.W\ Computers, Materials &)
‘ Continua & Tech Science Press

DOI: 10.32604/cmc.2024.046871

ARTICLE Check for

updates

Systematic Security Guideline Framework through Intelligently Automated
Vulnerability Analysis

Dahyeon Kim', Namgi Kim’ and Junho Ahn™

'Computer Information Technology, Korea National University of Transportation, Chungju, 27469, Korea
*Department of Al Computer Science and Engineering, Kyonggi University, Suwon, 16227, Korea
*Corresponding Author: Junho Ahn. Email: jha@kyonggi.ac.kr

Received: 17 October 2023 Accepted: 25 January 2024 Published: 26 March 2024

ABSTRACT

This research aims to propose a practical framework designed for the automatic analysis of a product’s compre-
hensive functionality and security vulnerabilities, generating applicable guidelines based on real-world software.
The existing analysis of software security vulnerabilities often focuses on specific features or modules. This partial
and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security
vulnerabilities of the software. The key novelty lies in overcoming the constraints of partial approaches. The
proposed framework utilizes data from various sources to create a comprehensive functionality profile, facilitating
the derivation of real-world security guidelines. Security guidelines are dynamically generated by associating
functional security vulnerabilities with the latest Common Vulnerabilities and Exposure (CVE) and Common
Vulnerability Scoring System (CVSS) scores, resulting in automated guidelines tailored to each product. These
guidelines are not only practical but also applicable in real-world software, allowing for prioritized security
responses. The proposed framework is applied to virtual private network (VPN) software, wherein a validated
Level 2 data flow diagram is generated using the Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Service, and Elevation of privilege (STRIDE) technique with references to various papers and examples
from related software. The analysis resulted in the identification of a total of 121 vulnerabilities. The successful
implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire
systems, subsystems, and selected modules.

KEYWORDS

Framework; automation; vulnerability analysis; security; guidelines

1 Introduction

Electronic devices are connected by networks and digitalized owing to the development of internet
networks and the spread of various electronic devices such as mobile phones, TVs, cameras, game
consoles, and computers [I-3]. In 2022, the number of internet users per day was 4.95 billion. At
present, the internet penetration rate is 62.5% of the total global population [4]. In addition, it is
estimated that the smartphone penetration in 2022 included 6.6 billion individuals. This represents an
annual increase of 4.9% [5]. The market for software that can be used on various devices is increasing

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.046871
https://www.techscience.com/doi/10.32604/cmc.2024.046871
mailto:jha@kyonggi.ac.kr

3868 CMC, 2024, vol.78, no.3

in conjunction with the spread of computers and smartphones. According to the Software Products
Global Market Report 2023 by ReportLinker [0], the global software product market increased at an
average annual rate of 12.5% from USD 1333.48 billion in 2022 to USD 1500.2 billion in 2023.

As the number of various available software increases, there is an increase in the vulnerabilities
identified in the software. Accordingly, 17,344, 18,325, 20,171, and 25,227 vulnerabilities were iden-
tified in 2019, 2020, 2021 and 2022, respectively. This indicates that the number of vulnerabilities
identified each year is increasing [7]. Recently, the operating system of a petroleum extraction system
was hacked. This shut down a U.S. oil pipeline [§]. In addition, the names, contact information,
birthdays, and product registration information of U.S. customers were leaked owing to a vulnerability
in Samsung Electronics’ systems [9]. Vulnerabilities must be prevented before users utilize the products.
Moreover, it should be feasible to handle 1) vulnerabilities that are identified after products are released
and 2) new threats in response to the development of cyberattack technologies such as ransomware,
viruses, and hijacking. Thus, methods are required for analyzing product vulnerabilities and deriving
security guidelines to prevent and prepare for potential threats.

Existing software security vulnerability analyses [10—13] often focus on specific functionalities
or modules, and in many cases, they are performed without sufficient validation. Such partial and
arbitrary security vulnerability analyses make it challenging to comprehend the overall security
vulnerabilities of the software [14—17]. Particularly, as software systems become increasingly complex,
this arbitrary and partial approach proves insufficient in addressing real-world security issues. Due
to restricted access to internal confidential information, understanding this logic can be challenging.
Therefore, understanding the logic of complex software is crucial for comprehending software security
vulnerabilities.

To address these challenges, the research developed a framework capable of automatically
and rapidly analyzing a product’s overall functionality and security vulnerabilities. The framework
encompasses several stages, including product functional analysis, threat modeling using automated
tools, linking vulnerabilities to functionalities, thorough functional analysis verification based on
threat scenarios, and the automated generation of guidelines and security assessments for each
functionality. Understanding software security vulnerabilities necessitated information about the
software’s comprehensive functionality. Due to restricted access to detailed software functionality
information, data were gathered from functional specifications, operating environments, software
architectures, reports, and thesis papers. The complete functionality was constructed by integrating all
validated functionalities into the automation tool, originally containing only some functional modules.
The proposed framework in this study enables the derivation of entire and comprehensive real-world
security guidelines, overcoming the limitations of the existing arbitrary and partial approach.

Security guidelines for the product are generated by associating functional security vulnerabilities
with the latest vulnerabilities like CVE [18] and CVSS scores, resulting in the creation of automated
and intelligent security vulnerability guidelines tailored to each product. The security guidelines
produced through this framework are practical and applicable in real-world scenarios, allowing for
responses based on security priorities. To validate the proposed framework, the entire software system
was configured using Microsoft’s automation tool based on VPN software [15—17], incorporating
verified functionalities and vulnerabilities. Additionally, it intelligently generates on-demand security
vulnerability guidelines, and each module underwent validation through vulnerability scenarios. The
final set of 121 security guidelines with associated vulnerability scores was generated.

In this research, VPN software was employed for validating the framework. The rationale for
choosing VPN is its well-established and widespread use, making it anticipated that many individuals

CMC, 2024, vol.78, no.3 3869

will comprehend and be able to apply this framework. Therefore, VPN software was selected as
the subject of our experiment. VPN encompasses the overall functionalities of information security
software, including features such as information flow control, virtual channels, audit logs, identi-
fication and authentication, security management, transmission data protection, self-testing, secure
session management, VPN client protection, secure interaction between VPN clients and servers, and
encryption support. In this paper, we implemented and validated all these features in the automated
tool, intelligently enabling the generation of customized guidelines for the entire system, subsystems,
and selected modules.

In this paper, Chapter 2 presents studies related to the proposed security guideline derivation
framework as well as those related to threat modeling. Chapter 3 specifically describes the method-
ology proposed in this study and each of its stages. Chapter 4 applies this study’s proposed framework
to a VPN to analyze vulnerabilities and formulate security guidelines. Finally, Chapter 5 presents this
study’s conclusions and describes future research.

