers

index & query tokens perform retrievalencrypted graph

query tokens

query control

secret keys

secure index

Encrypt indexe and graph

graph data

Figure 1: The system structure of adjacency query on encrypted graph
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Our solution solves the adjacency query problem supporting multi-keyword fuzzy search on the
outsourcing encryption graph and can achieve the following design purposes:

(1) Secure adjacency queries supporting multi-keyword fuzzy search. Data users can perform
secure adjacency query supporting multi-keyword fuzzy search through cloud servers.

(2) Protecting private information. It will not disclose the privacy information at the time of query,
and the security proof is given by formal analysis.

(3) Effectiveness of the scheme. Through comparative analysis, it is given that the cost of our
proposed scheme is small and acceptable.

In the work, we adopt Bloom filter, LSH function, unary grammar, searchable encryption, etc.,
to build a query scheme. The set of adjacency vertices of each graph vertex will be mapped to a Bloom
filter, and all Bloom filters are used to build the query index. The query index and query request are sent
to cloud servers after symmetric encryption, and cloud servers perform adjacency queries supporting
multi-keyword fuzzy search.

To achieve the adjacency queries supporting multi-keyword fuzzy search on cloud servers, the sys-
tem process flow of our proposed methodology is as follows. We first carry out vector transformation
for each graph vertex and construct a Bloom filter for its adjacent vertices. Each bit of the Bloom
filter corresponds to an adjacency vertex information. Then all the Bloom filters are combined and
arranged to construct the query index. Next, the query request is transformed into a vector, and cloud
servers complete the query by calculating its inner product with the index. Following the previous
idea of searchable symmetric encryption, we set cloud servers in our scheme to adopt an adaptive
attack model [21,23]. In our scheme, only the user with the authorization key can obtain the encrypted
query request [21]. Finally, we analyze and verify the correctness and effectiveness of the proposed
methodology through formal security proof and experimental comparison.

3.3 Realization of PAQM Solution

The core task of our PAQM solution is to design and build a secure query index and query
token, and then realize adjacency query on cloud servers. The execution process of the overall scheme
architecture is shown in Fig. 2.

Figure 2: The execution process of the overall scheme architecture
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Five algorithms are used in the scheme, and the content is introduced as follows:

keysGen(k): A security parameter k is used as input, and the algorithm returns the secret key SK =
{S, M1, M2}. Here, S is an m-dimensional vector consisting of 0 and 1, and {M1, M2} are two randomly
generated m-dimensional invertible matrices.

BloomfilteCon(G): Construct a Bloom filter for the set of adjacent points of each graph vertex.
The data set of graph G is used as input. The results of outputs are the set of adjacency vertices vectors
of graph vertices N = {N1, N2, . . . , Nn}, and Bloom filter set B.

IndextreeCon(N, B, SK): Constructing an index for cloud servers. The set of adjacency vertices
vectors N, the Bloom filter set B, and the secret key SK are used as inputs, and the output is used as
a secure index I for cloud queries.

QueryrequestCon(Ψ , SK): Constructing a Bloom filter for a query request Ψ . Each query
component of the query request Ψ is mapped into the Bloom filter through several LSH functions.
The query request Ψ , and the secret key SK are used as inputs, and the result of output is a Bloom
filter Q.

Queryimplementation(I , Q)}: The index I and the query Bloom filter Q are used as inputs, and
cloud servers implement the query task. After the query is completed, the query results are returned
to the user.

In our solution design, k is used as a security parameter, and (Kge, Enc, Dec) is used as a symmetric
encryption scheme. The specific construction process of our solution PAQM is described below.

3.3.1 Constructing Bloom Filter Set

Before outsourcing graph data to cloud servers, some data preprocessing is required. Firstly, the
vertex data is extracted and processed according to the graph data, and then the graph vertex set V
= {v1, . . . ,vn} is constructed. At the same time, the set of adjacency vertices is obtained U = {U1, U2,
. . . , Un}. To realize multi-keyword fuzzy query in the process of query, we use unary grammar to
transform the vertex set, and then use Bloom filter to build index and query request. See Algorithm
1 for the specific process of constructing the Bloom filter. The vertex set V is first converted into
vector form based on unary grammar. For example, the vertex keyword of a graph is “goods”, which
is converted to a unary grammar set {g1, o1, o2, d1, s1}. Among them, “o1” is the first letter “o” in the
word, and “o2” is the second letter “o” in the word. For each unary grammar set, we use 160-bit vectors
to represent it. The elements of the vector are English letters, numbers and some common symbols. Of
the components of the vector, the English letters are 26, repeated five times, and the other 30 elements
are numbers and common symbols.

