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ABSTRACT

In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in
fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a promising
means of preventing miscommunications and enhancing aviation safety. However, most existing speech recognition
methods merely incorporate external language models on the decoder side, leading to insufficient semantic
alignment between speech and text modalities during the encoding phase. Furthermore, it is challenging to model
acoustic context dependencies over long distances due to the longer speech sequences than text, especially for the
extended ATCC data. To address these issues, we propose a speech-text multimodal dual-tower architecture for
speech recognition. It employs cross-modal interactions to achieve close semantic alignment during the encoding
stage and strengthen its capabilities in modeling auditory long-distance context dependencies. In addition, a two-
stage training strategy is elaborately devised to derive semantics-aware acoustic representations effectively. The
first stage focuses on pre-training the speech-text multimodal encoding module to enhance inter-modal semantic
alignment and aural long-distance context dependencies. The second stage fine-tunes the entire network to bridge
the input modality variation gap between the training and inference phases and boost generalization performance.
Extensive experiments demonstrate the effectiveness of the proposed speech-text multimodal speech recognition
method on the ATCC and AISHELL-1 datasets. It reduces the character error rate to 6.54% and 8.73%, respectively,
and exhibits substantial performance gains of 28.76% and 23.82% compared with the best baseline model. The case
studies indicate that the obtained semantics-aware acoustic representations aid in accurately recognizing terms with
similar pronunciations but distinctive semantics. The research provides a novel modeling paradigm for semantics-
aware speech recognition in air traffic control communications, which could contribute to the advancement of
intelligent and efficient aviation safety management.
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1 Introduction

Air traffic controllers (ATCOs) and pilots interact via radio to confirm vital flight information,
such as flight phase, flight status, traffic situation, and weather conditions, to maintain the safety
and reliability of aircraft flight in a double-check manner [1], as illustrated in Fig. 1. Nonetheless,
misunderstandings may occur by accident due to background noise disturbance, lack of concentration,
tiredness, and overwhelming pressure, leading to catastrophic aviation accidents [2–4]. In particular,
as air traffic volume rises, the high-pressure workload ATCOs face further drives up the risk of
miscommunications [5]. Fortunately, recent speech and language processing advances have shed
light on the automation of air traffic control communications (ATCC) [6,7]. Automatic speech
recognition (ASR) technologies make it practical to transcribe utterances to text and verify the
semantic consistency between the ATCO’s instructions and the pilot’s readbacks, thereby reducing
the workload of ATCOs and enhancing aviation safety [8,9].

Figure 1: The double-check interaction procedure in air traffic control communication between air
traffic controllers (ATCOs) and pilots. The whole process comprises three steps: (1) the ATCO issues
an instruction to the pilot; (2) the pilot reads back the perceived instruction to the ATCO; and (3) the
ATCO ensures the flight safety by verifying the semantic consistency between his/her issued instruction
and the readback received from the pilot

ASR technology has evolved dramatically in recent decades. As its representative, end-to-end
(E2E) ASR approaches directly model the mapping from raw voice signals to text outputs, simplifying
architecture design and training processes of conventional ASR systems and attracting research
interest [10–13]. ASR models developed for general domains face limitations in directly addressing
the unique challenges of air traffic control communications (ATCC), including scarce data, prevalent
background noise, multilingualism, and challenging accents. Numerous research efforts have emerged
in recent years, attempting to design ASR models more suitable for the ATCC domain. The works
[14,15] addressed the challenge of data scarcity in ATCC and developed a robust ASR system
for ATCC on a limited dataset. Lin et al. explored a series of ASR solutions for ATCC in the
context of multilingual scenarios [16–18]. To address environmental background noise, solutions
like adversarial generation [19], multi-task learning [20,21], and self-supervised learning [22,23] offer
practical strategies for building more robust speech recognition models for ATCC. However, a
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significant challenge lies in semantic information, which is the focus of this study as one of the
crucial directions for advancing spoken language understanding tasks. Extensive research in various
domains has demonstrated its importance [24,25], making it equally vital for enhancing performance
in speech recognition models for ATCC. However, most existing methods [26,27] merely incorporate
external language models on the decoder side and capture the interactions between speech and text
relatively separately without explicit semantic alignment guidance, leading to insufficient semantics-
aware acoustic modeling during the encoding phase.