2 Related Works
2.1 Studies on the Formulation of Security Guidelines

Typical security guidelines include the Common Criteria (CC) [19]. CC provides guidelines to
establish general concepts and principles for performing information technology (IT) security evalu-
ations of products and systems based on the International Organization for Standardization/Interna-
tional Electrotechnical Commission (ISO/IEC) 15408. To receive CC certification, the organization
developing the product preemptively prepares a description of the security target, an outline of the
product’s security functions, and an assessment of potential threats. Then, the organization verifies that
the product’s security characteristics satisfy the previously defined standard by performing penetration
testing on the product. It then prepares a report on the results of this examination. Finally, the
prepared documents and the products are sent to the CC evaluation organization to verify that all
the security guidelines are satisfied [20]. CC certification provides a framework through which the
product’s security features and relevant guarantees can be specified. Each country has CC-based
security certification organizations to satisfy its differing security guidelines [21,22]. However, CC
certification provides only security features and guarantees for IT security products. Moreover, it is
difficult to examine the security of IoT devices or general software such as e-commerce software. This
study proposes a security guideline methodology that can be applied to all general products. Studies
[23-25] have been conducted on the establishment of various security guidelines in addition to those for
evaluation and certification. A study [23] determined that the key causes of data security breaches in the
medical industry include human error and malicious result reporting. The study proposed education
to improve the information security awareness of organizations through security guidelines. In that
study, the advantages and disadvantages of existing information security guidelines were compared,
and an effective information security awareness program for organizations was developed to provide
efficient security education. Another study [24] developed a context-based ontology to establish
security guidelines to increase the interoperability and mutual interests between smart-home providers,
users, and smart devices. Here, the cases were divided as follows: one wherein security management
is performed automatically without the user’s involvement, and another wherein the user manages
security according to the guidelines. Specific guidelines were provided for each case. Another study [25]
proposed security guidelines for the design of Automatic Teller Machine (ATM) interfaces. This study
observed that although ATM interfaces have designs that are specialized for usability, there are no
specific guidelines related to security. Therefore, security guidelines for ATM interface design and the

3870 CMC, 2024, vol.78, no.3

definition of each guideline were proposed using security guidelines based on existing regulations and
recommended guidelines for existing interfaces. As demonstrated, studies have established and applied
security guidelines through a variety of methodologies. The present study proposes a vulnerability
analysis and security guideline establishment methodology that can be used by product managers who
are not security experts, for more general products.

Recent research on evaluating the security of Artificial Intelligence-Machine Learning (AI-ML)-
based systems [10] proposed the STRIDE-AI methodology, an asset-centric approach. By adapting
Microsoft’s STRIDE approach to the AI-ML domain, it provides tailored threat modeling. The
proposed methodology offers efficient security controls for ML practitioners to protect ML assets.
The researchers validated the effectiveness of their approach in addressing security threats by utilizing
a publicly available use case based on scenarios. The software architecture provided in this research
is somewhat partial or broad, limiting its applicability to real-world product guidelines and focusing
more on the verification of research methods. Another research [1 1] extended the Microsoft STRIDE
threat model to identify threats from a user’s perspective. This model integrates aspects of threat
modeling relevant to end-users, such as valuable assets, attack targets, and attack methods. For the
validation of this study, user-centric threat modeling was utilized to verify a broad architecture at
Level 0 of a data flow diagram (DFD) using a use case, but detailed design at Level 2 was not
fully constrained. Similar limitations exist in previous vulnerability analysis studies [12—15], which are
confined to partial functions and are primarily applicable for the verification of only their research,
not fully covering the entire functionality.

2.2 Threat Modeling

This study proposes a vulnerability analysis and security guideline establishment methodology
that uses threat modeling. Various threat modeling studies have been performed. The STRIDE
threat modeling approach [26] developed by Microsoft is a computer security threat identification
methodology based on the security development lifecycle. In STRIDE threat modeling, vulnerabilities
are grouped into six categories: spoofing, tampering, repudiation, information disclosure, denial of
service, and elevation of privilege. In addition, STRIDE threat modeling provides accurate guidelines
that can be used by security experts and general users. The Process for Attack Simulation and
Threat Analysis (PASTA) threat modeling approach [27] was developed by VerSprite. It provides a
stagewise process for analyzing the threats to key assets and understanding the status of vulnerabilities
to establish an organization’s overall security strategy. It analyzes security threats to products and
to all the business aspects of the organization that manages and develops products. Linkability,
Identifiability, Non-repudiation, Detectability, Disclosure of information, Unawareness, and Non-
compliance (LIDDUN) threat modeling [28] is applied to mitigate threats to personal information
in systems. It consists of three stages: model the system, induce threats, and manage the threats.
Here, the threat-inducing stage is grouped into seven threat categories: linkability, identifiability, non-
repudiation, detectability, disclosure of information, unawareness, and non-compliance. Another type
of threat modeling is the DREAD threat modeling approach [29] developed by Microsoft, which
calculates risk scores. The threat level can be defined by the sum of the individual risk scores. Here, the
risk scores are as follows: three points for High, two points for Medium, and one point for Low. The
threat level is specified as 5-15 points based on the sum of the risk scores. The Operationally Critical
Threat, Asset, and Vulnerability Evaluation (OCTAVE) threat modeling approach [30] was developed
by the Software Engineering Institute (SEI). This methodology consists of three stages: construct
an asset-based threat profile, identify vulnerabilities in each asset’s infrastructure, and establish a
security strategy. Here, the current security status and key assets are identified. The security strategy

CMC, 2024, vol.78, no.3 3871

is established through various individuals within the organization. Threat Vulnerability and Risk
Analysis (TVRA) threat modeling [3 1] was developed by the European Telecommunications Standards
Institute (ETSI). This methodology analyzes threats to communication systems and evaluates risks.
It uses 10 stages to identify key assets and evaluate scenarios and risks according to the threats
identified. Other threat methodologies include Visual, Agile, and Simple Threat modeling (VAST)
[32] and System-Theoretic Process Analysis for Security (STPA-Sec) [33]. This study compared and
analyzed each of the threat modeling approaches, and selected the one most suitable for general use.

3 Proposed Framework
3.1 Overall Proposed Framework

This section specifically describes the framework proposed in this research, the methods used
in each stage, and the results of an analysis of these stages. The overall framework proposed in
this study is shown in Fig. 1. First, the product functional specifications, operating environments,
software architectures, reports, thesis papers, etc., are analyzed to examine the overall flow of product
usage. Here, end-to-end points need to be analyzed to examine the actual environment that is used
and the specific process that is applied during usage. Second, it is necessary to develop a DFD
to apply most of the threat modeling approaches based on product analysis. A DFD shows the
data flow direction, data types, data modifications, etc., during product usage. Threat modeling
can be applied through various methods such as text and surveys. However, most threat modeling
approaches analyze product vulnerabilities based on DFDs. The points where vulnerabilities may
occur and those that need to be protected can be verified by applying threat modeling based on
the generated DFDs. In addition, the data categories and types where vulnerabilities occur can be
analyzed and corrected. Then, the vulnerabilities are analyzed based on the product’s functions and
operating environments. The vulnerability analysis uses threat modeling, threat libraries, and attack-
scenario methods. Third, threat libraries are constructed to analyze the vulnerability analysis results
obtained via threat modeling and the actual current vulnerabilities that are identified. Threat libraries
may collect known vulnerabilities from various public data such as Common Vulnerabilities and
Exposure (CVE), Common Weakness Enumeration (CWE), and Open Web Application Security
Project (OWASP). In this study, the vulnerabilities collected by threat libraries were combined with
the results of an analysis by threat modeling to present more specific risks. Fourth, attack scenarios
were generated based on these vulnerabilities to understand the attack routes, etc., that employ the
specific vulnerabilities. The generated DFD is verified and modified by comparing the vulnerability
lists of modules used according to the attack scenarios Fifth, then, the security vulnerabilities
were automatedly generated based on the final DFD, considering average scores of CVSS. Finally,
the security guideline was established by combining vulnerability scores. The proposed framework
intelligently enables the automatic generation of security guidelines for specific scopes within the
entire system, including subsystems, modules, and selected components. The framework proposed in
this study can be applied to most general products. It is effective for analyzing vulnerabilities and
formulating security guidelines.

