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ABSTRACT

X-ray Computed Tomography (XCT) enables non-destructive acquisition of the internal structure of materials,
and image segmentation plays a crucial role in analyzing material XCT images. This paper proposes an image
segmentation method based on the Segment Anything model (SAM). We constructed a dataset of carbide in
nickel-based single crystal superalloys XCT images and preprocessed the images using median filtering, histogram
equalization, and gamma correction. Subsequently, SAM was fine-tuned to adapt to the task of material XCT image
segmentation, resulting in Material-SAM. We compared the performance of threshold segmentation, SAM, U-Net
model, and Material-SAM. Our method achieved 88.45% Class Pixel Accuracy (CPA) and 88.77% Dice Similarity
Coefficient (DSC) on the test set, outperforming SAM by 5.25% and 8.81%, respectively, and achieving the highest
evaluation. Material-SAM demonstrated lower input requirements compared to SAM, as it only required three
reference points for completing the segmentation task, which is one-fifth of the requirement of SAM. Material-SAM
exhibited promising results, highlighting its potential as a novel method for material XCT image segmentation.
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1 Introduction

The structures such as phases, pores, cracks, and carbides in materials have a significant impact
on their strength and properties. Therefore, the characterization of various structures plays a crucial
role in the analysis of material performance. Traditional two-dimensional microscopy provides a 2D
metallographic characterization of the material’s microstructure [1–4]. Although 2D characterization
techniques establish a relationship between structure and material properties to some extent, they are
limited in capturing complex three-dimensional features, which hinders accurate material analysis [4–
8]. By employing X-ray computed tomography (XCT), we can visualize the internal microstructure of
materials in three dimensions without damaging the material samples, thus obtaining a stereoscopic
representation of features within the material.

To extract the regions of interest from the 2D slice images and achieve three-dimensional
visualization, image segmentation is required. Traditional threshold-based segmentation methods rely
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on image grayscale values [9–12]. Although this process is fully automated, the segmentation outcome
heavily depends on the selection of thresholds. This segmentation method fails when the target region
and the background have similar grayscale values.

With the advancement of machine learning techniques, fully convolutional networks have shown
promising applicability in image segmentation [13], and they have become the primary method for
XCT image segmentation. Among them, U-Net is a representative network that has been widely
used in the materials field [14,15]. However, like other deep learning methods, fully convolutional
network segmentation methods require a large amount of data to train the network for a specific
segmentation task. Since manual annotation is required for the dataset, using fully convolutional
network segmentation methods still demands significant human effort. Moreover, deep learning
methods are sensitive to the content of the dataset and often require multiple iterations of training and
fine-tuning of the dataset to obtain satisfactory models. Additionally, using deep learning methods
requires users to possess programming skills and knowledge of the corresponding models. Many
related open-source codes lack user-friendly interactive systems, causing inconvenience for users.

Meta AI’s Segment Anything Model (SAM) [16] has become the state-of-the-art model in the
field of image segmentation and marks the era of the foundation model in image segmentation. It
has been trained on a massive dataset consisting of one billion masks and eleven million images,
demonstrating its powerful capability for real-world object segmentation tasks. It also outperforms
other models in zero-shot tasks, which leads us to consider applying it to the segmentation of material
XCT images to overcome dataset limitations. However, SAM’s performance is not satisfactory in
medical XCT segmentation tasks similar to material XCT segmentation [17–19]. Since SAM’s training
dataset primarily comprises naturally captured images, its generalization ability to XCT images with
blurry boundaries is relatively weak. Therefore, fine-tuning is required to adapt SAM to the task of
material XCT image segmentation.

Traditional grayscale-based segmentation methods struggle to resist noise interference, especially
in cases where materials exhibit similar grayscale values, making effective separation challenging.
Most deep learning-based approaches face the issue of poor generalization and often require large
annotated datasets for task-specific training. Particularly in the case of XCT images where data
collection is challenging, deep learning methods may even surpass the overall data volume required
for segmentation tasks. In contrast to the low robustness of traditional methods and the high
data demands of deep learning, our approach can effectively distinguish between the background
and phases in material XCT slice images without the need for additional training. Our method
demonstrates excellent performance in accomplishing the segmentation tasks for the majority of
material XCT slice images.