Inspired by how the brain’s auditory cortex and language center work together to help humans
comprehend spoken language [28,29], speech-text multimodal collaborative processing for speech
recognition is a promising solution to alleviate the concerns above. Nevertheless, multimodal joint
modeling must address the inherent heterogeneity challenge between speech and text modalities
[30,31]. Text is a sequence of discrete symbols that convey human linguistic syntax, semantics, and
pragmatics. In contrast, speech is a continuous-wave signal that can be discretized into a protracted
frame sequence with substantial redundancy between adjacent frames. Specifically, as depicted in
Fig. 2, the speech-text heterogeneity is reflected in the following four aspects:

• Information components. The text conveys primarily semantic information, whereas speech
encompasses diverse components, such as semantics, speaker characteristics, emotions, accents,
and surrounding noises.

• Information density. The text is more informative intensive than speech; thus, arbitrary masking
of a few textual tokens can considerably influence the semantics, while masking random frames
is unlikely to corrupt the speech notably.

• Sequence length. Speech sequences are much longer than their corresponding text sequences.
• Context-dependent distance. Text sequences can model longer context dependencies, while

speech sequences typically only model adjacent local frames.

Speech modality inherently contains more abundant components than text modality, which makes
it hard for semantic-focused speech recognition models in ATCC to extract semantically relevant
information from the intricate parts of the speech signals. Furthermore, speech signals are generally
processed at the frame level, leading to longer acoustic sequences than text, especially for the ATCC
data characterized by long durations. However, speech models can only effectively capture short-range
dependencies between locally adjacent frames, which further limits the modeling of acoustic long-
distance context dependencies and affects recognition performance.

Fortunately, from the opposite perspective, the heterogeneity between speech and text modalities
could also serve as an inspiration for their collaborative modeling, rather than just a challenge.
Text modality with more intensive semantics and longer context dependencies than speech could
tackle the mentioned difficulties. Ideally, by incorporating these beneficial textual semantics into
speech encoding for ASR in a cross-modal cooperative fashion, the derived semantics-aware acoustic
representation will achieve a close semantic alignment between speech and text, thereby enhancing the
performance of ASR.
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Text modality

CSZ9634, surface wind calm, runway 02L, cleared to land. Cleared to land, CSZ9634.

Speech modalityModality type

Instance

Information components

Information density 

Sequence length

Context-dependent
distance

13 words
555 frames

(Speech sequences are much longer than their corresponding text sequences.)

CSZ9634, surface wind calm, runway 02L, cleared to land. Cleared to land, CSZ9634.
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semantic information.
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……

Speech encompasses 
diverse

components.
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Speech sequences typically only model short-range
dependencies between adjacent local frames. 

FBank
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CSZ9634, surface wind calm, runway 02L, cleared to land. Cleared to land, CSZ9634.

Arbitrary masking of a few textual tokens 
can considerably influence the semantics. 

high density

Figure 2: The illustration of the inherent heterogeneity between speech and text modalities regarding
information components, information density, sequence length, and context-dependent distance

Along this line of thought, a speech-text multimodal dual-tower architecture is proposed in this
work for speech recognition of Mandarin Air Traffic Control Communications, which employs cross-
modal interactions to align semantic information across modalities. In addition, a two-stage training
strategy is elaborately devised to derive semantics-aware acoustic representations effectively from
paired speech and text data. In the first phase, the speech-text multimodal encoding module is pre-
trained to enhance inter-modal semantic alignment and acoustic long-distance context dependencies
with the help of masked language modeling (MLM) and cross-modal masked acoustic modeling
(CMAM) strategies. In the second stage, two methods are adopted to fine-tune the entire network,
including deactivating the text encoder or employing all <mask> tokens as text-side input. Therefore,
it bridges the input modality variation gap between the training and inference phases and boosts the
generalization performance thanks to better adaptation to speech-only inputs. The main contributions
of this paper can be summarized as follows:

• We propose a speech-text multimodal dual-tower framework for speech recognition of Man-
darin air traffic control communications. By incorporating multimodal information via intra-
modal and inter-modal interactions, the ASR model can achieve a close semantic alignment
between speech and text modalities during the encoding stage and superior recognition perfor-
mance while preserving efficiency.

• We elaborately devise a two-stage training strategy to derive semantics-aware acoustic represen-
tations effectively. The first stage focuses on pre-training the speech-text multimodal encoding
module to enhance inter-modal semantic alignment and acoustic long-distance context depen-
dencies. The second stage fine-tunes the entire network to bridge the input modality variation
gap between the training and inference phases and boost the generalization performance.
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• We demonstrate the effectiveness of the proposed multimodal speech recognition method on the
ATCC and public AISHELL-1 datasets through extensive experiments, including comparative
experiments, ablation studies, and case studies.

The remaining sections of the paper are organized as follows. Section 2 discusses the related
work. Section 3 comprehensively describes the model architecture and training strategy for speech-
text multimodal speech recognition in Mandarin ATCC. Section 4 introduces the datasets and
experimental setup and presents the analysis of the experimental results. Lastly, Section 5 provides
a summary of the research.