The framework we propose enables automated customized vulnerability analysis for new software
products. The proposed framework suggests a method to collect overall functionality information
for the software (features, environment, architecture, development reports, papers). It proposes how
automated tools, often limited to certain security vulnerability features, can generate additional
security modules tailored to the software. It suggests a validation process for the generated overall
functionalities and vulnerabilities through attack scenarios. It measures the significance by assigning

3872 CMC, 2024, vol.78, no.3

average CVSS scores for validated functionalities and vulnerabilities, categorized by function, module,
and subsystem. Through automated systems, it creates intelligent security vulnerability guidelines for
the entire system, subsystems, and selected modules.

Product : Deriving Establishing
Sincdbinal = l:'o]:l:l;:l; — Threat]hhiral'y - c:t:::ll::s —> vulnerabilities —p- security
analysis & L with CVSS guidelines

g DFD Generation | - "z DFD Verification& [rating__| cvss e |
VPN 0S5 mll Update Nane 00
! I S N i< .

M—— = v I I Medium 4.069
||I l""“ " ll High 7088

Critical 9.0-10.0

*+ Functional Specification m

+ Operating Environments
+ Software Architectures

+ Development Reports S
* Thesis Papers

Figure 1: Overall process of the proposed framework

3.2 Product Functional Analysis and Data Flow Diagram (DFD)

We derived comprehensive and specific software functionalities by utilizing technical documents,
certification authorities, published papers, and reports provided by the company. The identified
functionalities were extracted based on gathered information, and a system encompassing the overall
functionalities was derived through cross-verification. To examine products, this study analyzed their
functions and operating environments. For products under development, threat modeling can be
applied through predefined functions. For developed products, threat modeling is applied based on
their implemented and usable functions. The product functions include all the parts that the users
utilize as they employ the services. The product analysis must examine the environment in which the
product is used and managed. This requires an analysis of the operating environment. The product’s
operating environment refers to the overall environment that aids and manages the operation of actual
services. DFDs are generated to apply threat modeling based on the analyzed product functions and
operating environments. A DFD shows the transformations that occur as the data flows through the
processes within the software. It is subdivided into stages to depict data flows and functions in detail.
Here, the stages consist of Level 0, Level 1, and Level 2. Level 0 is a context diagram. It shows a
simple and basic outline of the entire system or processes of the product. Level 1 divides the results
of Level 0 into sub-processes and analyzes these to depict the key functions performed by the system.
The final stage, Level 2, adds detail to the sub-processes in Level 1 to depict more specific elements of
the DFD. A DFD is composed of the symbols shown in Table 1. It shows the product’s systems and
sub-processes.

A DFD is depicted by these elements. Users can apply the software, and the results can be depicted
by a single diagram. Conventional security tests depict the security results of certain specific functions.
However, DFDs can be used to perform vulnerability analysis on all the functions.

CMC, 2024, vol.78, no.3 3873

Table 1: Descriptions and symbols for elements of data flow diagrams

Item Description Symbol
External Used in data input or output via the role
entity of data generation and consumption.

Indicates the start or end point of data

generation in the course of handling a
process, and is interrelated with a process.

Process A process for converting input data into
the desired data and outputting it. The
process cannot generate data. Follows the
principle of processing input data
sequentially and always processing the
data.

Data store A set of information that stores data. Data
is only stored and does not undergo
separate processing such as conversion.
Depicted as two parallel lines.

Data flow Represents the interface between elements.
The names of data values, etc., should be N
assigned. Depicted as a directional arrow. (Lkd)

3.3 Threat Modeling, Library Analysis, and Attack Scenarios

3.3.1 Threat Modeling

Threat modeling enables the protection of valuable resources, identification and resolution of
threats within products, and comprehension of the communication between processes. Here, threat
modeling can structure and depict the information that influences the security of an application
program. It can be widely applied to software, applications, systems, networks, distributed systems,
Internet of Things (IoT) devices, business processes, etc. Threat modeling is a sequential process that
identifies threats and then, defines countermeasures to prevent and resolve these. Here, threats include
malicious attacks, incidental causes such as device errors, and potential threats that have not been
identified. Various approaches to threat modeling have been studied and developed to identify and
resolve such threats. Each of these approaches has advantages and disadvantages as shown in Table 2.

This study proposes a framework for using STRIDE threat modeling. It can be applied to general
products, perform vulnerability analysis in a variety of circumstances (rather than particular ones), and
provide specific guidelines. STRIDE threat modeling analyzes vulnerabilities based on product DFDs.
Here, the analysis results are grouped into six categories. The major categories can be determined.
The processes and systems where threats occur can be identified by analyzing vulnerabilities based
on DFDs.

3874 CMC, 2024, vol.78, no.3

Table 2: Comparison of threat modeling approaches according to usage features

Function/threat STRIDE PASTA LIDDUN DREAD VAST TVRA STPA-sec
modeling

Applicationin O 0] @)

general

circumstances

Applicable to 0] (0] 0] (6) 0]
various

non-business

products/sys-

tems

Provides specific O (0] (0] 0]

guidelines

Provides public O (0]

automated

analysis tools

Can assign 0] 0] 0]
threat levels

Applicable to 0) (0] @) 0]

complete

products (not in

the development

stage)

3.3.2 Threat Libraries and Attack Scenarios

A threat library is developed to provide vulnerability analysis results that are more specific than
those provided by STRIDE threat modeling. The threat library consists of threats in the developed
software. It includes publicly known vulnerabilities. This study proposes a threat library configuration
based on CVE. CVE provides a list of publicly known vulnerabilities. For the specific vulnerabilities
that are established via the threat library, vulnerabilities that were analyzed through STRIDE threat
modeling can be examined, and more specific security guidelines can be presented. The results
of the STRIDE vulnerability analysis and the constructed threat library are analyzed to generate
attack scenarios for understanding attack routes, attack times, etc. The attack scenarios illustrate
vulnerabilities based on the principles of the cyber kill chain, analyzing the threats in terms of who,
where, when, how, what, and why, stemming from the exploitation of weaknesses. The existing DFDs
are validated by comparing them with the anticipated outcomes from the attack scenarios. DFDs are
updated in areas identified with issues, leading to the generation of validated DFDs.

