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ABSTRACT

Video streaming applications have grown considerably in recent years. As a result, this becomes one of the most
significant contributors to global internet traffic. According to recent studies, the telecommunications industry
loses millions of dollars due to poor video Quality of Experience (QoE) for users. Among the standard proposals
for standardizing the quality of video streaming over internet service providers (ISPs) is the Mean Opinion Score
(MOS). However, the accurate finding of QoE by MOS is subjective and laborious, and it varies depending on the
user. A fully automated data analytics framework is required to reduce the inter-operator variability characteristic
in QoE assessment. This work addresses this concern by suggesting a novel hybrid XGBStackQoE analytical model
using a two-level layering technique. Level one combines multiple Machine Learning (ML) models via a layer one
Hybrid XGBStackQoE-model. Individual ML models at level one are trained using the entire training data set. The
level two Hybrid XGBStackQoE-Model is fitted using the outputs (meta-features) of the layer one ML models. The
proposed model outperformed the conventional models, with an accuracy improvement of 4 to 5 percent, which is
still higher than the current traditional models. The proposed framework could significantly improve video QoE
accuracy.
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1 Introduction

In response to significant advancements in communication technologies and the widespread use
of the internet, both content and service providers have begun providing video services to end users.
Third-generation (3G) and fourth-generation (4G) mobile communication standards were developed
due to the stable development of internet data services. Due to High internet traffic demands,
technology is currently moving from its fourth-generation (4G) to its fifth-generation (5G) [1]. In
particular, video streaming traffic has increased and has become a significant part of internet traffic.
Mobile video traffic is expected to reach 73% in 2023 [2]. Several research aspects have been initiated as
a result of this surge in video traffic. Particularly in recent years, the development of mobile data and
smart devices is increasing. Both industry and academia have focused on 5G QoE research regarding
video quality assessment [3]. Quality of Experience (QoE) revolves around how satisfied or dissatisfied

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.046911
https://www.techscience.com/doi/10.32604/cmc.2023.046911
mailto:vetrivelan.p@vit.ac.in


3196 CMC, 2024, vol.78, no.3

users feel when using a multimedia service or application. Understanding the factors that affect QoE
and allocating resources effectively to improve video quality to meet user expectations is crucial.
There are approaches to evaluate Video QoE, including subjective tests [4], objective assessments [5],
and data-driven analyses [6]. Among these options, data-driven research shows promise by utilizing
datasets to measure user perception. It helps to overcome the limitations associated with subjective
tests and objective assessments, such as costs and limited understanding of the human visual system.

To provide video services that satisfy users and their expectations, service providers and network
operators must invest in QoE estimation [7,8], Due to this scenario, a model of economic interaction
involves three types of participants: content providers (CPs), Internet service providers (ISPs), and
end users. Their relationship is shown in Fig. 1. A bandwidth-based pricing model [9] and a flat-rate-
based pricing model [10] are used to charge CPs and End Users by ISPs to enhance the QoE and QoS.
Several factors may influence end users’ perceptions, including network, context, and content factors.
These factors need to be considered when designing and optimizing video services. To guarantee the
optimum experience for customers, a thorough examination of 5G video QoE should be conducted. To
assess the QoE of a multimedia service, active users of video services will be surveyed using a subjective
feedback method such as the MOS [11].

Figure 1: Relationships among Internet service providers (ISPs), content providers (CPs), and users
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MOS is a well-known and accepted metric used to measure a multimedia service’s perceived
quality. Additionally, it is a useful tool for evaluating the performance of different services and can help
to identify areas of improvement. Table 1 shows scores from 1 to 5 denote bad, poor, fair, good, and
excellent, respectively, according to the MOS standardized by the International Telecommunication
Union (ITU) [12].

Table 1: MOS assessment scale

Score Quality Distortion Class

1 Bad Very annoying but objectionable 0

2 Poor Annoying but not objectionable
3 Fair Perceptible and slightly annoying
4 Good Just perceptible but not annoying 1

5 Excellent imperceptible

Most quality evaluation methods consider user behavior and contextual factors when considering
evaluation approaches. Although the quality of experience is multidisciplinary, it is affected by
factors such as economics, computer science, telecommunications, and social dynamics. A significant
emphasis is placed on the effect of contextual factors in most of the existing research. It remains largely
unexplored in academia how network factors and media-related parameters influence the process.
Previous subjective studies suggest that the QoE for video services relies on various application QoS
aspects. These include factors like the time taken for initial loading, the occurrence of rebuffering or
stalling events, the quality of playback, and its fluctuations [13]. Due to encryption, network operators
lack access to information about the video traces within their networks. The primary avenue for
assessing the QoE in video services is to depend on network-level factors derived from encrypted video
traces or utilize independent network measurement tools operating externally to the video application
data plane. Previous studies on video QoE estimation have demonstrated that the performance of
network-level factors, such as bandwidth, delay, and packet loss rate, directly influences QoE [14]. This
prompts adopting supervised machine learning (ML) to establish a correlation between network-level
measurements (network QoS) and QoE. The following are the primary contributions of this research
work:

• This research aims to identify how the quality of experience is affected by network and media-
related parameters.