In this paper, we enhance XCT images by applying preprocessing techniques such as median
filtering, histogram equalization, and gamma correction to highlight feature information. We apply
SAM to the task of material XCT image segmentation and improve its performance by fine-tuning the
model accordingly. By comparing the SAM, the U-Net model, and the fine-tuned Material-SAM, we
evaluate the effectiveness of the fine-tuned model.

2 Literature Review

In the field of materials, the segmentation of XCT images is an important task that helps us
understand the internal structure of materials and extract key features. Currently, there are various
methods for XCT image segmentation, which can be mainly divided into two categories: traditional
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image processing-based methods and deep learning-based methods. However, each method inevitably
has some limitations.

Traditional image processing methods usually rely on techniques such as statistical characteristics,
edge detection, and threshold segmentation. These methods may perform well in certain cases, but
their performance can be limited when dealing with complex textures, noise, or dense structures in
XCT images. Moreover, traditional methods require manual selection and fine-tuning of parameters,
which can be time-consuming and require expertise to achieve satisfactory segmentation results for
different datasets and application scenarios.

Kim et al. [20] proposed a segmentation method based on the Gradient-based phase segmentation
method for segmenting hydrating cement paste microstructures in XCT images. This method obtains
the relationship curve between the segmentation threshold and the linear attenuation coefficient of
pores in XCT images, identifies the gray value with the most dramatic change in the curve gradient,
and performs segmentation based on this gray value. The method demonstrates good performance in
pore segmentation tasks and can be extended to segmentation of other phases.

Compared to traditional methods, deep learning-based methods exhibit better flexibility and
robustness in XCT image segmentation tasks. Deep learning models can automatically learn feature
representations from XCT images and improve segmentation accuracy and efficiency through end-to-
end learning using large-scale training data. Additionally, deep learning methods can further improve
segmentation results through techniques such as data augmentation, transfer learning, and model
fusion.

Stan et al. [21] used XCT images of Pb-74.4 wt%Sn samples and other datasets for three-channel
restoration, denoising using Gaussian filtering, enhancing edge features using Canny edge detection,
and training with the SegNet neural network with a learning rate of 0.01. The model achieved 99.7%
accuracy on the dataset and demonstrated relatively excellent performance in other XCT image
segmentation tasks. Helwing et al. [22] used deep learning methods to segment defects in fiber-
reinforced polymers using the LeNet-5 convolutional neural network with a learning rate of 0.0001,
achieving a dice coefficient greater than 0.749. Mahdaviara et al. [23] proposed the PoreSeg framework,
which divided the model training into six modules to reduce coupling between steps. The entire
framework involved preprocessing through filtering, feature extraction through convolution, and
feature learning through bagging and boosting frameworks, demonstrating significant performance
in multi-mineral segmentation.

Semantic segmentation, as a critical task in computer vision, has witnessed the emergence of highly
effective network architectures. Fully Convolutional Network (FCN) [24], a pioneer in semantic seg-
mentation, introduced end-to-end convolutional networks into the field by eliminating fully connected
layers in the classifier, forming a fully convolutional network structure. Subsequently, U-Net [25]
proposed a network that synthesizes FCN concepts by fusing deep and shallow network information,
achieving a balance between overall and detail awareness. It significantly improved performance on
limited datasets, particularly finding wide application in medical image segmentation. For instance,
improvements by Jabbar et al. [26] achieved a Dice score of 0.92 in brain tumor segmentation, reducing
training time from 2–3 days to 80–90 min. SegNet [27] shares a similar overall structure with U-
Net, dividing the network into encoder and decoder parts, with the encoder utilizing the VGG16
network model. SegNet eliminates the need to store feature maps in the encoder, saving resources
while effectively addressing segmentation coarseness issues. PSPNet [28] introduces a pyramid pooling
module to aggregate background information, enabling the model to comprehend global contextual
information. DeepLab v3 [29] removes the conditional random field used in v1 and v2, introducing the
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Multi-Grid strategy to address grid issues caused by hole convolution and improving Atrous Spatial
Pyramid Pooling (ASPP). Fu et al. [30] proposed a novel Dual Attention Network (DANet) with
a self-attention mechanism to enhance the discriminative capability of scene segmentation feature
representation. This method significantly improves segmentation results by modeling rich contextual
dependencies on local features.