3.4 Establishing Security Guidelines with Scores

A vulnerability list for the product is generated through the created DFDs. This vulnerability list
is integrated with CVSS scores, and average scores are generated based on categories such as the entire
system, subsystems, modules, etc., corresponding to the functional aspects of the product. Ultimately,
a comprehensive security guideline is formulated through a thorough analysis of vulnerabilities in the

CMC, 2024, vol.78, no.3 3875

product. Security guidelines are criteria for certifying the security of an application program. These
can stabilize and improve the security of the product. In particular, security should be maintained and
ensured as vulnerabilities and software functions are developed rapidly. Conventional methodologies
perform expensive intrusion testing or provide guidelines only for certain functions related to security
modules. Therefore, it is difficult to secure all the functions, and security certification becomes
expensive. This study used a methodology based on public vulnerabilities and threat modeling. The
security guidelines derived from these include all the functions of the software as a whole and can be
used without security experts or attack simulators. Thereby, these can ensure security inexpensively.
In addition, the products that are developed and maintained using the security guidelines proposed
in this study are safe from the increasing number of new vulnerabilities and potential vulnerabilities
that are not public. This study applied the proposed methodology to a VPN and formulated security
guidelines for the VPN.

4 VPN Vulnerability Analysis and Security Guideline Formulation
4.1 VPN Analysis

We applied the framework proposed in this study to a VPN to demonstrate the practicality of the
framework and verify the actual process of application [34-37]. A VPN extends a public network so
that it behaves similarly to a private network. This enables the use of the public network such that
the computing device functions as if it is connected directly to a private network. Recently, due to
COVID-19, the number of companies permitting work from home has increased, and non-face-to-
face technologies such as remote classes and remote meetings have grown. There has been a growth in
VPN technology as well. This has enabled users to access companies’ internal networks from home.
This study analyzed vulnerabilities and formulated security guidelines for VPNs using the proposed
framework.

4.1.1 VPN Operating Environment and Functions

The user applies the VPN client at home to connect to the company’s computers. At this time,
it is feasible to access the company’s internal network via the VPN tunnel. The VPN comprises
the operating environment shown in Fig. 2. Here, the VPN’s security functions include information
flow control, virtual channels, audit records, identification and authentication, security management,
protection of transmitted data, self-testing, secure session management, protection of VPN clients,
securing connections between VPN clients and servers, and password support. Identification and
authentication, secure session management, and VPN client protection are secure functions upon
logging in. Information flow control, audit records, and self-testing are functions that are secure
throughout VPN usage. Other security functions include encryption to secure the VPN. Information
flow control and virtual channels are the chief functions of the VPN. Information flow control
permits only users with verified integrity to gain access. It must provide functions that permit
communication only between communication partners specified by an authorized administrator. In
addition, the gateway must block a variety of incoming/outgoing information according to rules set by
the administrator and send only the permitted traffic through. Virtual channels provide a function that
generates virtual variations for secure communication with communication partners. These should be
capable of ending sessions when abnormal termination or access is detected.

3876 CMC, 2024, vol.78, no.3

' Internal Network
m : —]
Internet 1
' =g
] Off =]
VPN Client | AoE =]
L

Figure 2: Operating environment of a VPN

4.1.2 VPN Data Flow Diagram

This study generated a two-stage DFD based on the VPN’s functions. The Threat Modeling Tool
(TMT) provided by Microsoft was used to generate the DFD. The TMT essentially provides DFD
elements. The user can conveniently generate the desired elements, etc., and perform STRIDE analysis.
The TMT is a customizable automation tool that can modify unanalyzed STRIDE vulnerability
results. A DFD that incorporates VPN functions includes a login function and an encryption function.

In a VPN, the IP addresses are modified at the server VPN gateway shown in Fig. 3. The server
VPN gateway is connected to the VPN server so that user audit records and administrator-specified
rules can be set and the IP addresses of various users can be modified. At this time, the VPN server
is connected to an SQL database to generate and store users’ usage times, types, etc. The data that is
transmitted to the server VPN gateway can be transmitted to the company via a modified IP address.
Because the gateway is an individual device rather than a process, it is depicted as a data storage
element. The login proposed in this study is authenticated via two-factor authentication (2FA) [37] as
shown in Fig. 4. 2FA provides better security through a two-stage authentication. A typical example
of this is the OTP authentication performed after logging in.

SQL Database

¥ Server VPN
gateway

9
m Server VPN USER VPN
gateway gateway
j Server VPN
L i gateway

Figure 3: DFD of a VPN. Left: IP address alteration via VPN gateway. Right: database connected to
VPN server

CMC, 2024, vol.78, no.3

3877

N |

\

(a)

_3 User DataBase

x User VPN

Gateway

AN

(b)

o Token DataBase

Figure 4: DFD of 2FA authentication: (a) first authentication, (b) second authentication

This study used an authentication protocol that performs authentication using a Diameter server.
The User DB stores account information such as the IDs, passwords, names, etc., of users. The Token
DB stores biometric information such as fingerprints and voice information, enabling 2FA. Users
enter their information via the VPN client. A verification process occurs on the Diameter server to
examine whether the information is correct. The VPN designed in this study is encrypted by IPsec
[38,39]. A DFD of the encryption is shown in Fig. 5.

VPN Server
Gateway

Diffie Hedlman

Access reguest flow

Figure 5: DFD of encryption

For encryption, the client’s server key is entered, and encryption is performed using the Diffie—
Hellman algorithm. At this time, a new secret key is generated to allow for a secure connection between
the VPN server and the client. An AH is used to packetize the data. The key is encrypted and decrypted

3878 CMC, 2024, vol.78, no.3

via DES. Thereby, the transmitted data is protected. In addition, the transferred data is rejected when
the key for the decrypted results at the final destination differs from the key sent earlier.

4.2 VPN Vulnerability Analysis

A total of 121 vulnerabilities were identified in the STRIDE analysis results that used the DFD
designed in this study. The identified vulnerabilities included 14 spoofings, 20 tamperings, 1 repudi-
ation, 31 information disclosures, 30 denials of service, and 25 elevations of privilege vulnerabilities.
To examine the STRIDE analysis results and make them more specific, 803 CVEs were analyzed to
examine 207 CVEs related to this study. Then, the STRIDE results and CVE results were linked as
shown in Table 3.

Table 3: STRIDE analysis results and CVE matching results

DFD element type Specific element ~ Interaction STRIDE STRIDE description CVE
HTTPS S Spoofing the Human User ~ CVE-2020-5145
Process
Process VPN client CVE-2018-0333
CVE-2020-3583
Data S Spoofing the User VPN CVE-2020-5137
Gateway Process CVE-2021-34704

CVE-2022-0342
CVE-2022-20745

(Omitted)
IPsec D Potential Excessive Resource CVE-2002-1100
Consumption for Access
Request or Diameter Server
Company server ~ HTTPS D Potential Excessive Resource CVE-2003-0260
Consumption for Company
Gateway or Company Wed
Server
Request token I Authorization Bypass CVE-2019-6143
IPsec I Weak Access Control fora ~ CVE-2013-5510
Resource
Process Diameter server IPsec D Potential Excessive Resource CVE-2008-0915

Consumption for Access
Request or Diameter Server

IPsec D Potential Process Crash or ~ CVE-2008-2733
Stop for Diameter Server

Encryption Encrypted Data 1 Weak Authentication Scheme CVE-2007-2332

(Omitted)

(Continued)

CMC, 2024, vol.78, no.3

3879

Table 3 (continued)

DFD element type Specific element Interaction STRIDE STRIDE description CVE
Access request T The VPN server Data Store CVE-2017-12319
flow Could Be Corrupted
Access request I Weak Authentication Scheme CVE-2002-1099
flow
Data 1 Weak Authentication Scheme CVE-2019-16651
Access request D Potential Excessive Resource CVE-2002-1101
flow Consumption for User VPN CVE-2021-22985
Gateway or VPN server
Data storage User VPN Data D Potential Excessive Resource CVE-2005-3409
gateway Consumption for VPN Client CVE-2021-0228
or User VPN Gateway CVE-2001-0428
Data D Potential Process Crash or CVE-2002-1102
Stop for User VPN Gateway CVE-2013-3415
CVE-2017-12319
Access request D DoS via Buffer overflow CVE-2021-45991
flow CVE-2004-0699
Company web Decrypted Data D Potential Process Crash or CVE-2017-12319
gateway Stop for Company Gateway
Decrypted Data T The Company Gateway Data CVE-2017-12319
Store Could Be Corrupted
(Omitted)
Data flow Decrypted data Decrypted Data D Data Flow Decrypted Data Is CVE-2018-0154
flow Potentially Interrupted

To make the CVE analysis results more specific, an attack scenario was prepared, and the attack
route, etc., was analyzed. This is shown in Table 4.