If the element of the keyword appears in the unary grammar set, it is placed 1 in the corresponding
position and 0 in the other positions. For example, if “g1” appears, place 1 in the seventh position. The
set of vectors that is converted by the vertices set is represented by C = {c1, . . . , cn}. The set of adjacency
vertices vectors of graph vertices is expressed as N = {N1, N2, . . . , Nn}. We construct an m-bit Bloom
filter for each set of adjacency vectors, and the value of each bit is 0. And then each vertex in the set is
then mapped to this filter. Each vertex in the set is mapped to l positions by l hash functions, and its
value is set to 1. In our scheme, we calculate the correlation score between adjacency vertices instead
of 1 by the TF × IDF rule, which is a common ranked function used in information retrieval [39], and
the formula is as follows:

Score(Q; Fd) =
∑

t∈Q

1
|Fd| · (1 + ln fd,t) · ln

(
1 + N

ft

)
(1)
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where Q represents a query keyword; f d,t represents the term frequency of the term t in the file Fd;
f t represents the number of files containing the term t; N represents the total number of files; |Fd |
represents the length of the file Fd, which is calculated by summing the number of index terms. In the
adjacency query of a graph, the formula (1) is used to reflect the correlation between the vertex and
its adjacency vertices. The formula we improved to calculate the correlation score between adjacency
vertices is as follows:

Score(Q; j) =
∑

i∈Q

1
|Lj| · (1 + ln ui,j) · ln

(
1 + N

mi

)
(2)

where Q denotes query information. The ui,j denotes the weight of the edge between query vertex i and
its adjacency vertex j, and |Lj | denotes the sum of weights of all edges which connect vertex j and its
adjacency vertices. N denotes the number of vertices other than the queried vertices in the graph, and
mi represents the number of vertices adjacent to the query vertex i. In this way, all graph vertex words
are converted into 160-bit long vectors. This method can make the vector of slightly misspelled words
close to the vector of correct words. At this time, the Euclidean distance can be used to measure the
similarity between them. Finally, the Bloom filter set B is constructed through Algorithm 1.

Algorithm 1: BloomfilteCon
Input: The data set of graph G
Output: The Bloom filter set B

1: After extracting and processing the graph data, the vertex set obtained is V = {v1, . . . ,vn}, and
the adjacency vertices set of all graph vertices is denoted by U = {U1, U2, . . . , Un};

2: for all i ∈ [1,n] do
3: The vertex vi of the graph is transformed into a vector ci based on a unary grammar, and the

vector set is represented by C = {c1, . . . ,cn}; Accordingly, the vector representation of the
adjacency vertices set U is N = {N1, N2, . . . , Nn}.

4: end for
5: for all i ∈ [1,n] do
6: Generating an m-bit Bloom filter of set Ni ∈ N, and each bit in the Bloom filter is initialized

to 0. Each element in set Ni is mapped to l positions in the corresponding filter by l
independent LSH functions and assigned a correlation score value. This bloom filter is
represented as Bi;

7: end for
8: B = {B1, B2, . . . , Bn};
9: return B.

By analyzing the BloomfilteCon algorithm, the time complexity of converting graph vertices into
vectors is O(n), and the time complexity of constructing the Bloom filter for Ni is O(l·| Ni |) = O(l·
max) (max is the maximum number of adjacency vertices for a vertex in the graph). Therefore, the
time complexity of constructing all Bloom filters is O(l·max·n).