As research into semantic segmentation deepens, models continue to evolve in depth and structure.
However, due to the difficulty of obtaining medical image data and the diverse nature of medical
segmentation tasks, U-Net and its improved networks remain mainstream. Material image segmen-
tation faces challenges similar to medical images. Additionally, the random distribution of phases
in materials makes segmentation more complex compared to organ segmentation in medical images.
Current segmentation methods for material images primarily use traditional threshold segmentation
methods, with most deep learning methods based on U-Net. However, these methods have strong
dependencies on data quality, and poor model reusability. Therefore, material images require a simple
segmentation method with minimal dependence on data.

The emergence of the Segment Anything model has ushered in the era of large models in the field
of image segmentation, and its powerful generalization ability allows it to achieve zero-shot tasks in
various domains. However, as the training set of the SAM model consists of natural images, it raises
questions about its suitability for XCT image segmentation.

In [31], SAM was used for XCT image segmentation of multi-phase liver tumors. The article
selected 1,552 multi-phase contrast-enhanced computed tomography images from 388 patients and
evaluated the segmentation results using the Dice global score. Compared to the U-Net neural
network frequently used in XCT image segmentation, SAM performed worse on images of various
sizes. However, with an increase in the number of prompt points given to SAM, the segmentation
performance of SAM also improved.

In [32], SAM was used for brain magnetic resonance images segmentation, and the segmentation
results were compared with the Brain Extraction Tool (BET). Test datasets such as ATLAS [33] and
white matter hyperintensities Challenge Segmentation [34] were selected. The Dice coefficient, IoU,
Acc, Recall, and Prec were chosen as the evaluation parameters for segmentation results. It was found
that SAM slightly outperformed BET in various datasets, indicating a promising future in medical
segmentation.

In [35], to address the weak segmentation ability of SAM for weak boundary objects in XCT
image segmentation, a model adjustment approach was proposed. This study froze the image encoder
part and trained the image decoder using 33 segmentation tasks from a comprehensive dataset. During
training, the unweighted sum of the Dice loss and cross-entropy loss was used, and the Adam optimizer
was selected. On the test set, the adjusted model achieved an improvement of about 20 percentage
points in the dice coefficient compared to the unadjusted model.

In [36], the adaptor technique from Natural Language Processing (NLP) was introduced to the
SAM model to adapt it to XCT image segmentation tasks. This study inserted two adaptors in the
image encoder and three adaptors in the image decoder of SAM, while partially freezing the original
model. The study used approximately 1.35 million images for training and employed various self-
supervised learning methods such as e-Mix, ShED, and MAE. The adjusted model showed better
performance than models like U-Net in multiple XCT segmentation tasks.

In [37], MLP-based adaptor blocks were inserted at each layer of the image encoder in SAM, and
datasets such as COD10K [38], CHAMELEON [39], CAMO [40], and ISTD [41] were selected for
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tasks such as camouflage object detection, shadow detection, and medical image segmentation. The
AdamW optimizer was used with an initial learning rate of 2e-4. The trained SAM-adapter model
achieved similarity (S-measure) scores of 0.896, 0.847, and 0.883 on the three datasets for camouflage
object detection, reduced the balance error rate (BER) to 1.43 for shadow detection, and improved
the dice coefficient to 0.850 for medical image segmentation.

For XCT image segmentation in materials, threshold segmentation methods are mainly used.
However, when the grayscale variation is insufficient, this method may fail to produce satisfactory
segmentation results. On the other hand, deep learning methods require a large amount of dataset and
their generalization ability needs improvement. SAM has strong generalization ability, which enables it
to perform well in zero-shot tasks, thereby simplifying the process of XCT image segmentation. In this
study, SAM was improved and applied to the task of materials XCT image segmentation, overcoming
these limitations. By comparing Material-SAM with other segmentation methods on the test dataset,
the potential of Material-SAM as a novel feature segmentation approach in materials XCT image
segmentation was validated.