2 Related Work
2.1 Speech-Text Multimodal Structure

In recent years, inspired by how humans perceive the world through multiple sources, employing
multimodal information interactions instead of unimodal data for effective representation learning
has gained popularity [30,32]. As crucial information mediums for human communication, the
distinct modalities of speech and text mutually complement each other, which is also the focus of
this study. Numerous studies leveraging the multimodal interaction between speech and text have
demonstrated superior performance over unimodal approaches in various tasks, including automatic
speech recognition [33,34], speech emotion recognition [35,36], and spoken language understanding
[37,38].

From the perspective of model architecture, speech-text multimodal structures can be broadly
divided into three categories: single-tower networks [39,40], dual-tower architectures [41,42], and
encoder-decoder frameworks [43–45], as presented in Table 1. In the single-tower network, the speech
and text tokens are embedded and concatenated as a unified input sequence for a shared multimodal
encoder, enabling the model to learn their representations with semantic associations. SpeechBERT
[40] takes aligned speech-text pairs as joint input for the shared encoder and constructs an end-to-
end model for spoken question answering. However, speech and text are lengthy sequences, leading
to high computational complexity and inevitable information loss when concatenated as input. In the
dual-tower architecture, the two-modal information flows separately into their respective encoding
branches, enabling them to learn their correlation collaboratively via interaction in the middle or later
stages. The work [42] employed cross-attention and self-attention modules to explore the inter-modal
and intra-modal interactions between acoustic and textual features. Encoder-decoder framework aims
to acquire shared semantics by jointly training the encoder and decoder. SpeechT5 [43] converts diverse
speech processing tasks into speech/text-to-speech/text problems, allowing cooperative learning of
representations for both modalities to enhance cross-modal modeling capabilities. While the encoder-
decoder framework has advantages for generative tasks, differences in optimization objectives between
the encoder and decoder may lead to interference when handling various tasks. Alternatively, a discrete
processing module can bridge the semantic gap between speech and text in an intermediate manner.
SpeechUT [45] demonstrates that hidden units can effectively convey the relationships between speech
and text modalities by decomposing the speech-to-text model into a speech-to-unit model and a unit-
to-text model. CodeBERT [44] transforms speech into discrete code form, and the model learns speech-
text multimodal representations via self-supervised tasks involving code prediction. The discrete code
for speech and text requires careful design; otherwise, it may lead to information loss and pose
challenges during model training.
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In this paper, we design a dual-tower structure to jointly model speech and text modalities during
the encoding phase for enhanced efficiency and flexibility. Each modality branch is scheduled with
distinct optimization objectives to learn the intrinsic information within each modality. In addition, the
model learns connections between modalities through a flexible cross-modal interaction mechanism,
thereby acquiring richer contextual semantic information.

2.2 Speech-Text Multimodal Speech Recognition

Conventional hybrid-based and end-to-end (E2E) [12] acoustic modeling are the two significant
research categories for automatic speech recognition (ASR). The hybrid-based ASR method comprises
several independently optimized model components. In the early period, most techniques relied on
Gaussian Mixture Model-Hidden Markov Model (GMM-HMM) modeling. With the advancement
of deep learning technology, deep neural networks (DNNs) have replaced GMM to estimate the
probability of HMM states, leading to the development of the DNN-HMM [46] framework. However,
submodules are cascaded in the hybrid-based approach after being individually trained and optimized
for their targets. This results in error accumulation, propagation, and potential inconsistency between
optimal local and global solutions. Furthermore, the hybrid model heavily relies on the strict alignment
of annotation information. End-to-end modeling mitigates these issues by directly integrating all
modules into a unified system for joint optimization. The widespread use of connectionist temporal
classification (CTC) [47] enables automatic variable-length mapping from speech frame features to
output label sequences, creating a new paradigm for end-to-end speech recognition. Additionally,
attention-based ASR methods are also frequently employed. The attention-based encoder-decoder
[48,49] does not require preliminary alignment information. Instead, it concentrates dynamically and
flexibly on various portions of the input sequence based on the input acoustic features and previous
context information.