3.3.2 Constructing Adjacency Query Index

After the Bloom filters are constructed, we construct the query index through all the Bloom filters.
We first generate the secret key SK = {S, M1, M2} by the key generation algorithm, and the security
parameter is k. S is an m-dimensional random vector composed of 0 and 1, and S ∈ {0,1}m. M1 and
M2 are two invertible matrix, and here, M1, M2 ∈ Rm∗m. The index construction detail is described
in Algorithm 2. To reduce query consumption, we construct the index based on a balanced binary
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tree. We build the query index tree in a bottom-up way, that is, we first construct leaf nodes, and then
construct internal nodes layer by layer. For each adjacency vertices set Ni of the graph, a leaf node
Ni is constructed, and the node content includes the set flag i and the corresponding vector Bi. Next,
we build the inner nodes of the index tree. If the number of vertices n of the graph is an even number,
that is, n = 2k (k ∈ [1,n/2]), every two leaf nodes N2k-1 and N2k construct a parent node Nx. The parent
node stores a vector, and its value is Nk[j] = max{N2k-1[j], N2k[j]}. If n is an odd number, the first n-1
leaf nodes will generate parent nodes in pairs in order in the way just now. The nth leaf node and the
parent node of the (n-1)th leaf node construct a new parent node. The construction method of other
internal nodes is the same as that above until the root node of the index tree is generated.

Algorithm 2: IndextreeCon
Input: N, B, SK
Output: I

1: The adjacency vertices vector set is N = {N1, N2, . . . , Nn}, and the Bloom filter set is B = {B1,
B2, . . . , Bn}; The generated secret key set is SK = {S, M1, M2}.

2: for all Ni ∈ N (1 ≤ i ≤ m) do
3: if n is an even number then
4: for all k ∈ [1,n/2] do
5: Nk[j] = max{N2k-1[j], N2k[j]};

/∗ Construct a parent node, and 1 ≤ j ≤ m ∗/
6: end for
7: end if
8: if n is an odd number then
9: for all k ∈ [1,(n-1)/2] do

10: Nk[j] = max{N2k-1[j], N2k[j]};
11: end for
12: N (n+1)/2[j] = max{N (n-1)/2[j], Nn[j]};

/∗ 1 ≤ j ≤ m ∗/
13: end if
14: end for

Other internal node construction methods are similar until an index tree is constructed.
15: for all node t of the index tree do
16: The vector Bt is divided into two vectors {Bt1[i];Bt2[i]};
17: end for
18: for all i ∈ [1,m] do
19: if S[i] = 0 then
20: Bt1[i] = Bt2[i] = Bt[i];
21: end if
22: if S[i] = 1 then
23: Bt[i] = Bt1[i] + Bt2[i];

/∗Bt1[i] and Bt2[i] are two random values ∗/
24: end if
25: I t = {M1

TBt1; M2
TBt2}.

/∗ The encrypted node vector ∗/
26: end for
27: return I . /∗ The encrypted node vector ∗/
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To ensure the security of the query content, it is necessary to encrypt the outsourced data. For
each node t in the index tree, its corresponding vector Bt is divided into two vectors {Bt1[i];Bt2[i]} by
the vector S in the secret key SK. For each bit i in vector S, if S[i] = 0, we set Bt1[i] = Bt2[i] = Bt[i]. If S[i]
= 1, Bt1[i] and Bt2[i] are set as two random values, and Bt[i] = Bt1[i] + Bt2[i]. Then, we use the matrices
{M1, M2} in the secret key SK to perform matrix transformation on the vectors {Bt1, Bt2} to obtain
the encrypted node vector It = {M1

TBt1; M2
TBt2}. When all nodes in the index tree are encrypted, the

encrypted index tree I is obtained.

On the index constructing algorithm IndextreeCon, the time complexity of constructing all parent
nodes is O(n), and the time complexity of encrypting index tree nodes is O(m·n). Therefore, the time
complexity of constructing the encrypted index tree is O(m·n).

3.3.3 Performing Query

After the construction of the encrypted index is completed, the next step will be to consider the
construction of the server-side query scheme. We first build a Bloon filter for a query request Ψ . Each
constituent word of the query request is mapped to the Bloon filter by l LSH functions, and then a
query vector Ψ ’ is generated. Next, the query vector Ψ ’ is encrypted. The query vector Ψ ’ is divided into
two parts {Ψ 1’,Ψ 2’} by the vector S. If S[i] = 0, Ψ 1’[i] = Ψ 2’[i] = Ψ ’[i]. If S[i] = 1, Ψ ’[i] = Ψ 1’[i]+ Ψ 2’[i],
and here Ψ 1’[i] and Ψ 2’[i] are two randomly selected values. Then we encrypt the query vector {Ψ 1’,Ψ 2’}
through the matrices {M1,M2}, and obtain the encrypted query token Q = {M1

TΨ 1’, M2
TΨ 2’}.