3 Proposed Methodology
3.1 Datasets and Preprocessing

We utilized a dataset of nickel-based single crystal superalloy carbides [42] and successfully imaged
their internal microstructure using a high-resolution and high-contrast Zeiss Xradia Versa 520 X-ray
microscope. A total of 7,520 XCT slice images were obtained using a voltage of 150 kV and an output
power of 10 W. Carbides exhibit a two-dimensional morphology primarily characterized by rod-like,
plate-like, and mesh-like structures, with the possibility of some degree of fusion between them. In our
experiments, we did not make explicit differentiations based on the morphology of carbides. In the
image slices, carbides approximately occupy 20% of the total area, distributed uniformly throughout
the interior of the specimen. To enhance the carbides in the images, we applied median filtering for
noise reduction and performed histogram equalization and gamma correction algorithms to enhance
the features in the XCT images, as shown in Fig. 1. Finally, we standardized the size of the dataset to
1024 × 1024. After an initial segmentation of the carbides in the images using a neural network, we
performed manual adjustments to ensure the accuracy of the mask.

Figure 1: (a) XCT slice image of nickel-based single crystal high-temperature alloy carbide. (b) Image
after median filtering. (c) Image after histogram equalization. (d) Image after gamma correction

To address the challenges of small contrast differences, blurred edges, and indistinct features
between carbides and the matrix in XCT slice images, making them more amenable to extraction by
convolutional neural networks, we employed the bilateral filtering method. This method, built upon
Gaussian filtering, introduces pixel value weights to minimize noise and preserve grayscale gradients
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in the image. The filter is denoted as BF, with pixel value weights represented by Gr and spatial distance
weights represented by Gs. The formula for the filter is as follows:

BF = 1
Wq
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where Wq represents the weighted sum of each pixel value within the filtering window. Subsequently,
the grayscale of each pixel in the image is adjusted by modifying the image’s histogram, enhancing the
contrast of images with a limited dynamic range. The transformation formula is as follows:

T(sk) =
∑k

j=0

nj

N
(2)

where N is the total number of pixels in the image, and the value of the k-th grayscale level is denoted as
sk. Subsequently, we further enhance the dynamic contrast of low grayscale value regions by applying
gamma correction with a coefficient of 0.9, aiming to strengthen the image features.

3.2 SAM Analysis

SAM employs a transformer-based architecture [43], which has become prevalent in natural
language processing and image segmentation in recent years. The model consists of an image encoder,
prompt encoder, and mask decoder. The prompt encoder can accept four types of inputs: points, boxes,
text, and masks, allowing users to interact and obtain the desired segmentation results. The mask
decoder is designed to be lightweight and consists of two Transformer layers, one for dynamic mask
prediction and the other for intersection over union score regression. The mask prediction head can
generate three masks at a downscaled resolution of 1/4, corresponding to the whole, part, and subpart
of the objects.

SAM supports three main segmentation modes: fully automatic segmentation of all content,
bounding box mode, and point mode. In materials, carbides exist in various shapes and can appear
in different regions of the sample. Fully automatic mode often fails to capture the details inside the
sample and struggles with successful segmentation. Bounding box mode can only segment a small
portion of the carbides, and when a bounding box is used to encompass the entire sample, SAM
tends to segment the whole sample, which does not meet the segmentation requirements, as shown
in Figs. 2a and 2b. On the other hand, when points are used as prompts, SAM tends to segment the
internal details around the points, as shown in Fig. 2c. Therefore, during training, we use points as
inputs to the prompt encoder.

3.3 Evaluation Protocol

We adopted Dice Similarity Coefficient (DSC), Class Pixel Accuracy (CPA), Intersection over
Union (IoU), and Pixel Accuracy (PA) as the evaluation metrics for our model. The Dice coefficient
is a commonly used evaluation metric in semantic segmentation that directly reflects the effectiveness
of the mask. It is calculated using the following Eq. (3). CPA reflects the accuracy of the model’s
predictions with respect to the ground truth and is calculated using the Eq. (4). PA evaluates the
model’s accuracy in predicting all pixels and is calculated using the Eq. (5). IoU is calculated as the
ratio of the intersection to the union of the predicted results and the ground truth for a specific class,
as computed using Eq. (6).