• Analyse QoS metrics to determine which factors affect end-user QoE. Further, a two-level
layering approach is used, in which various ML algorithms are used at the first level to predict
the QoE of video services, and then the output of the first level is passed to the second-level
Hybrid classifier for final prediction.

• To validate the accuracy of the proposed work the performance analysis metrics were calculated.

The remainder of this article is organized as follows: Section 2 reviews the background works.
Section 3 discusses the development of a QoE monitoring system. Section 4 presents a discussion of
the Experimental evaluation. Section 5 includes the results and discussion. Finally, Section 6 concludes
the work with future direction.
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2 Related work

Internet traffic has increased in recent years, particularly IP video traffic, which accounts for most
of all Internet traffic. In previous works, user behavior metrics were used to assess user engagement.
In [15], the authors describe various methods for measuring engagement metrics, including loyalty,
activity, and popularity. According to [16], the video view count is highly correlated with the popularity
of its services on YouTube, and the content rating and favorites determine it. Video view counts are
forecasted based on social sharing activities such as the number of times the videos are forwarded
and the time of the session [17]. Video delivery over the internet and the user’s expectation for high-
quality content are rising. This rise has strained internet infrastructure and existing video delivery
technologies, resulting in increased latency in video data and reduced video quality. To satisfy the
user’s needs, video service providers must know how QoS parameters affect user behavior [18].

As a result of examining the impact of degradation in quality of experience on different video
types in [19], authors inferred two levels of user engagement. The first level measures the amount of
time spent watching a video, and the second level measures the number of views per user and the total
time spent watching videos. This analysis shows high buffering ratios reduce user engagement, while
high bit rates deliver better video quality. Perceived quality of experience cannot be determined solely
by social context factors and user engagement metrics. The correlation between QoS and users in a
QoE service must be understood beyond social context factors. It has been noted in [20] and [21] that
initial delays and stalling affect QoE in HTTP video streaming.

Moreover, the authors argue that QoE is also affected by video resolution, buffering time, and
video playback. They also suggest that video QoE perception is affected by the amount of data
transmitted during playback. Finally, the authors state that different QoE metrics can be used to
evaluate the observed quality of video service.

To estimate the quality of video services, the authors in [22] have considered parameters such as
bitrate, framerate, display size, and video content. The authors also point out that the streaming service
provider can use these parameters to improve streaming video QoE. Furthermore, they suggest that
machine learning methods can be beneficial to optimize QoE. The authors of [23] developed a mobile
application to analyze the quality of experience and network parameters that can be installed on end
users’ terminals. The application collects data from the user’s terminal, such as packet loss, jitter, and
latency, and sends it to a cloud-based server. The data is then analyzed to provide real-time insights
into the user’s network and service performance. The application can also be used to diagnose network
problems and suggest solutions. According to [24], subjective studies and objective approaches are
available to measure the QoE of adaptive video streaming. The researchers also compare machine
learning-based and nonmachine learning-based models, concluding that the former exhibits superior
results.

An SDN-based approach was proposed by [25] to prevent video freezes for HAS clients. Further, a
framework based on machine learning was presented to assist clients in avoiding video freezes caused
by congestion on the internet. An ML model was developed in another study [26,27] to investigate
the relationship between QoS metrics and QoE to understand how end-users feel about QoE video
services. Using supervised ML classification, the authors [28,29] demonstrated how QoS and quality
of experience can be predicted and correlated for DASH video streaming in static and mobile scenarios.
In this study, different ML algorithms are examined, but RFC is selected due to its highest accuracy
of 76%.

This work observed that, although the QoE measures examined in the background work have been
acquired in various forms, taking into account different influencing factors, there is a high priority
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given to social contests and user engagement. There is, however, a need for current research involving
QoS, factors relating to video metrics, and the correlation between QoE. Further, Careful investigation
of the results of the existing papers reveals that there is still a large scope for improving the accuracy
metric.