Based on the encrypted index tree and query token we constructed, we use the greedy depth-first
search algorithm to execute the query [26,44]. Starting from the root node, the inner product of the
index vector and the query vector is calculated to obtain the correlation score of the query. Then the
query results are sorted based on the correlation score, and the k query results are obtained that are
most relevant to the query token. The server completes the adjacency query operation in the cloud
environment as described in Algorithm 3.

Algorithm 3: Queryimplementation
Input: Q; I
Output: RQ

1: Generating the the encrypted query token Q = {M1
TΨ 1’, M2

TΨ 2’};
2: if node t of the index tree I is not a terminal node then
3: if The correlation score between node t and query token Q is greater than the correlation score

threshold then
4: Depth-first search for one of its branches;
5: Depth-first search for another branch;
6: end if
7: return;
8: end if
9: if node t is a terminal node and, the correlation score between node t and query token Q is greater

than the correlation score threshold then
10: return query result t;
11: end if
12: return RQ.
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In the algorithm Queryimplementing, for the query token Q, starting from the root node of
the index tree to execute the query. In the worst-case scenario, the time complexity of the query is
O(n·log(n)), where n is the number of nodes in the index tree.

4 Security Analysis

For the query scheme we have constructed, we need to ensure the security of privacy information
and the query process. We now introduce some concepts used in security analysis [21].

History: The interaction between cloud server and user, including outsourcing graph G and query
token sets, represented as Hq = (G, Q1, . . . , Qq). The partial history is expressed as Hq

t = (G, Q1, . . . ,
Qt), where t ≤ q.

View: Having the history Hq about the key SK, the access pattern is described as V SK(Hq) =
(EncSK(G), I , Q1, . . . , Qq). The partial view is V SK

t(Hq) = (EncSK(G), I , Q1, . . . , Qq), where t ≤ q.

Access Pattern: Having the history Hq about the key SK, a view is described as a tuple R(Hq) =
(RQ1, . . . , QQq), where RQi (1 ≤ i ≤ q) is the retrieved result set of adjacency query matching to the query
token Qi.

Search Pattern: Having the history Hq about the key SK, the search pattern is described as a binary
symmetric matrix �q, such that �q[i,j] = 1 if Qi = Qj, and �q[i,j] = 0, otherwise, for 1 ≤ i, j ≤ q.

Trace: Having the history Hq about the key SK, the trace is described as a tuple Tr(Hq) =
(|EncSK(G)|, R(Hq), �q), where |EncSK(G)| is the scale of the graph G, R(Hq) and �q are the access
pattern and the search pattern of the history Hq, respectively. The trace of partial history is described
as Tr(Hq

t) = (|EncSK(G)|, R(Hq
t), �q

t), where t ≤ q.

With the help of the constructed secure index and encrypted query tokens, the cloud server
executes adjacency queries and returns the encrypted query results to the user. Meanwhile, the cloud
server cannot know the privacy information of query results and query tokens. In our solution
design, we assume that our adjacency query scheme satisfies adaptive semantic security, where the
server can make choices about query requests based on query results and query tokens from previous
retrieval [21,23]. For the security analysis of this solution, we use a simulation-based approach and the
conceptual ideas from existing searchable encryption schemes for analysis and verification [19,21]. In
the security guarantee of our PAQM solution, the cloud server cannot obtain any content other than
a trace, thus ensuring the security of our constructed solution. The security theorem of the PAQM
solution we have built is described below.

Theorem 1. Our PAQM solution meets the adaptive semantic security.

Proof . To prove the security of our constructed PAQM solution, it is necessary to first define a
polynomial-time simulator ξ such that for all q ∈ N, ξ can simulate the adversary A. For all 0 ≤ t ≤
q, given trace Tr(Hq

t) of a partial history, ξ can generate a view (V t
q)∗ which is not distinguished from

the view V t
SK(Hq) of A.