Table 4: CVE attack scenario analysis results (several typical cases among several analyses)

CVE No. Who When Where What How Why

CVE-2021-0228 Attacker When an abnormal or ~ User VPN Continuously By ineffectively To perform a
exception state Gateway sending certain examining the DoS attack
vulnerability is Layer 2 traffic abnormal or

examined ineffectively
on a Juniper Networks
MX series platform
that has a Trio-based
MPC deployed in an
EVPN-VXLAN
configuration

exceptional state

(Continued)

3880

CMC, 2024, vol.78, no.3

Table 4 (continued)

CVE No. Who When Where What How Why

CVE-2020-27569 Remote attacker =~ When Aviatrix VPN SQL database Logs By committing To obtain
Client 2.8.2 and an error related write access
previous versions are to writing to a permission to
used world-writable all the system

location files

CVE-2021-22985 Malicious VPN When handling VPN User VPN Traffic By consuming To perform a

user traffic with APM in Gateway excessive DoS attack
BIG-IP APM version memory with on APM
16.0.x TMM

CVE-2021-1297 Unauthenticated ~When the web-based VPN client System directory By uploading To overwrite

remote attacker ~ management interface specially-made any files on
of Cisco Small files through an the system
Business RV160, insufficient
RV160W, RV260, validation
RV260P, and RV260W examination
VPN routers is used

(Omitted)

CVE-2001-0428 Attacker When a Cisco VPN User VPN Specially altered By transmitting ~ To consume
3000 series device is Gateway IP packets that to a vulnerable 100% of CPU
used include IP option device resources and

settings with deny the
ineffective device’s
options services

CVE-2001-1499 Attacker When CheckPoint Access request Different error By an attacker To acquire
VPN-1.4.1SP4 (which messages determining a account
uses SecuRemote) is regarding valid valid ID and information
applied IDs and performing a

inappropriate brute-force
IDs password attack

CVE-2002-0047 Attacker When the CIPE VPN VPN server Small sequential By an error in the To stop the

package is used packets in packet handling program
Crypto IP code
Encapsulation
(CIPE)

CVE-2002-1447 Attacker When using the Cisco Access request User-provided By insufficient To cause a
VPN Client for the arguments in bound buffer
Unix platform VPN client examination and overflow and

commands vulnerabilities obtain
privileges on
the system

CVE-2002-0853 Attacker When the Cisco VPN IKE IKE packets that By sending these To consume
client is used have been altered to vulnerable CPU

by a remote VPN clients and resources and
attacker to have a increasing the deny service
payload with a CPU usage to

length of zero 100%

4.3 VPN Security Guidelines

The final security guidelines were formulated based on the STRIDE vulnerability identification
results and CVE analysis results. The security guidelines formulated in this study are for VPN security.
The importance of each guideline is indicated by its CVSS, which is its CVE vulnerability score. This
is shown in Table 5.

CMC, 2024, vol.78, no.3

Table 5: Security guideline derivation

3881

Element

Security guideline

CVSS

Examine whether the VPN client’s user personal
information is encrypted when transmitted.
Verify whether the VPN client executable file’s
functions have been altered.

Examine whether the existing service
configuration environment has been organized
effectively in the VPN client.

Verify whether the password is entered while
executing the VPN client with administrator
privileges.

Examine whether there are errors related to
privileges at the program level in the VPN client.
Restrict the VPN client installation file path, and
verify the execution file path while running the
client.

Examine whether the correct absolute path of
the dynamic library that is used during VPN
client execution is entered in the configuration
file.

Examine the privileges in the VPN client’s
program file execution and configuration
settings.

Examine whether the basic user can overwrite
the binary file in the VPN client.

Examine the execution files and configuration
files of the dynamic libraries and external
libraries that are executed while connecting via
the VPN client.

Verify the restrictions on the access range that is
executed with administrator privileges while
running the VPN client.

Verify whether there have been no modifications
to the path of the configuration file required to
use the VPN client.

Verify the values while passing parameters of
functions that are used while running the VPN
client.

Examine whether the VPN client cannot extend
the kernel.

5.0 Medium
7.2 High

7.2 High

7.2 High

6.7 Medium

7.4 High

7.9 High

7.6 High

8.8 High

7.3 High

9.4 Critical

9.8 Critical

7.4 High

7.8 High

(Continued)

3882

CMC, 2024, vol.78, no.3

Table 5 (continued)

Element

Security guideline

CVSS

VPN client

Verify whether continuous authentication is
feasible to prevent hijacking while using the
VPN client.

Verify whether the VPN client’s HTTP/S
requests and responses are examined by the
validation mechanism.

Examine the security control related to privileges
during communication between the VPN client
and server.

Examine scripts while executing VPN client
processes.

Verify the presence of a mechanism that detects
whether the user has directly performed
execution in the VPN client.

Verify the validity of the VPN connection name
received by the VPN client.

Verify whether there are restrictions on the value
and length of strings transmitted to the VPN
client.

Examine whether access privileges are restricted
for each user type in the VPN client.

Verify the target that accesses the tunnel before
the user replies to the VPN client.

Examine the IP address of the tunnel generated
in the VPN client process.

Examine whether the IPC message has been
altered by performing validation in the VPN
client.

Examine the “Delete service data and reports”
function in the VPN client.

Examine the validation of the certificate received
while connecting from the VPN client to a VPN
device.

Examine the TCP filter so that TCP packets are
not altered in the VPN client.

Examine the management session’s VPN delete
requests in the VPN client.

Examine the privilege range of the management
interface files that are stored by the VPN client
process.

7.8 High

7.8 High

8.8 High

5.5 Medium

6.3 Medium

6.4 Medium

7.8 High

8.1 High
4.0 Medium
6.5 Medium

5.5 Medium

7.8 High

8.2 High

5.0 Medium
5.5 Medium

9.8 Critical

(Continued)

CMC, 2024, vol.78, no.3

3883

Table 5 (continued)

Element Security guideline CVSS
Examine whether the validation of the 8.8 High
management interface text in the VPN client is
appropriate.

Examine whether CLI commands have been 7.8 High
altered in the VPN client.

Examine the access privilege range of director 7.6 High
files while executing the VPN client process.

Examine whether file read requests have been 7.5 High

altered in the VPN client.