DSC = 2 × TP/(2 × TP + FN + FP) (3)

CPA = TP/(TP + FP) (4)
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PA = (TP + TN)/(TP + TN + FP + FN) (5)

IoU = TP/(TP + FP + FN) (6)

where True Positive (TP) represents the number of positive instances correctly predicted as positive,
False Negative (FN) represents the number of positive instances incorrectly predicted as negative,
False Positive (FP) represents the number of negative instances incorrectly predicted as positive, and
True Negative (TN) represents the number of negative instances correctly predicted as negative. In this
study, positive instances refer to carbides, while negative instances refer to the background.

Figure 2: (a) Mask obtained by selecting a portion of the carbides using the bounding box method. (b)
Mask obtained by selecting all the carbides using the bounding box method. (c) Mask obtained using
the point method

4 Experiments and Results
4.1 Training of Mask Decoder

To meet the input requirements of the SAM network, we employed an eight-connectivity labeling
method to process the ground truth map. This method effectively identifies connected regions of
carbides in XCT images and selects the coordinates of the central pixel for each region as the optimal
reference points, as illustrated in Fig. 3. In this study, we chose the coordinates of the central pixels
for the three largest connected regions as inputs for the reference encoder. This approach provides
effective cues required by the SAM network, contributing to a more accurate segmentation task.

Figure 3: (a) Division of different connected regions using eight-connected labeling method. (b)
Prominent points corresponding to the three connected regions with the highest number of pixels
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To adapt SAM for the segmentation of XCT images in materials, we performed fine-tuning.
Among SAM’s three components, the image encoder has 632 million parameters. Due to the substan-
tial data and computational resources required for modifying the image encoder, we decided to retain
its structure, which achieved good results on a large dataset. Instead, we opted for transfer learning
on SAM’s mask decoder to tailor it to the specific task of material image segmentation. During fine-
tuning, we froze the image encoder and reference encoder, allowing only the gradient backpropagation
for the mask decoder. We trained the mask decoder using target image data to enhance segmentation
performance. To reduce computational expenses during training, we computed the image embeddings
only once for each image in the dataset before training commenced. Subsequent training cycles avoided
redundant embedding calculations. The generated reference points, after computation by the reference
encoder, were inputted into the mask decoder along with the image embeddings. The architecture of
fine-tuning is illustrated in Fig. 4. We calculated the loss functions for the three generated masks by the
mask decoder and took their arithmetic average. This fine-tuning strategy helped the SAM network
better adapt to the material image segmentation task while reducing computational burden.

Figure 4: Fine-tuning approach for Material-SAM: We freeze the image encoder and prompt encoder
and only train the mask decoder

The dataset was divided into a training set and a test set in an 80% to 20% ratio. We used the image
encoder of SAM-b to compute image embeddings for the preprocessed dataset. We employed the sum
of Dice loss and cross-entropy loss as the training loss function, and utilized the Adam optimizer [44]
with a learning rate of 1e-6. The batch size for training was set to 94.

4.2 Evaluation of Material-SAM

As mentioned earlier, in material image segmentation tasks, most researchers tend to adopt thresh-
old segmentation methods to segment different phases within the specimen. Additionally, U-Net, a
network that has demonstrated outstanding performance in the field of medical image segmentation,
is currently widely applied in material image segmentation and has achieved significant results. To
validate the performance of Material-SAM, we selected various methods for comparison, including
threshold segmentation, the U-Net neural network, tansUnet, and other network architectures that
have achieved important results in the field of semantic segmentation, such as FCN, SegNet, PSPNet,
DANet, and EncNet. These networks utilized the same dataset as Material-SAM and employed a
combination of BCELoss and DiceLoss as the loss functions, using the Adam optimizer for training.
We set the learning rate to 0.01 and applied a 50% learning rate decay every ten epochs, with a
total of 100 training epochs. Through this experimental setup, we aim to comprehensively assess the
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performance of Material-SAM in material image segmentation tasks relative to other methods. The
evaluation results are shown in Table 1 and Fig. 5.