Even though these unimodal works [48] play a dominant role in ASR applications, more
modalities, such as audio-visual [50,51] or speech-text [52,53], have been employed to enhance
acoustic representation with precise semantic alignment [54], as presented in Table 2. The paper
[55] demonstrated that multimodal models incorporating heterogeneous features are preferable to
unimodal models. A type of work explores incorporating the pre-trained BERT model into the
ASR model to inject text knowledge [56]; however, it cannot effectively merge multimodal context
information in a shared space. To alleviate the above problem, Zheng et al. [41] integrated BERT
and wav2vec 2.0 as an end-to-end unified framework, which uses the attention and representation
aggregation modules to facilitate the cooperative learning of the speech-text pre-training model.
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Another research category seeks to reduce reliance on massive amounts of paired speech and
text data by simultaneously learning their representations. Chen et al. [57] presented a self-supervised
method to cooperatively learn a unified representation from both modalities via pretext objectives,
including sequence alignment, duration prediction, and aligned masked language modeling tasks.
With this jointly learned speech-text expression, they developed a multi-lingual ASR model with
only unlabeled speech and text in the target language [58]. Several studies introduced the multi-task
learning framework to effectively employ limited paired speech-text data as supervision, and abundant
unlabeled speech and text data as unsupervised supplements. The paper [59] utilized denoising coding
and machine translation tasks as auxiliary training objectives to enhance the performance of ASR.
Meta AI [60] integrates four self-supervised and supervised sub-tasks to facilitate cross-modal learning
between speech and text. The study [61] used additional supervised speech-text multimodal tasks
to align speech and text representations. The paper [52] leveraged five training strategies to capture
modality-invariant information between Mandarin speech and text. They include self-supervised
phoneme-to-text, speech-to-pseudocodes, masked speech prediction tasks, and supervised phoneme
prediction and speech-to-text tasks.

In this paper, we investigate a dual-tower structure to achieve multimodal modeling of speech and
text. With the help of intra-modal and inter-modal interactions during the encoding stage, we further
design a two-stage training strategy to effectively derive semantics-aware acoustic representations from
paired speech and text data. Considering the practical speech recognition tasks that involve only speech
input, we need to deactivate the text encoder, which remains active during training in the multimodal
framework, to facilitate regular inference. To address the input inconsistency between training and
inference, we explore solutions for missing modalities to bridge the gap effectively.

2.3 Automatic Speech Recognition for Air Traffic Control communications

The ASR system in air traffic control communications could substantially decrease the workload
of air traffic controllers and boost their efficiency [1,9]. While extensive research has been conducted
on speech recognition for ATCC over the past few decades, as presented in Table 3, it is essential to
acknowledge that ATCC presents unique challenges, including data scarcity, high environmental noise
interference, multilingual, accent, unstable speech rates, and a lack of semantic contextual information
[1,62]. These challenges call for more in-depth explorations and innovative solutions to achieve robust
and reliable speech recognition in ATCC.

Table 3: Overview of the relevant literature on speech recognition for air traffic control
communications

Main challenges
concerned

References Modality Dataset Supervision Evaluation criteria

Limited label
data

[15] Speech Real-world ATC
dataset (unavailable)

Unsupervised CER

[14] Speech Real-world ATC
dataset (unavailable)

Self-supervised LER (Label Error
Rate)

(Continued)
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Table 3 (continued)

Main challenges
concerned

References Modality Dataset Supervision Evaluation criteria

[63] Speech NATS, ISAVIA
(unavailable);
LiveATC, ATCO2,
LDC-ATCC,
UWB-ATCC and
ATCOSIM (public)

Self-supervised WER

Multilingual
(accent)

[17] Speech ATCSpeech
(application)

Supervised CER

[64] Speech ATCSpeech
(application)

Self-supervised LER

[16] Speech ATCSpeech
(application)

Supervised LER

[18] Speech ATCSpeech
(application)

Supervised CER

High
environmental
and noise
interference

[65] Speech ATC Corpus
(unavailable)

Supervised CER; SER
(Sentence Error
Rate)

Insufficient
contextual
information

[66] Speech AISHELL-2,
(application) ATC
Corpus (unavailable)

Supervised CER; RTF (Real
Time Factor); RT
(Real Time)

[67] Speech Atcosim, UWB
ATCC, LDC ATCC,
MALORCA,
AIRBUS and
LiveATC (public)

Semi-
supervised

WER

[68] Speech LiveATC and
MALORCA (public)

Semi-
supervised

WER; CallWER
(Call-Sign WER);
Accuracy

[69] Speech-text Surveillance database
of OpenSky (public)

Supervised WER; CSA
(Call-Sign
Recognition
Accuracy)

[70] Speech-text ATCSpeech
(application)