Examine whether there are accounts with no
passwords that have administrator privileges in
the VPN client.

Examine whether two-factor authentication has
been downgraded to one-factor authentication
in the VPN client.

Examine the appropriateness of the
authentication access mechanism while accessing
the VPN client process.

9.8 Critical

6.5 Medium

9.8 Critical

Examine whether the initial VPN request was 7.5 High
performed multiple times in the VPN client.
Examine the connection list (hostname, path or 5.0 Medium
cookie list, etc.) that is sent to the gateway in the
VPN client.
Examine the settings of the traffic status 7.1 High
confirmation module used in the VPN client.
Verify the drivers used by the VPN client. 2.1 Low
Verify whether there are errors in the update 7.8 High
function of the VPN client.
Verify whether there are restrictions on the 5.5 Medium
amount of memory that can be used by the VPN
client.
Verify whether the previous process ended 4.4 Medium
normally while setting up the network of the
VPN client process.
Examine the data that was sent by the user in the 5.5 Medium
VPN client process system.
Upgrade the component security system of the 8.0 High
VPN client process.

Access request Examine whether the replies to VPN client login 5.3 Medium

attempt failures are encrypted.

(Continued)

3884

CMC, 2024, vol.78, no.3

Table 5 (continued)

Element Security guideline CVSS
Examine the function for restricting the number 6.4 Medium
of VPN client logins.

Examine the function for restricting the length 5.0 Medium
during VPN client login input.

Examine the function for restricting the length 7.2 High

of VPN client user profile names.

Company Examine the company server process’ I[CMP 5.0 Medium

server packet handling validation.

Diameter Examine the authentication method of the 9.1 Critical

server Diameter server process (LDAP).

Examine the response packet (AAA LDAP) 4.3 Medium
analysis method of the Diameter server process.

Examine the packet response results of the 5.0 Medium
Diameter server process.

Examine the login-attempt handling cookies of 6.4 Medium
the Diameter server process.

Examine the client-based VPN configuration 7.1 High
settings of the Diameter server process.

Examine the encryption algorithm of the 9.0 High
encryption process.

IKE Examine the packet handling method of the IKE 5.0 Medium
process.

Examine the memory management system of the 8.6 High
IKE process.

Examine the IKE process’ IKE packet handling 5.0 Medium
method, which includes the ISAKMP header.

Examine the implementation method of the IKE 7.8 High
process.

VPN server Examine the VPN server process’ authentication 7.4 High
method when certificates are used.

Examine the cookie validation standard of the 7.5 High
VPN server process.

Examine the command validation of the VPN 7.2 High
Server process.

Examine the delete command validation of the 5.5 Medium
VPN server process.

Upgrade the component security system of the 8.0 High
VPN server process.

Examine the file privileges while using policy 9.0 High

files in the VPN server process.

(Continued)

CMC, 2024, vol.78, no.3

3885

Table 5 (continued)

Element Security guideline CVSS
Examine the command usage privileges while 5.0 Medium
using FTF commands in the VPN server process.

Examine the privileges regarding file usage while 7.5 High
applying VPN configuration files in the VPN

Server process.

Examine the information request handling 4.3 Medium
method of the VPN server process.

Examine the valid packet response handling 5.0 Medium
method in the VPN server process.

Examine the packet handling code handling 5.0 Medium
method in the VPN server process.

Examine the VPN session handling method of 5.9 Medium
the VPN server process.

Examine the error handling method of the VPN 5.0 Medium
Server process.

Examine the HTTP packet handling method of 7.8 High
the VPN server process.

Examine the TCP packet handling method of 7.1 High
the VPN server process.

Examine the XEE payload handling method of 7.5 High
the VPN server process.

Examine the password helper parameter 7.8 High
handling method of the VPN server process.

Examine the IP address handling method of the 8.8 High
VPN server process.

Examine the HTTP request handling method of 6.1 Medium
the VPN server process.

Company Examine the BGP packet handling method when 5.9 Medium

gateway the company gateway’s BGP session is used.

Server VPN Examine the message handling method in the 7.7 High

gateway server VPN gateway.

Examine the message input and output handling 5.5 Medium
method in the server VPN gateway.

Examine the traffic and traffic handling 6.4 Medium
verification method in the server VPN gateway.

Examine the data transmission method in the 5.2 Medium
server VPN gateway.

Examine the parameter verification method in 7.6 High
the server VPN gateway.

Examine the packet verification method in the 5.0 Medium

server VPN gateway.

(Continued)

3886

CMC, 2024, vol.78, no.3

Table 5 (continued)

Element Security guideline CVSS
Examine the system connection verification 5.0 Medium
method in the server VPN gateway.

Examine the packet format verification method 6.6 Medium
in the server VPN gateway.

Examine the IKE packet handling method in the 6.6 Medium
server VPN gateway.

Examine the request handling method for 6.7 Medium
services within authenticated devices in the

server VPN gateway.

User VPN Examine the handling method in the options of 5.0 Medium

gateway the user VPN gateway.

Examine the web page HTML verification 5.0 Medium
method in the user VPN gateway.

Examine the data and parameter handling 6.5 Medium
method in the user VPN gateway.

Examine the ID handling method used by the 5.0 Medium
VPN client in the user VPN gateway

Examine the transmission data handling method 7.0 High

in the user VPN gateway.

Examine the verification method for client 6.4 Medium
connections in the user VPN gateway.

Company web Examine the data and parameter handling 5.9 Medium

gateway methods in the company web gateway.

User database Examine the SQL verification method used by 7.5 High
the database in the user database.

Examine the authentication key verification 7.2 High
method in the user database.
Examine the verification method for parameters 8.3 High

that can elevate privileges in the user database.
Examine the verification method for valid IDs in
the user database.

9.3 Critical

SQL database Examine the log data handling method in the 7.5 High
SQL database.
Examine the SQL injection parameter 7.5 High
verification method in the SQL database.

Decrypted Examine whether data transmission to the 7.5 High

data flow device is verified in the decrypted data flow.

5 Conclusion

The primary contribution of this research is the design of a framework that enables the creation
of entire and comprehensive real-world security guidelines, encompassing the systematic vulnerability

CMC, 2024, vol.78, no.3 3887

analysis of practical software using automated tools within a vulnerability assessment framework.
This approach facilitates more efficient and rapid analysis by introducing a structured method
for discovering, classifying, and prioritizing vulnerabilities. It plays a crucial role in enhancing the
security posture of organizations and mitigating the risk of exploitation. The distinctive features of
this approach are expected to contribute to the development of more realistic and effective security
measures, serving as a practical and systematic solution in contrast to existing vulnerability assessment
methods.

This study proposes a vulnerability analysis framework suitable for software or systems. The
framework was used to intelligently establish security guidelines in products with threat scores using
an automated tool, verify functionalities of the software, and integrate the latest vulnerability content
and scores. The entire software system and its usage environment (including the software’s features and
operating environment) were analyzed. Threat modeling was applied to identify vulnerabilities therein.
The results of vulnerability identification by threat modeling can help identify potential threats and
anticipate new threats.