To overcome the above issues, this paper proposes an innovative research agenda incorporating
QoS and QoE metrics to understand user engagement and experience better. Then, a comparative
analysis of the performance of the various ML classifiers with the 5G dataset is carried out to classify
the quality of the video. Then the three best ML classifiers were selected based on training data at level
1 to enhance classification accuracy. Finally, a hybrid XGBStackQoE Classifier model is proposed; the
model is created by concatenating the features of different machine learning classifiers at level 1, and
its output is given to the proposed hybrid XGBStackQoE Classifier at level 2. Both academia and
industry are exhibiting an increasing interest in this type of model. Table 2 illustrates a comprehensive
comparison among machine learning-based Quality of Experience (QoE) prediction models designed
for video services, including our novel proposed model.

Table 2: Comparative table of machine learning-based QoE forecast models for video services

Reference ML technique Influencing factors Assessment
metrics

Prediction
accuracy (%)

Application

Mustafa
et al. [30]

RFR,
multi-linear
regression,
DTR

Throughput, round trip
time (RTT), rate-based,
hybrid ABS algorithms,
number of stalls

MOS, ACR 72.37–87.63 DASH
video
streaming

Shalala
et al. [31]

SVM, LR,
KNN,
Gaussian
naive Bayes,
DT

User profile, gender,
duration, device,
resolution, bitrate, FPS

ACR 73.50–86 HAS video
streaming

Liu et al. [32] DL as a
combination
of CNN and
LSTM

Sequence data,
continuous
information, categorical
information, text, video

MOS 88.74 HAS video
streaming

Qian et al. [33] SVM Rebuffering time ratio
(RTR), buffering delay,
FPS, encoding bitrate

MOS 91.30 HTTP
video
streaming

Hameed
et al. [34]

DT Average bits per pixel in
inter frames, average
bits per pixel in intra
frames, average burst
length, average
quantization parameter

MOS, SSIM,
VQM

88.90–90.50 H.264/AVC
video
streaming

(Continued)
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Table 2 (continued)

Reference ML technique Influencing factors Assessment
metrics

Prediction
accuracy (%)

Application

Ben Youssef
et al. [35]

Multiclass
incremental
SVM

FPS, frame lost, audio
rate, buffer time, video
quality, delay, packet
loss rate, video type,
video size, mean bitrate

MOS 89 Mobile
video
streaming

Minovski
et al. [36]

RF Frame delay, frame
skips, blurriness, RSSI,
RSRP, RSRQ, CQI

MOS, PSNR 75–85 Mobile
video
streaming

Zhang
et al. [37]

DL Video, text, categorical
information,
continuous values

MOS, ACR 90.94 Mobile
video
streaming

Ashiquzzaman
et al. [38]

DL based
CNN

Brightness, Image
bitrate, resolution,
compression quality,
sharpness

MOS 78 Video
Streaming

Proposed work XGBStack
QoE classifier

RTT, stall duration,
throughput, byte size,
the width of the video
segment, height of the
video segment

MOS 93.51–97.41 Video
streaming

3 Formulation of the QoE Monitoring System

This study examines the correlation between network parameters and end-user QoE [39]. This
paper considers impact factors in the QoS metrics to be quality indicators for video streaming services.
Further, it analyses the influence of various network parameters on the user experience and evaluates
the performance of existing solutions. The results of the proposed system can be used to develop
strategies for improving the quality of video streaming services. Using parameters related to QoS
and content, this paper developed a framework that predicts user quality of experience based on
the perceived quality of the end user. This framework helps us accurately assess user satisfaction
and provides valuable data to improve user experience. QoS parameters and video metrics are highly
correlated with the quality of experience. This framework can monitor user satisfaction over time,
allowing us to spot trends in user behavior and make necessary adjustments. As a result of this
outcome, the proposed work can determine that QoS metrics are the primary indicators of user
satisfaction with a video.

3.1 QoE Measurement

The framework, as shown in Fig. 2, is divided into four sections. A parameter selection section
evaluates the relationships between network parameters, selects the highly correlated parameters, and
seeks to identify optimal parameters for a given task. Finally, the parameters are adjusted and tuned
to improve performance. The parameters for this study were chosen based on literature and research.
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The parameters from the previous step are used to develop a metric used as input to the ML model
in the QoE estimation section. The MOS prediction section computes the MOS using the ML model.
The values from the previous sections are used in the QoE tracking section to keep track of the MOS.