For t = 0, on the partial history Tr(Hq
0), ξ builds simulated index I∗ with the help of random strings

to simulate the index I , both of which are equally large in scale. ξ simultaneously builds simulated
outsourced encrypted graph data via random strings, with the same scale as the real graph data. In
other partial views (V t

q)∗ (1 ≤ t ≤ q) scenarios, index I∗ will also be used to simulate the true index
I . The index I∗ and I are indistinguishable, and the simulated encrypted graph is indistinguishable
from the real graph data. Otherwise, the outputs of the symmetric encryption mechanism of semantic
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security can be distinguished from random strings of the same size. Thus, (V q
0)∗ is indistinguishable

from V 0
SK(Hq).

For 1 ≤ t ≤ q, ξ will continue to use the previously built index I∗, and Tr(Hq
t) contains the search

pattern matrix �t for t query tokens. Next, we will describe how ξ builds the query tokens (Q1
∗, . . . ,

Qt
∗) contained in Tr(Hq

t). In our scheme, we assume that ξ can reuse the query tokens (Q1
∗, . . . , Q t-1

∗)
that are included in the view (V q

t-1)∗, alternatively, ξ can rebuild these query tokens from Tr(Hq
t-1).

Below we will explain how to build Qt
∗.

To build Qt
∗, ξ first confirms whether Hq

t-1 contains Qt
∗ by verifying if �t[t,j] = 1 (1 ≤ j ≤ t-1).

If this verification is not valid, then ξ makes use of the learning from Tr(Hq
t) about RQt. ξ picks an

address at random from the index I∗, ensuring that all selected addresses are pairwise different, and
obtains the built query token Qt

∗. Otherwise, if Hq
t-1 contains Qt

∗, ξ can retrieve the query information
related to Qt

∗ and assign it to Qt
∗. It ensures that if Hq

t contains repeated query tokens, then the relevant
query tokens that are involved in (V t

q)∗ are also the same.

The query tokens (Q1
∗, . . . , Qt

∗) in (V t
q)∗ are not distinguished from the query tokens (G, Q1, . . . ,

Qt) in V t
SK(Hq), otherwise, the output of the symmetric encryption mechanism can be distinguished

from a random string of equal length. Thus, for 0 ≤ t ≤ q, (V t
q)∗ and V t

SK(Hq) are indistinguishable
for a polynomial-time adversary. Therefore, this PAQM theorem has been proven to be of security.

5 Experimental Evaluations

This section conducts a performance analysis of our solution through an experimental comparison
of the dataset of the Enron email network graph [45,46]. This experiment is implemented by the C
program and executed on the server side and local platform. The server side is configured by the Linux
system with about 6 CPU cores with 3.2 GHz and 16 GB of RAM. The local platform uses the Win10
system and is configured with an Intel Core 4 CPU of 2.8 GHz. In this scheme, the implementation of
query operations is completed by the server on the cloud server side. The performance evaluation of
index and query token construction is completed on the local platform. The index and query tokens
built in our solution are processed through encryption, and the queries are executed on the cloud server
based on secure index and query tokens, which guarantees the security of the private information in
the queries.

To conduct a performance analysis on our construction scheme PAQM, we compared it with
the multi-keyword fuzzy adjacency queries on plaintext graph data (denoted as MAQM). These two
schemes are similar in terms of construction strategy, including index construction, token construction,
and query methods. The difference is that one is ciphertext mode and the other is plaintext mode.
The purpose of comparing and analyzing this construction scheme PAQM with the MAQM scheme
is to evaluate the time cost, storage cost, and query efficiency of our proposed PAQM scheme. For
experimental graph data, the difference in the number of vertices affects the change in the number
of edges, which has a significant impact on experimental evaluation and analysis. The experimental
analysis in the work can evaluate the cost and efficiency of the multi-keyword fuzzy adjacency queries
of our PAQM scheme.

5.1 Constructing Secure Query Index

To realize security queries on the cloud server, it is necessary to construct a security index. We first
convert the graph vertex set into vector form based on unary grammar. Then, the vector form of each
set of adjacency vertices is constructed, and a Bloom filter is constructed for each set of adjacency
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vectors. Next, we build a secure index based on all Bloom filters. This section conducts experimental
evaluation on index construction time and index construction scale and provides experimental results.
The experimental analysis results of index construction time are given in Figs. 3a and 3b, where the
horizontal axis direction of Fig. 3a represents the number of vertices in the graph dataset, and the
horizontal axis direction of Fig. 3b represents the number of edges of the graph. The vertical axes
of Figs. 3a and 3b represent the index construction time. Fig. 3a illustrates how index build time
is affected by changes in the number of graph vertices, and Fig. 3b illustrates the impact of index
construction time on the number of vertices in the graph.