The security guidelines formulated ultimately can secure all general software features, rather
than being limited to certain special features. The proposed framework can also generate customized
security guidelines for specific sections, modules, and algorithms in the entire software product. By
identifying the primary security vulnerabilities in the entire software system, the security guidelines
generated through the proposed framework help to reinforce specifically vulnerable areas. In addition,
the suggested framework can be applied across various fields to develop structured and systematic
security guidelines.

The framework proposed in this study leverages the Microsoft STRIDE threat modeling tool.
However, effective utilization of this tool requires extensive training, and a drawback is that users
must possess prior knowledge to comprehend and deploy it. Additionally, the validation process for
adding new modules to the tool, such as those on the Microsoft STRIDE tool, may present challenges
and prove time-consuming. To address this limitation, our future focus will be on defining reusability
to save time and creating easily accessible common security modules.

Acknowledgement: The authors acknowledge the researchers at the Electronics and Telecommunica-
tions Research Institute (ETRI) in South Korea who supported this research.

Funding Statement: This work is the result of commissioned research project supported by the
Affiliated Institute of ETRI (2022-086) received by Junho Ahn. This research was supported by
the National Research Foundation of Korea (NRF) Basic Science Research Program funded by
the Ministry of Education (No. 2020R1A6A1A03040583) and this work was supported by Korea
Institute for Advancement of Technology (KIAT) Grant funded by the Korea government (MOTIE)
(P0008691, HRD Program for Industrial Innovation).

Author Contributions: Research Design: D. Kim, N. Kim, J. Ahn; Data Collection: D. Kim, J. Ahn;
Data Analysis and Results Integration: D. Kim, J. Ahn; Drafting of the Manuscript: D. Kim, J. Ahn;
Visualization: D. Kim, J. Ahn. All authors reviewed and validated the final manuscript.

Availability of Data and Materials: The data used in the research can be made available to the
corresponding author upon request within the authorized scope by ETRI.

3888 CMC, 2024, vol.78, no.3

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[11 X. Zhang, C. Xia, T. Ma, L. Zhang, and Z. Jin, “Optimizing energy-latency tradeoff for computation
offloading in SDIN-enabled MEC-based I1oT,” KSII Trans. Internet. Inf., vol. 16, no. 12, pp. 4081-4098,
Dec. 2022. doi: 10.3837/111s.2022.12.017.

[2] L.Li, H. Chi, K. Xie, and D. Chan, “Mobility-sensitive multicast protocol in NEMO,” KSII Trans. Internet
Inf. Syst., vol. 16, no. 6, pp. 1994-2017, Jun. 2022. doi: 10.3837/tiis.2022.06.012.

[3] X. Liang, Y. Wu, Y. Huang, D. W. K. Ng, P. Li and Y. Yao, “Performance optimization and analysis on
P2P mobile communication systems accelerated by MEC servers,” KSII Trans. Internet. Inf. Syst., vol. 16,
no. 1, pp. 188-210, Jan. 2022. doi: 10.3837/t115.2022.01.011.

[4] Datareportal, “Digital 2022: Global overview report,” 2022. Accessed: Apr. 03, 2023. [Online]. Available:
https://datareportal.com/reports/digital-2022-global-overview-report

[S] Precedence Research, “Capacitor market-global industry analysis, size, share, growth, trends, regional
outlook, and forecast 2023-2032,” 2023. Accessed: Apr. 05, 2023. [Online]. Available: https://www.
precedenceresearch.com/capacitor-market

[6] ReportLinker, “Software products global market report 2023,” 2023. Accessed: Apr. 07, 2023. [Online].
Available: https://www.reportlinker.com/p06246415/Software-Products-Global-Market-Report.html

[71 CVE Details, “Browse vulnerabilities by date,” 2023. Accessed: Mar. 03, 2023. [Online]. Available: https://
www.cvedetails.com/browse-by-date.php

[8] M. Anderson and F. Bajak, Cyberattack on US Pipeline is Linked to Criminal Gang. New York, NY, USA:
AP News, 2021. Accessed: Apr. 15, 2023. [Online]. Available: https://apnews.com/article/europe-hacking-
government-and-politics-technology-business-333e47df702755£8922274389b7e920

[9] R. Lakshmanan, Samsung Admits Data Breach that Exposed Details of Some U.S. Customers. Venice,
CA, USA: The Hacker News, 2022. Accessed: Mar. 19, 2023. [Online]. Available: https:/thehackernews.
com/2022/09/samsung-admits-data-breach-that-exposed.html

[10] L. Mauri and E. Damiani, “Modeling threats to AI-ML systems using STRIDE,” Sens., vol. 22, no. 17,
pp. 6662, Sep. 2022. doi: 10.3390/s22176662.

[11] P. Datta, S. Sartoli, L. F. Gutierrez, F. Abri, A. S. Namin and K. S. Jones, “A user-centric threat model
and repository for cyber attacks,” in 37th ACM/SIGAPP Symp. Appl. Comput. (SAC '22), New York, NY,
USA, 2022, pp. 1341-1346.

[12] L. Oh et al., “Derivation of security requirements of smart TV based on STRIDE threat modeling,” J. Korea
Institute Inform. Secur. Cryptol., vol. 30, no. 2, pp. 213-230, Apr. 2020.

[13] E. Park and S. Kim, “Derivation of security requirements of smart factory based on STRIDE threat
modeling,” J. Korea Institute Inform. Secur. Cryptol., vol. 27, no. 6, pp. 1467-1482, Dec. 2017.

[14] S. Shim, S. Im, H. Ryu, S. Jun, and T. Ki, “Threat analysis of the smart doorlock systems using threat
modeling,” J. Korean Institute Commun. Inform. Sci., vol. 45, pp. 11, Nov. 2020.

[15] M. H. M. Zaharuddin, R. A. Rahman, and M. Kassim, “Technical comparison analysis of encryption
algorithm on site-to-site IPSec VPN,” in 2010 Int. Conf. Comput. Appl. Indust. Electron., Kuala Lumpur,
Malaysia, 2010, pp. 641-645.

[16] H. Mao, L. Zhu, and H. Qin, “A comparative research on SSL VPN and IPSec VPN,” in 2012 8th Int.
Conf. Wireless Commun., Netw. Mobile Comput., Shanghai, China, 2012, pp. 1-4.

[17] B. K. Chawla, O. P. Gupta, and B. K. Sawhney, “A review on IPsec and SSL VPN,” Int. J. Sci. Eng Res.,
vol. 5, no. 11, pp. 21-24, Nov. 2014.