Supervised Accuracy;
Precision; Recall;
F1 score

Speaker
role identi-
fication
Task
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Annotating ATCC speech requires the expertise of specialists and a deep understanding of
air traffic control, incurring high labeling costs. The paper [15] proposed a practical approach to
address the issue of small training samples, which employs unsupervised pre-training to learn speech
representations from unannotated speech samples, followed by supervised transfer learning for sub-
domain adaptation. The study [14] used the self-supervised model wav2vec 2.0 to learn the general
acoustic representation. It combines multi-task learning to fine-tune the model to promote the
performance of low-resource speech recognition for ATCC. By investigating self-supervised methods
and rapidly fine-tuning ASR models with limited labeled data, Zuluaga-Gomez et al. [63] yielded
comparable performance. Experiments on a multilingual dataset showed a slight yet noticeable boost
in ASR performance for ATCC compared with monolingual approaches. Lin et al. concentrated on the
end-to-end framework for multilingual and accented automatic speech recognition systems in ATCC
and design several effective models [16–18,64]. However, the majority of these are tailored for English
accents. The intelligibility of ATCC speech may decrease due to background noise interference. ASR
encounters variable environmental noise from factors like speaker switches, transmission equipment,
and electromagnetic interference in the ATCC domain. Zhou et al. [65] improved a hybrid CTC-
attention end-to-end system in ATCC, addressing the impact of noise and enhancing the model’s
robustness.

Insufficient contextual information may lead to erroneous command interpretations and inter-
active misunderstandings, which is one of the critical factors affecting the performance of ASR for
ATCC and the focus of this study. The paper [66] used a combination of deep residual convolution
and gated attention units to improve the performance of Chinese radiotelephony speech recognition by
capturing local correlations and long-distance dependencies. The papers [67–69] integrated contextual
information from air surveillance data into respective strategies to enhance call-sign recognition
in the ASR system. The research [1] illustrated multimodal inputs to facilitate the extraction of
contextual information, thereby improving the performance of spoken instruction understanding.
Closest to the idea presented in this paper is the work [70], which proposes a modal fusion module to
integrate acoustic and textual knowledge for ATCC-related speaker role recognition tasks. However,
applications of multimodal information in ATCC are still in the exploratory phase. Unlike previous
work, we explore integrating text information with rich semantics and long-range dependencies as
auxiliary inputs, constructing a dual-tower multimodal speech recognition framework for ATCC.
Furthermore, a two-stage strategy is designed to facilitate the interaction modeling of multimodal
semantic information, enhancing the model’s acoustic long-distance context modeling capability and
improving ATCC speech recognition accuracy.

3 Method
3.1 The Overall Model Architecture

This section overviews the proposed speech-text multimodal speech recognition method for
Mandarin air traffic control communications. Fig. 3 illustrates the overall dual-tower architecture,
which consists of three components: 1) Two input representation modules are used to preprocess raw
speech and text data into model input representations. 2) A speech-text multimodal encoding module,
comprising a text encoder and a cross-modal speech encoder, contributes to cross-modal interaction
through collaborative learning with contextual information from both modalities. 3) An attention-
based decoder generates target sequences by focusing on different parts of the encoder output. The
following sections will discuss the details of each module and the training strategies for the overall
model.
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Figure 3: The overall architecture of the speech-text multimodal dual-tower framework for speech
recognition in Mandarin air traffic control communications. “KN

w ” and “VN
w ” denote the final (deep)

key matrix and value matrix of the text encoder at the last layer, respectively. “HN
w ” is the final text

representation and “HN
s ” is the final speech representation. “hdec

t−1” and “hdec
t ” represent the decoder’s

hidden state at step t − 1 and step t. “ct−1” is the context vector for the decoder at step t − 1. “LMLM”
and “LCMAM” denote the loss of MLM task and CMAM task, respectively. “LCE” is the cross-entropy
loss

3.2 Text/Speech Input Representation Module

For the text modality, the RoBERTa-wwm tokenizer1 is adopted to tokenize and encode input
texts with a vocabulary size of 21128 units. In addition, the special tokens <s> and </s> are
introduced to indicate the start and end identifiers. Then the encoded token embedding is added with
the corresponding positional embedding as the final textual input representation. We represent it as
Ew = {e1

w, e2
w, . . . , eTw

w } ∈ R
Tw×dw , where Tw is the sequence length of textual tokens and dw denotes the

hidden size of the text representation.

1The tokenizer can be accessed from the website https://huggingface.co/hfl/chinese-roberta-wwm-ext.

https://huggingface.co/hfl/chinese-roberta-wwm-ext


3228 CMC, 2024, vol.78, no.3

For the speech modality, the input audio signal is initially divided into frames with a duration
of 50 ms and a step size of 12.5 ms. Next, the corresponding Mel-spectrograms are computed to
extract 80-dimensional filter bank (FBank) features from each frame with the Librosa toolkit. To
comprehensively capture the speech signal’s temporal and spectral characteristics, the speech features
are concatenated with their first-order derivatives, which expands the feature dimension to 160.
Finally, the processed acoustic features are projected through a dense layer and combined with the
positional embedding to obtain the input representation Es = {e1

s , e2
s , . . . , eTs

s } ∈ R
Ts×ds for the speech

encoder, where Ts is the total number of acoustic frames, and ds denotes the hidden size of the audio
representation.