Figure 2: QoE management system

This paper aims to examine the problem of categorizing video streaming quality into two
categories: “bad” and “good”. A binary-dependent variable is used to denote the quality of experience.
This variable can only take two values, either “0”or “1”as shown in Table 1. The number “1”represents
“good” and the number “0” represents “bad”. The MOS score is classified as “bad” when it is within
the (1–3) range and as “good” when it is within the (4–5) range.

3.2 Dataset Description

For this study, the 5G dataset available in [40] is used, which is accurate and adaptable to our
purposes. In addition, this dataset covers the features this work needed to conduct our study. The 5G
dataset contains network parameters and video metrics information for approximately 3756 samples.

To deal with the imbalance in the 5G dataset, methods such as imputation and under-sampling
are used to standardize the data. After data processing, the final set of data is obtained. This data is
essential to predict the quality of a video streaming session. A single sample provides network-level
data and metrics that can be used to estimate user behavior at the network level. It allows us to analyze
the correlation between the network parameters and video metrics to determine the optimal streaming
conditions. Then, the performance evaluation metrics are used to evaluate and compare the model’s
performance to other models. The proposed work found satisfactory results, and the model achieved
the desired accuracy.
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3.3 Hybrid XGBStackQoE Classifier

A novel hybrid XGBStackQoE analytical model using a two-level layering technique is shown
in Fig. 3, in which multiple ML classifiers, like Decision Tree (DT), Bagging Classifier, Random
Forest (RF), Adaboost Classifier, Gradient Boosting Classifier, XGBoost [41] is analyzed. The best
three models are chosen based on their training and testing data accuracy for the first level. The
layer 2 Hybrid XGBStackQoE-Model is fitted using the outputs (meta-features) of the layer 1 ML
models. The Hybrid XGBStackQoE-Model is trained using the class labels predicted by the various
ML models. The level 2 classifier is used to generate the final prediction.

Figure 3: Supervised ML-based QoE estimation workflow

Algorithm 1: for XGBStackQoE classifier
Input: Training Data
C = {xi, xi+1, . . . , xn and yi, yi+1, . . . , yn} (xiεR

n, yi ε )

Output: A Hybrid Classifier HC
1 Learn how to classify at the first level
2 for t = 1 to T do

(Continued)
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Algorithm 1 (continued)
3 On the basics of the Dataset, develop a base classifier Ct

4 end for
5 Using the previous Dataset, create new Datasets
6 for i = 1 to m do
7 Build a new data set containing {xi′, yi},

were xi′ = {C1(xi), C2(xi), C3(xi), . . . , CT(xi)}
8 end for
9 Develop a classifier for the second level
10 Using the newly constructed dataset, learn a new classifier
11 return H (x) = c′(C1(x), C2(x), . . . , CT (x))

The XGBStackQoE Classifier algorithm describes the steps used in the proposed work. The input
training dataset C = {xi, xi+1, . . . , xn and yi, yi+1, . . . , yn} has dimensionality with i = 1 to n. The training
data position is indicated by the feature vector xi, which is a vector with i = 1 to m dimensions.
yi is the class label associated with the ith training data. First-level classifiers in step 1 are trained
with training and testing datasets. In steps 2 to 4, the for loop from t = 1 to T is used to fit first-
level models. In step 5, a new dataset is created from the training set. From steps 6 to 8, the for
loop runs from i = 1 to n and contains the modified feature vector xi′. It contains the first-level
classifier’s predictions. The predicted class labels from level one are passed to step 9, where second-
level classifiers learn from these predictions. Finally, the final prediction is generated using the level 2
classifier H (x) = c′(C1(x), C2(x), . . . , CT (x)).

3.4 Implementation

Google Colab Python 3.10.12 was used to run the classification models in a cloud environment.
Intel Xeon CPU running at a top speed of 2.20 GHz with 12 GB of RAM. The proposed work utilizes
a desktop PC with Windows 11 Operating System.

4 Experimental Evaluation

To create a model for QoE forecasting based on network-related parameters, this paper will
examine the impact of different feasible parameters. The proposed work investigates the effects of
these parameters on the user’s QoE. This work will analyze the model’s results to determine which
parameters influence the user’s QoE most. Further, this work aims to present a method of evaluating
MOS based on ML algorithms and other performance evaluation metrics. To assess the video QoE,
ML models are trained with network and content parameters.