[18] CVE, “Common vulnerabilities and exposures,” 2023. Accessed: Mar. 25, 2023. [Online]. Available: https://
cve.mitre.org/

[19] Common Criteria, “CC:2022 release 1,” 2022. Accessed: March 12, 2023. [Online]. Available: https://www.
commoncriteriaportal.org/cc/

https://doi.org/10.3837/tiis.2022.12.017
https://doi.org/10.3837/tiis.2022.06.012
https://doi.org/10.3837/tiis.2022.01.011
https://datareportal.com/reports/digital-2022-global-overview-report
https://www.precedenceresearch.com/capacitor-market
https://www.precedenceresearch.com/capacitor-market
https://www.reportlinker.com/p06246415/Software-Products-Global-Market-Report.html
https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php
https://apnews.com/article/europe-hacking-government-and-politics-technology-business-333e47df702f755f8922274389b7e920
https://apnews.com/article/europe-hacking-government-and-politics-technology-business-333e47df702f755f8922274389b7e920
https://thehackernews.com/2022/09/samsung-admits-data-breach-that-exposed.html
https://thehackernews.com/2022/09/samsung-admits-data-breach-that-exposed.html
https://doi.org/10.3390/s22176662
https://cve.mitre.org/
https://cve.mitre.org/
https://www.commoncriteriaportal.org/cc/
https://www.commoncriteriaportal.org/cc/

CMC, 2024, vol.78, no.3 3889

(20]
(21]
[22]
(23]
[24]
(25]
[26]
[27]

(28]

[29]

(30]

(31]

(32]
(33]
[34]
(35]
(36]
[37]
(38]

[39]

Teron Labs, “CC evaluation institute,” 2023. Accessed: March 18, 2023. [Online]. Available: https://www.
teronlabs.com/

Canadian Centre for Cyber Security, “Canadian common criteria scheme,” 2023. Accessed: Apr. 21, 2023.
[Online]. Available: https://www.cyber.gc.ca/en/tools-services/common-criteria

NIAP, “National information assurance partnership,” 2023. Accessed: May 03, 2023. [Online]. Available:
https://www.niap-ccevs.org/

L. H. Yeo and J. Banfield, “Human factors in electronic health records cybersecurity breach: An exploratory
analysis,” Perspect. Health. Inf. Manag., vol. 19, no. 2, pp. 1-10, 2022.

Y. I. Khan and M. U. Ndubuaku, “Ontology-based automation of security guidelines for smart homes,”
in 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 2018, pp. 35-40.

F. Falconi, C. Zapata, A. Moquillaza, and F. Paz, “Security guidelines for the design of ATM interfaces,”
in AHFE, 2020 Virtual Conf-, Verlag, San Diego, USA, Springer, 2020, pp. 265-271.

Microsoft, “Microsoft threat modeling,” 2022. Accessed: Feb. 03, 2023. [Online]. Available: https://learn.
microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats

T. UcedaVelez and M. M. Morana, Risk centric threat modeling: process for attack simulation and threat
analysis. NJ. USA: Wiley Publishing, 2015. [Online]. Available: https://dl.acm.org/doi/10.5555/2834500.
K. Wuyts and W. Joosen, LINDDUN Privacy Threat Modeling: A Tutorial. Leuven, Belgium: Department
of Computer Science, KU Leuven, 2015. Accessed: Feb. 09, 2023. [Online]. Available: https://kuleuven.
limo.libis.be/discovery/search?query=any,contains, LIRIAS1652885&tab=LIRIAS&search_scope=lirias_
profile&vid=32KUL_KUL:, Lirias&offset=0

M. Curphey, J. Scambray, and E. Olson, Improving Web Application Security. USA: Microsoft, 2003.
Accessed: Feb. 15, 2023. [Online]. Available: https://download.microsoft.com/download/d/8/c/d8c02f31-64
af-438c-a9f4-e31acb8e3333/threats_countermeasures.pdf

C. Alberts, A. Dorofee, J. Stevens, and C. Woody, Introduction to the OCTAVE Approach. PA, USA:
Software Engineering Institute, Carnegie Mellon University, 2003. Accessed: Feb. 02, 2023. [Online].
Auvailable: https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=51546

ETSI, “European Telecommunications Standard Institute: Telecommunications and internet converged
services and protocols for advanced networking (TISPAN); Methods and protocols; Part 1: Method and
proforma for threat, risk, vulnerability analysis, ETSI TS 165-1 V5.2.3,” 2017. Accessed: Mar. 02, 2023.
[Online]. Available: https://www.etsi.org/deliver/etsi_ts/102100_102199/10216501/04.02.03_60/ts_10216501
v040203p.pdf

ThreatModeler, “Threat modeling methodologies: What is VAST?,” Accessed: Oct. 09, 2018. [Online].
Available: https://threatmodeler.com/threat-modeling-methodologies-vast/

W. Young and N. Leveson, “Systems thinking for safety and security,” in 29th Annu. Comput. Secur. Appl.
Conf., New Orleans LA. USA, ACM, 2013, pp. 1-8.

J. Zhang, “Research on key technology of VPN protocol recognition,” in 2018 IEEE Int. Conf. Safety
Produce Inf. (IICSPI), Chongqing, China, 2018, pp. 161-164.

Y. k. Kang, D. W. Kim, T. W. Kwon, and J. R. Choi, “An efficient implementation of hash function processor
for IPSEC,” in IEEE Asia-Pacific Conf. ASIC, Taipei, Taiwan, 2002, pp. 93-96.

Z. Wang and L. Cao, “Implementation and comparison of two hash algorithms,” in Int. Conf. Comput.
Inf. Sci., Shiyang, China, 2013, pp. 721-725.

P. N. Thanh and K. Kim, “Implementation of open two-factor authentication service applied to virtual
private network,” in Int. Conf. Inf. Netw. 2013 (ICOIN), Bangkok, Thailand, 2013, pp. 135-140.

B. Santoso, A. Sani, T. Husain, and N. Hendri, “VPN site to site implementation using protocol L2TP and
ipsec,” Teknokom, vol. 4, no. 1, pp. 30-36, 2021. doi: 10.31943/teknokom.v4i1.59.

A. A. Al-khatib and R. Hassan, “Impact of IPSec protocol on the performance of network real-time
applications: A review,” Int. J. Netw. Secur., vol. 20, no. 5, pp. 811-819, 2018.

https://www.teronlabs.com/
https://www.teronlabs.com/
https://www.cyber.gc.ca/en/tools-services/common-criteria
https://www.niap-ccevs.org/
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://dl.acm.org/doi/10.5555/2834500
https://kuleuven.limo.libis.be/discovery/search?query=any,contains,LIRIAS1652885&tab=LIRIAS&search_scope=lirias_profile&vid=32KUL_KUL:, Lirias&offset=0
https://kuleuven.limo.libis.be/discovery/search?query=any,contains,LIRIAS1652885&tab=LIRIAS&search_scope=lirias_profile&vid=32KUL_KUL:, Lirias&offset=0
https://kuleuven.limo.libis.be/discovery/search?query=any,contains,LIRIAS1652885&tab=LIRIAS&search_scope=lirias_profile&vid=32KUL_KUL:, Lirias&offset=0
https://download.microsoft.com/download/d/8/c/d8c02f31-64af-438c-a9f4-e31acb8e3333/threats_countermeasures.pdf
https://download.microsoft.com/download/d/8/c/d8c02f31-64af-438c-a9f4-e31acb8e3333/threats_countermeasures.pdf
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=51546
https://www.etsi.org/deliver/etsi_ts/102100_102199/10216501/04.02.03_60/ts_10216501v040203p.pdf
https://www.etsi.org/deliver/etsi_ts/102100_102199/10216501/04.02.03_60/ts_10216501v040203p.pdf
https://threatmodeler.com/threat-modeling-methodologies-vast/
https://doi.org/10.31943/teknokom.v4i1.59

	Systematic Security Guideline Framework through Intelligently Automated Vulnerability Analysis
	1 Introduction
	2 Related Works
	3 Proposed Framework
	4 VPN Vulnerability Analysis and Security Guideline Formulation
	5 Conclusion
	References