Table 1: Evaluation of Material-SAM and other different methods on the test set

Method PA (%) CPA (%) DSC (%) IoU (%)

threshold 93.54 55.52 56.82 39.69
U-NET 95.24 73.82 70.72 54.71
SAM 96.67 83.20 79.96 66.61
Material-SAM 98.26 88.45 88.77 79.81
FCN 94.97 65.25 58.75 41.59
trainsUNet 95.65 78.54 75.59 60.85
SegNet 95.93 72.29 75.26 60.38
PSPNet 94.61 58.07 64.84 47.99
DANet 95.46 60.79 69.79 53.72
EncNet 95.73 72.13 74.31 59.15

Figure 5: IoU, CPA and DSC of Material-SAM and other different methods on the test set

From the table, it can be observed that all methods achieved high values in terms of PA metric,
successfully distinguishing most of the background. Among them, SAM achieved a PA of 96.67%,
slightly higher than other methods, while the fine-tuned Material-SAM increased it to 98.26%. Our
method improved the segmentation accuracy of SAM to some extent. The CPA of traditional thresh-
olding segmentation methods was only 55.52%, as the thresholding approach failed in cases where
there was a small threshold difference between carbides and some background regions. Although it
was able to segment carbides, it also misclassified a significant amount of background as carbides. The
CPA and DSC of the SAM method were 83.20% and 79.96%, respectively, higher than those of the
other methods. The fine-tuned Material-SAM achieved scores of 88.45% and 88.77%, respectively. In
summary, our method is capable of performing carbide segmentation in XCT images, and compared
to the non-fine-tuned model, it improved the CPA by 5.25% and the DSC by 8.81%. In the task of
segmenting the carbide in the slice diagram, Material-SAM performed better than the other nine
methods.
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The findings from the images are consistent with the results in Table 1. In the case of the
thresholding segmentation results shown in Fig. 6, although the carbides were mostly segmented, the
regions appeared to be fragmented. Additionally, numerous scattered segmented regions belonging to
the background were observed, indicating poor overall segmentation performance due to the small
threshold difference between carbides and the background. The segmentation result of U-Net shown
in Fig. 6 generated a mask slightly larger than the ground truth mask, successfully detecting all carbide
regions. However, it had false positive segmentations, such as an erroneous segmented region located
at the sample edge in the upper left corner of the image, as well as cases where background regions
were erroneously segmented in the left part of the image. Moreover, it exhibited poor segmentation
capability for block-like carbide regions, such as the carbide region in the upper left corner of the
image, where U-Net segmented based on rod-like features, resulting in hollow regions. In addition,
the masks produced by most methods have a lot of noise. The segmentation result of SAM shown in
Fig. 6 exhibited high segmentation accuracy, correctly distinguishing the background from carbides
and showing good segmentation performance for large carbide regions. However, it was not sensitive
enough to smaller regions and failed to segment the point-like carbides located in the lower part of the
sample. Material-SAM inherited the advantages of SAM, demonstrating high background recognition
capability without mistaking background regions as carbides, and it was more sensitive to small
objects, successfully segmenting the point-like carbides in the lower part of the image. Although the
segmentation performance was poorer for the carbide in the lower right corner, it could be improved
by adjusting or increasing the prompt points.

Figure 6: Performance of Material-SAM and other different methods on test set

We utilized Avizo for three-dimensional visualization of the segmentation results, providing a
more intuitive understanding of the impact of different segmentation methods on the quality of
3D reconstruction in practical analysis. From Fig. 7, it can be observed that the threshold-based
segmentation results in a granular reconstruction, making it difficult to observe the morphology of
carbides. On the other hand, the U-Net segmentation results contain significant redundancy, leading to
potential interference. The 3D reconstruction models of other methods produced many fine particles,
and showed obvious columnar shape. It can be found that these methods are easily affected by the noise
in the image, and are too sensitive to the gray change of the edge of the image. The reconstruction
results of SAM and Material-SAM effectively showcase the structural details of carbides in three
dimensions.
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Figure 7: 3D reconstruction of Material-SAM and other different methods

4.3 Prompt for SAM

In SAM, the input prompts play a crucial role in the mask generation process, and the number of
prompt points has an impact on the segmentation performance. To investigate the relationship between
the number of prompt points and the segmentation capability of SAM and validate the prompt point
sensitivity of Material-SAM, we used different numbers of prompt points as inputs to the prompt
encoder of the model, and evaluated the performance using PA, CPA, and DSC as evaluation metrics.
The experimental results are shown in Table 2 and Fig. 8.