(A) (B)

Figure 3: Index construction time analysis on multi-keyword fuzzy adjacency search

From Fig. 3, it can be seen that there is an important correlation between index construction
time and the number of vertices or edges in the graph. In both cases PAQM and MAQM, there
is a basic linear correlation between index construction time and the number of graph vertices or
edges. Generally speaking, an increase in the number of vertices in a graph will generally increase the
number of edges, and the number of adjacency vertices of the graph vertices will also increase. This also
increases the overhead for index building. For encrypted outsourcing graph data, the secure index is
constructed in ciphertext. Therefore, the index construction cost of scheme PAQM is higher than that
of scheme MAQM, but it also ensures the security of private information by increasing the time cost.

An experimental analysis of the index scale is given in Figs. 4a and 4b, where the horizontal axis
direction indicates the number of vertices or edges of the graph, and the vertical axis directions of
Figs. 4 a and 4b represent the size of the index. From the distribution trend of the experimental graph,
it can be seen that the index scale of scenario PAQM and scenario MAQM changes roughly linearly
with the number of vertices in the graph. The index building overhead for our proposed PAQM scheme
is slightly higher than that of MAQM, but the additional overhead is necessary as the PAQM scheme
addresses the issue of secure queries for outsourced graph data.

5.2 Performing Query

After the secure index and query token are constructed, the cloud server follows the idea of the
query algorithm and utilizes the index and query token to achieve multi-keyword fuzzy adjacency
queries. This experimental evaluation mainly compares and analyzes the query time cost to verify the
effectiveness of this scheme. The results of the query times performed by the cloud server are shown in
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Figs. 5a and 5b, where the horizontal axis direction represents the number of vertices or edges about the
graph, and the vertical axis directions of Figs. 5a and 5b represent the query time consumed. From the
experimental results, it can be observed that the time consumed by the query increases approximately
linearly with the number of vertices or edges on the graph. In the query experiment, our PAQM scheme
achieves security protection in the query at the cost of increasing query time. The PAQM scheme takes
slightly more time than the scheme MAQM, but the difference in time is acceptable, so it is feasible to
query the efficiency of our query scheme.

(A) (B)

Figure 4: Index construction size analysis on multi-keyword fuzzy adjacency search

(A) (B)

Figure 5: Query time analysis on multi-keyword fuzzy adjacency search

In short, the PAQM scheme we constructed is evaluated through experimental analysis and
comparison. Index construction is implemented on the local platform, and the time and scale of index
construction are analyzed. The total time and storage costs of our experiment are acceptable under the
condition of implementing a query function and security guarantee. As the number of graph vertices
increased, it showed an approximate linear trend. The query processing process is implemented by the
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server on the cloud platform, and the query time shows an approximate linear trend with the increase
in the number of graph vertices.

In short, the PAQM scheme we constructed is evaluated through experimental analysis and
comparison. Index construction is implemented on the local platform, and the time and scale of index
construction are analyzed. The total time and storage costs of our experiment are acceptable under the
condition of implementing a query function and security guarantee. As the number of graph vertices
increased, it showed an approximate linear trend. The query processing process is implemented by the
server on the cloud platform, and the query time shows an approximate linear trend with the increase
in the number of graph vertices.

6 Conclusion

In this work, we provide a new approach to realize the secure adjacency query supporting multi-
keyword fuzzy search on encrypted graphs in the cloud environment. In the solution, we use some
mechanisms such as unary grammar, Bloom filter, searchable encryption, and so on. We first convert
the vertex set into vector form based on unary grammar, and then we construct the Bloom filter for
each set of adjacency vectors. Next, we construct the query index based on a balanced binary tree
through all the Bloom filters to realize a multi-keyword fuzzy query. Secondly, we have conducted a
formal security analysis of the query scheme we have constructed. Finally, we provided experimental
comparisons and analysis to demonstrate the effectiveness of our proposed scheme. As our future
research direction, we will integrate big data analysis technology and tools with massive graph data,
and conduct research and exploration on the query and other processing of encrypted graph data
based on protecting privacy information.
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