3.3 Speech-Text Multimodal Encoding Module

The multimodal encoding module comprises a text encoder and a cross-modal speech encoder
in a dual-tower structure. Text and speech inputs undergo comprehensive feature extraction in their
respective encoders. The cross-modal attention module, resembling a bridge connecting the two
encoders, is a crucial component for facilitating semantic interactive learning between them. Treating
the text as auxiliary guidance, the last hidden state of the text encoder serves as one of the inputs
to the cross-modal attention module. Cross-modal attention interaction occurs between the high-
level textual and all-level acoustic representations, allowing the model to flexibly adjust its focus on
different parts of the speech based on the contextual and semantic information from the text. Through
interactive correlations between speech and text, it facilitates the modeling of acoustic long-distance
context dependencies and achieves close semantic alignment between speech and text, thereby enabling
a better understanding of heterogeneous yet complementary cross-modal information.

3.3.1 Text Encoder

The text encoder adopts the vanilla Transformer encoder structure stacked with N layers. Each
layer mainly consists of a multi-head self-attention sublayer, a position-wise feed-forward sublayer,
and two add-and-norm modules. For the i-th layer, linear projection first transforms the text feature
sequence into query, key, and value matrices, mapping the feature sequence to distinct representation
spaces with various weight matrices. Then, multi-head self-attention [71] parallelly performs single-
head attention several times and connects each head’s outputs. In this way, the model captures
semantic associations and significance in the text input sequence by weighted aggregating contextual
information at different locations, as the following formulas:

Qj
w = Hj−1

w WQ
w , (1)

Kj
w = Hj−1

w WK
w, (2)

Vj
w = Hj−1

w WV
w , (3)

ΔHi
w = MultiHeadAttention

(
Qi

w, Ki
w, Vi

w

)
, (4)

where Qi
w, Ki

w, Vi
w ∈ R

Tw×dw are the query, key, and value matrices of the textual feature sequence. In the
attention mechanism, the query is used to pose questions, the key represents potential correlations
with the query, and the value contains the information to be attended to. WQ

w , WK
w , WV

w ∈ R
dw×dw

are linear transformation matrices concatenated along the columns corresponding to all attention
heads. Notably, the output of (i-1)-th layer serves as the input to the i-th layer, where the very first
representation H0

w is initialized with the text embedding Ew.
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In addition, the position-wise feed-forward sublayer introduces non-linear activation functions to
enhance the fitting capability of the model, and the add-and-norm modules are employed to facilitate
deeper information propagation and accelerate model convergence. Thus, it derives the output text
representation Hi

w ∈ R
Tw×dw through the following formulas:

Ĥ
i

w = LayerNorm
(
ΔHi

w + Hi−1
w

)
, (5)

Hi
w = LayerNorm

(
Ĥ

i

w + FFN
(

Ĥ
i

w

))
. (6)

3.3.2 Cross-Modal Speech Encoder

The cross-modal speech encoder distinguishes from the original Transformer in two attention
modules: the self-attention module and the cross-modal attention module, as depicted in Fig. 4.
The self-attention module in the cross-modal speech encoder is similar to that in the text encoder.
However, unlike the vanilla Transformer decoder, it eliminates the look-ahead mask operation for
future positions. Instead, it employs a bidirectional self-attention module to learn the intra-modal
information of the speech modality thoroughly. Moreover, it is a crucial component for achieving
cross-modal semantic alignment.

Figure 4: The detailed dual-tower structure of speech-text multimodal encoder. “Vw, Kw and Qw” are
the value matrix, key matrix, and query matrix of the text encoder, respectively. “Vs, Ks and Qs” are the
value matrix, key matrix, and query matrix of the speech encoder, respectively. “VN

w ” and “KN
w ” denote

the value matrix, key matrix of the text encoder at the last layer. “LMLM” and “LCMAM” denote the loss
of MLM task and CMAM task, respectively

Firstly, by applying linear transformations with different weight matrices to the hidden states
of the previous layer of the speech modality, we obtain query, key, and value matrices. It facilitates
capturing crucial information in the speech sequence more effectively during attention computations,
which can be calculated as follows:
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Qj
s = Hj−1

s WQ
s , (7)

Kj
s = Hj−1

s WK
s , (8)

Vj
s = Hj−1

s WV
s , (9)

where Qj
s, Kj

s, Vj
s ∈ R

Ts×ds are the query, key, and value matrices of the acoustic feature sequence,
WQ

s , WK
s , WV

s ∈ R
ds×ds are linear transformation matrices concatenated along the columns correspond-

ing to all attention heads. Next, parallel attention calculations are performed on the speech’s query,
key, and value using the multi-head attention mechanism to learn representations of different focus
aspects, enhancing the model’s expressiveness and generalization capabilities, which can be expressed
as the following formula:

ΔHj
s = MultiHeadAttention

(
Qj

s, Kj
s, Vj

s

)
, (10)

where ΔHj
s ∈ R

Ts×ds is the propagated information within speech modality. Finally, the representation
obtained through the attention module is added to the previous layer’s representation, and layer
normalization is applied to alleviate the gradient vanishing problem during model training. The whole
process can be summarized as follows:

Ĥ
j

s = LayerNorm
(
ΔHj

s + Hj−1
s

)
. (11)

Notably, the output of (j-1)-th layer serves as the input to the j-th layer, where the first represen-
tation H0

s is initialized with the acoustic embedding Es.

The other is the cross-modal attention module, which aims to establish a strong link and semantic
alignment between text and speech. The interaction between the two modalities is determined by
computing the dot product between the speech queries and the text keys, resulting in cross-modal
attention weights that capture their interrelationships. Then, a weighted sum of the textual value items
is conducted in each feature sequence via the attention weights to obtain cross-modal interaction
information. The process captures the interdependency and semantic alignment between the speech
and text modalities, enhancing their mutual understanding through attention-weighted information
fusion, which can be computed as follows:

ΔH j
w→s = MultiHeadAttention

(
Qj

s, KN
w , VN

w

)
, (12)

where ΔH j
w→s ∈ R

Ts×ds denotes the propagated cross-modal information from text to speech, and ds is
equal to dw for unified modality. Notably, KN

w and VN
w are the final (deep) representations of the text

encoder at the last layer.

Subsequently, a fully connected feed-forward layer is passed to enhance the representation ability
further. Finally, it derives the cross-modal semantics-aware acoustic representation Hj

s ∈ R
Ts×ds via the

following formulas:

H̃
j

s = LayerNorm
(
ΔH j

w→s + Ĥ
j

s

)
, (13)

Hj
s = LayerNorm

(
H̃

j

s + FFN(H̃
j

s)
)

. (14)

3.4 Attention-Based Decoder

With the cross-modal speech encoder output as input, an attention-based decoder focuses
dynamically on various portions of the encoder output to generate each target sequence element. The
context vector ct−1 for the decoder at step t − 1 is derived by performing a weighted summation of the
encoder’s context vectors with the attention weights as follows:
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ct−1 =
Ts∑

k=1

αt−1,kh
enc
k , (15)

where αt−1,k is the attention weight between the corresponding decoder’s hidden state hdec
t−1 and encoder’s

hidden state henc
k via the position-aware attention mechanism [72]. Specifically, it can be computed as

follows:

αt−1,k = exp
(
st−1,k

)
∑Ts

m=1 exp
(
st−1,m

) , (16)

st−1,k = score
(
hdec

t−1, henc
k

)
, (17)

where st−1,k is the attention score measuring the similarity between the decoder’s hidden state hdec
t−1

and encoder’s hidden state henc
k , and the hidden state henc

k is the k-th row vector of the final speech
representation HN

s .

Furthermore, a long short-term memory (LSTM) network utilizes the current hidden state,
decoder output, and context vector to compute a new hidden state along the time series autoregres-
sively as follows:

hdec
t = LSTM

(
hdec

t−1, yt−1, ct−1

)
. (18)

Lastly, the final decoder’s hidden states pass through a dense layer and a softmax function to
obtain the predicted probability distribution vectors. The cross-entropy loss is calculated to measure
the discrepancy between the predicted distribution and the ground truth labels as follows:

LCE = −
T∑

t=1

V∑
u=1

yu log(ŷu), (19)

where V represents the vocabulary size, T denotes the sequence length of predicted text, and ŷu and yu

represent the u-th element of the predicted distribution vector ŷ and the true label vector y, respectively.

3.5 Two-Stage Training Strategy

The speech-text multimodal framework introduces a new branch of text modality during the
encoding phase. Consequently, a significant gap emerges between the training and inference phases
when the model is evaluated with only pure speech as input. To this end, we devised a two-stage
training strategy, as shown in Fig. 5. It consists of the first-stage pre-training approach for the speech-
text multimodal encoding module and the second-stage fine-tuning method for the entire end-to-end
speech-text multimodal speech recognition network. In the first stage, the speech-text multimodal
encoding module undergoes masked language modeling and cross-modal acoustic modeling tasks,
which help the model comprehensively understand the intra-modal context and interactively integrate
speech and text information. The well-initialized foundation from the first pre-training stage allows
the model to adapt to speech recognition features rapidly. In the second stage, two approaches are
designed to narrow the gap between pre-training and fine-tuning for speech-only input. Leveraging
the established initialization, the model focuses on understanding speech features, optimizing for the
specific speech recognition task, and improving accuracy.
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Figure 5: Two-stage Training Strategy. “LMLM” and “LCMAM” denote the loss of MLM task and CMAM
task, respectively. The “<mask>” token is a special marker to represent a blank space that needs to be
filled or predicted based on context. “Ours� − X” and “Ours�+ < mask >” are the two second-stage
fine-tuning strategies corresponding to the descriptions (a) and (b) in the figure