Table 2: The performance of SAM and Material-SAM on the test set with different numbers of input
prompt points

Model Number of prompt points PA (%) CPA (%) DSC (%) IoU (%)

1 92.60 7.10 12.67 6.76
3 93.25 36.22 46.13 29.98

SAM 5 95.22 50.56 62.07 45.01
10 95.51 69.18 71.29 56.48
15 97.87 73.45 78.15 64.14

1 91.58 22.66 26.18 15.06
3 96.99 81.03 81.21 68.36

Material-SAM 5 97.33 81.10 83.23 71.28
10 98.04 83.56 88.70 79.69
15 97.81 83.29 87.99 78.56
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Figure 8: (a) PA, CPA, (b) DSC, IoU of SAM and Material-SAM with different numbers of input
prompt points

From the data in the table, it can be observed that the segmentation performance of the SAM
model improves with an increasing number of prompt points. When only one prompt point was used
as input, the CPA and DSC were only 7.10% and 12.67%, respectively, which were insufficient for
satisfactory segmentation. When the number of prompt points is increased to ten, SAM can segment
the mask we expect. At this time, CPA and DSC are only 69.18% and 71.29%. It can be seen that SAM
has a low sensitivity to features in XCT images and requires a significant number of prompt points to
perform meaningful segmentation. On the other hand, Material-SAM achieved a CPA of 22.66% and
DSC of 26.18% even with only one prompt point as input. With three prompt points, Material-SAM
already achieved satisfactory segmentation performance, and the best performance was achieved with
ten prompt points, resulting in a CPA of 83.56% and DSC of 88.70%. It is evident that Material-SAM
can achieve significant segmentation results with fewer prompt points, overcoming the issue of SAM
requiring a large number of prompt points for XCT image segmentation and reducing the complexity
of the segmentation process. After inputting approximately ten prompt points, the performance of
Material-SAM reached saturation, and further increasing the number of prompt points resulted in
fluctuation in the segmentation performance.

In the process of segmenting a single slice image, it was clearly observed that SAM could only
segment a small area when only one prompt point was used, while Material-SAM achieved a slightly
larger segmented area. When three prompt points were used, SAM still exhibited a small segmentation
range and produced low-quality generated masks, while Material-SAM could segment the carbides
throughout the entire image, as shown in Fig. 9. It was not until 15 prompt points were used that
SAM was able to complete the segmentation of the entire XCT image.

4.4 Generalization Performance

Material-SAM is not only capable of carbide segmentation but also performs segmentation on
other XCT images. To evaluate its generalization ability, we selected slice images from [45] that were not
included in the training of Material-SAM. The resulting segmentation achieved a PA of 98.28%, CPA
of 97.61%, DSC of 81.55%, and IoU of 68.95% reaching a high level of accuracy in pixel segmentation.
The segmentation results are shown in Fig. 10.
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Figure 9: (a1–a5) The masks generated by SAM with different numbers of input prompt points. (b1–
b5) The masks generated by Material-SAM with different input prompt points

Figure 10: (a–c) represent the ground truth images, and (d–f) represent the segmentation results of
Material-SAM

Although there is a certain degree of redundancy in the segmentation of the target, the seg-
mentation results of Material-SAM are very close to the ground truth, demonstrating its strong
generalization ability in XCT image segmentation. Due to the fact that the image encoder of Material-
SAM is constructed and trained based on SAM, it exhibits high sensitivity to changes in grayscale
gradients. With appropriate reference points provided, Material-SAM can perform segmentation
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based on the grayscale values around these reference points, particularly excelling when there is a
significant contrast between the grayscale values of the object to be segmented and the background.