For training and testing the ML model, the data is obtained from a 5G dataset that contains
subjective video information related to the network and content. Furthermore, 30% of the data is
used for validation and 70% for training to determine the correlation between QoS and QoE metrics
and estimate the MOS. To obtain better accuracy results for classification problems, this work applied
three machine learning algorithms at level 1: Bagging Classifier, Random Forest, and Gradient Boost
Classifier, followed by the XGBStackQoE Classifier at level 2.

As shown in Fig. 4a, if the Round-Trip Time (RTT) is high, the MOS of the video is lower, whereas
if the RTT is low, the MOS of the video is higher. As we can see, for MOS to be high, the RTT value
should be around 25 milliseconds; if the RTT value is high, the MOS of the video is reduced to 4, 3,
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2, and 1. Therefore, RTT and MOS are inversely proportional. So, when the value of RTT is high, the
value of MOS for the video will be low; this is the main information this work finds.

Figure 4: Analysis of network metrics with MOS

According to Fig. 4b, if the stall duration is high, the MOS of the video is low, and if the stall
duration is low, the MOS of the video is high. For the MOS to be high, the stall duration value should
be near 0, and if the value of the stall duration is high, the MOS will be reduced to 4, 3, 2, and 1.
Therefore, stall duration and MOS are inversely proportional. As the stall duration of the video is
high, the MOS of the video will be low. These are the main findings of this work.

Based on Figs. 5a and 5b, this work finds that since the throughput and byte size are high, the
value of MOS is also high for video quality. A low throughput and byte size will result in a low MOS
of video quality. Therefore, throughput and byte size are directly proportional to MOS. A similar
relationship can be observed in Figs. 5c and 5d, where the width and height of a video frame are directly
proportional to the MOS. As shown in Fig. 6. The proposed work uses a heatmap to determine the
correlation between features.

Heatmaps allow for easy data interpretation by visually representing the data in a graphical
format. It can be used to identify patterns and trends in data quickly. Analyzing the heat map makes
it easy to understand the correlation matrix. The heatmap indicates which columns are negatively
correlated and which are positively correlated. Heatmaps also provide an easy way to visualize
statistical test results. It is useful to identify outliers and unexpected data points quickly.



CMC, 2024, vol.78, no.3 3205

Figure 5: Analysis of network and video metrics with mean opinion score
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Figure 6: Heatmap matrix for correlation of features

4.1 Performance Measure

This work calculated prediction accuracy using Eq. (1) to evaluate the efficiency of the trained
model.

Accuracy = Number of correct predictions
Total number of data points

× 100% (1)

Using only an accuracy metric is unreliable for evaluating the trained model because the 5G
dataset can have an uneven distribution of classes. It is vital to consider this when training the models to
forecast the video quality based on MOS. There is a total sample size of 3591 in the 5G dataset. Hence,
some uneven distribution of the samples can make the accuracy score misleading. So, the proposed
work cannot rely only on the accuracy score. Therefore, metrics such as confusion matrix, precision,
sensitivity, specificity, and F1 score are helpful. Table 3 includes a summary of these metrics. True
Negative (TN), False Negative (FN), True Positive (TP), and False Positive (FP) values are computed
to overcome the dependencies of accuracy.

4.2 Results for QoE Classification Using Hybrid XGBStackQoE-Model

The confusion matrix (CM) helps us understand the accuracy score’s limitations and how to utilize
it effectively. This matrix is used to calculate the performance of classification models. In comparison
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to an accuracy score, CM provides more information. Tables 4 and 5 include a result of CM for training
and testing data.

Table 3: Performance metrics

Term Representation Range

Accuracy
TP + TN

TP + FP + FN + TN
[0 − 100]

Sensitivity
TP

TP + FN
[0 − 100]

Specificity
TN

FP + TN
[0 − 100]

Precision
TP

TP + FP
[0 − 100]

F1 score [42] 2 × Precision × Sensitivity
Precision + Sensitivity

[0 − 100]

Table 4: CM training results for different ML classifiers with proposed XGBStackQoE

ML classifiers TN FP FN TP

Decision tree 738 0 0 1775
Bagging 738 0 3 1772
Random forest 738 0 0 1775
Ada boost 644 94 58 1717
Gradient boosting 695 43 11 1764
Extreme gradient boosting 705 33 17 1758
XGBStackQoE 738 0 0 1775

Table 5: CM testing results for different ML classifiers with proposed XGBStackQoE

ML classifiers TN FP FN TP

Decision tree 281 36 34 727
Bagging 298 19 24 737
Random forest 273 44 20 741
Ada boost 269 48 42 719
Gradient boosting 280 37 15 746
Extreme gradient boosting 288 29 25 736
XGBStackQoE 301 16 12 749

A true class represents the actual value, whereas a predicted class represents the value predicted
by our model. Fig. 7 shows the comparison of CM for traditional ML models in Figs. 7a–7c with the
proposed XGBStackQoE Classifier in Fig. 7d. In the XGBStackQoE CM Classifier, 301 samples in the
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first quadrant represent the TN. Therefore, the video has a poor MOS, and the model also predicted
this correctly. The second quadrant 16 samples represent the true class is negative, which indicates that
the video data has a poor MOS, but the model predicted this as a good MOS. This is referred to as
an FP.