We performed 3D reconstruction of the segmentation results and presented the results of two
methods in Fig. 11. Overall, there is little difference between the results of these two methods, which
confirms the excellent generalization performance of Material-SAM on XCT images and its capability
to handle most material XCT image segmentation tasks.

Figure 11: 3D reconstruction results of (a) ground truth (b) Material-SAM segmentation

5 Conclusion

The emergence of SAM has introduced a new approach to the field of semantic segmentation,
offering a powerful solution for various downstream tasks. Its strong generalization capability makes
it possible to segment almost anything. However, SAM’s pretraining data primarily consists of natural
images, which limits its performance in material XCT image segmentation. It struggles to accurately
capture material features and requires a significant number of feature points to achieve satisfactory
results.

To address this issue, this study constructed a dataset specifically for carbide segmentation in
nickel-based single crystal superalloys. The dataset was adjusted using techniques such as median
filtering, histogram equalization, and gamma correction to enhance the features. To overcome SAM’s
limitations in material XCT image segmentation, we employed transfer learning to fine-tune SAM.
Considering data requirements and computational costs, we froze the parameters of SAM’s image
encoder and only trained the mask decoder. During training, we utilized eight-connected labeling to
identify all carbide connected regions in the ground truth image and selected the coordinates of the
center pixels from the three largest connected regions as input points for the prompt encoder.

To validate the internal validity of Material-SAM, we conducted two experiments comparing
its performance with the original SAM model on our target task—material image segmentation.
We used evaluation metrics such as PA, CPA, IoU, and DSC. In the first experiment, both models
were tested using the same test set and identical reference point inputs. The results indicated that
Material-SAM achieved an 8.81% improvement in DSC compared to SAM, demonstrating superior
performance in material image segmentation and confirming the internal validity of our model
optimization. Additionally, we compared Material-SAM with traditional segmentation methods such
as threshold segmentation and state-of-the-art methods in semantic segmentation, including FCN,
SegNet, PSPNet, DANet, and EncNet. The outcomes revealed that our approach outperformed



CMC, 2024, vol.78, no.3 3717

other networks in various segmentation parameters for material image segmentation. In the second
experiment, we tested Material-SAM and SAM using the same test set and analyzed the impact of
the number of reference input points on segmentation performance. The results showed that Material-
SAM required significantly fewer reference points than SAM to achieve optimal results, confirming
that our model adjustments could reduce its reliance on reference points. Both experiments collectively
validated the internal validity of our approach. To confirm the external validity of SAM-Material, we
applied the model to another material, AZ91 magnesium alloy, segmenting corrosion pits in XCT
slice images. The achieved DSC value for the segmentation result was 81.55%, and visually, it closely
matched the ground truth map, demonstrating strong external validity of our model in material
image segmentation tasks. This further confirmed that SAM-Material can be utilized as an excellent
segmentation algorithm in material images.

This study presents a novel approach for material XCT image segmentation that achieves
good results even with limited training data. It overcomes the limitations of traditional threshold
segmentation, which relies on image grayscale values and often produces poor segmentation results.
Moreover, it avoids the need for a large amount of training data and the computational costs associated
with training neural networks. One limitation of Material-SAM is its reliance on manual input
and adjustment of reference points. In large-scale segmentation tasks, this process may consume
a considerable amount of time and human resources. Additionally, the segmentation results are
influenced by the operator’s input of reference points, introducing a subjective element. This method
is capable of segmenting only one type of object at a time. Moreover, when dealing with a large number
of discrete objects for segmentation, a significant number of reference points may be required. If
the grayscale difference between the segmentation target and the background is small, this method
may struggle to accurately distinguish between the background and the segmentation target. These
limitations need to be carefully considered in practical applications, especially when dealing with large-
scale or complex scenarios. Future improvements could focus on enhancing automation to reduce
manual intervention and improving adaptability to handle multiple object classes and grayscale-similar
scenes. SAM provides a foundation for many downstream tasks, and there are still opportunities
for further improvements and enhancements to enhance its performance in material XCT image
segmentation.
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