Figure 7: Confusion matrices for Level 1 and Level 2 classifiers: (a) random forest, (b) gradient
boosting, (c) bagging classifier, (d) XGBStackQoE classifier

The third quadrant of 12 samples is FN, but its true class is positive. It indicates a good MOS
in the video data, but the model predicted this as a bad MOS. Hence, it is known as FN. Lastly, 749
samples in the final quadrant are TP, indicating that the video data has Good MOS; the model also
predicts it as positive. According to Eqs. (2) and (3), an XGBStackQoE model has 1050 correct and
28 wrong predictions.

TN + TP = Correct prediction (2)

FP + FN = Wrong prediction (3)
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5 Results and Discussion

Performance metrics for the various traditional ML models, as well as the performance metrics for
the XGBStackQoE model, are shown in Fig. 8. The XGBStackQoE has attained the highest precision
of 97.90%.

Figure 8: Performance metrics for machine learning models

The enhanced performance of the proposed hybrid model is due to the features obtained from the
Level 1 ML classifiers being concatenated and given as input to the Level 2 XGBStackQoE model. As
a result of mapping the input features into a higher-dimensional space, the proposed XGBStackQoE
classifier improves classification accuracy. Hence XGBStackQoE classifier is the most suitable model
for MOS prediction.

5.1 Summary of Achievements

A novel hybrid XGBStackQoE analytical model using a two-level layering technique is proposed
for QoE analysis. The idea behind the proposed method is to leverage the strengths of different
classifiers and potentially improve the overall predictive performance. The proposed work dataset is
split into 70% for training and 30% for testing sets. Base classifiers are chosen from a diverse traditional
classifier based on their training and testing data accuracy for the first level. In this proposed work,
the base classifiers used were Random Forest, Gradient Boosting, and Bagging Classifiers. Each base
classifier can learn different aspects of the data or provide complementary predictions. Once the
base classifiers are trained, the proposed work uses them to predict the testing set. By combining
the forecasts from the base classifiers, a new feature matrix is generated. Each row of this matrix
corresponds to an instance from the training set, and each column corresponds to the prediction made
by a particular base classifier. The proposed XGBStackQoE-classifier uses this new feature matrix
as input to train. Once the XGBStackQoE-classifier is trained, it uses the predictions of the base
classifiers on the testing set as input to the XGBStackQoE-classifier. The XGBStackQoE-classifier
will generate the final forecast for each instance in the testing set. The proposed work assesses the
performance of the proposed XGBStackQoE model by comparing its predictions with the actual
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labels from the testing set. The proposed work uses appropriate evaluation metrics such as accuracy,
precision, sensitivity, specificity, and F1 score to measure the performance.

6 Conclusion and Future Work

This paper investigated network and video quality parameters with user quality of experience. A
fully automated data analytics framework for video quality prediction is developed. It has examined
and measured the correlation between QoS and QoE parameters. Therefore, the causes of video quality
degradation have been analyzed. The data framework is validated with a high level of accuracy in
forecasting QoE. Here, various ML classifiers of level one, like Random Forest, Gradient Boosting,
and Bagging Classifiers, are trained with the whole training data set. Additionally, the outputs (meta-
features) of the layer one ML models are used to fit the level two Hybrid XGBStackQoE model. The
hybrid XGBStackQoE analytical model outperformed traditional models, improving accuracy by 4%
to 5%. The results of the XGBStackQoE model showed that it was more accurate and reliable than
other models. This enhanced accuracy can improve the user experience of many applications, such as
video streaming and gaming. This method will be further improved in future research to classify more
classes. This could be achieved by increasing the number of training samples and refining the model
architecture. Also, deep learning techniques could be employed to improve the model’s accuracy. The
model could also be tested on different datasets to assess its generalizability. Lastly, transfer learning
could be explored to reduce training time and improve model performance.
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