3.5.1 First-Stage Pre-Training Approach

In the first stage, with coupled speech-text inputs, we pre-trained the speech-text multimodal
encoding module to achieve close semantic alignment between speech and text modalities. The text
encoder employs a cloze-like masked language modeling (MLM) strategy to assist the model in
learning contextual relationships and semantic information within the textual modality. The objective
is to mask certain tokens in the input text and then predict them depending on their contexts. Following
the RoBERTa [73] configuration, we dynamically mask input tokens with a probability of 15%, where
80% of the masked positions are replaced with <mask>, 10% with random tokens, and the remaining
10% remain unchanged. Lastly, the cross-entropy loss serves as the objective function to optimize the
model as follows:

LMLM = −
∑

ŵ∈m(w)
log

(
P

(
ŵ|w

�m(w)

))
, (20)

where m (w) and w
�m(w) denote the masked characters from the textual sequence w and the rest context

characters, respectively.

The cross-modal speech encoder adopts a cross-modal masked acoustic modeling (CMAM)
strategy to learn the speech representation by masking a portion of audio frames and guiding the model
to predict the masked parts depending on their contexts. Thus, it captures inter-modal interactions with
close semantic alignment by incorporating contextual information from both modalities. Specifically,
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we first divide the audio into individual segments by the number of consecutive frames per segment
and select some pieces with a probability of 15%, which masks them all to zero 80% of the time,
replaces them with randomly selected audio frames 10% of the time, and leaves them unchanged for
the remaining instances. In this way, the model seeks to reconstruct the masked acoustic features by
optimizing the L1 loss, which reduces the distributional distinction between predicted representations
and the ground truth concerning the masked positions as follows:

LCMAM = − 1
|Tmasked|

∑
i∈Tmasked

|si − ŝi|, (21)

where Tmasked represents the number of masked positions, si represents the original masked audio
features, and ŝi represents the predicted audio features.

3.5.2 Second-Stage Fine-Tuning Method

In the second stage, with unpaired speech-only input, we fine-tuned the entire end-to-end speech-
text multimodal speech recognition network using cross-entropy loss. In particular, the pre-trained
speech-text multimodal encoding module was employed to initialize the speech-text multimodal
encoder thanks to its effectively aligned multimodal representations acquired in the first stage,
simultaneously taking both speech and text inputs.

The objective of the second stage is to fine-tune the entire model to adapt to speech-only inputs.
To mitigate the discrepancy between the inputs of the encoding modules in the first and second
stages due to inconsistent modal inputs, inspired by the research [62], two methods were attempted:
1) Deactivating the text encoder and textual input. 2) Employing all <mask> tokens as text-side
input. For the former, the text encoder and cross-modal attention are eliminated or deactivated since
the dual-tower architecture independently captures two modalities and uses cross-modal attention
for interaction. For the latter, the original multimodal architecture remains in effect while utilizing a
sequence of all <mask> tokens as text-side input. However, it is challenging for the model to convey
sufficient meaningful information from the fixed text sequence input. Instead, it prioritizes fine-tuning
the speech encoder and decoder to mitigate the domain shift. The two-stage training strategy offers a
feasible means of establishing semantic connections between speech and text modalities, enabling the
multimodal model to handle speech-only input better during inference and produce semantics-aware
speech recognition results.

4 Experiment and Result Analysis
4.1 Dataset

In this study, we adopt a paraphrase dataset of Mandarin air traffic control communications
(ATCC), recorded in a quiet environment under the supervision of seasoned air traffic control experts
and professional course materials. The dataset comprises pairs of the air traffic controller’s command
and the pilot’s readback, resulting in longer sentences than the average dataset. The speech has a subtle
accent, and the speech rate is relatively stable. Each voice sample is stored in the WAV format with a
sampling rate of 16 kHz, 16 bits, and mono encoding. The dataset consists of 10971 voice samples
with a total duration of approximately 25.2 h and is relatively small-scale. We randomly shuffled the
entire dataset and divided it into the train, validation, and test sets in an 8:1:1 ratio.

The study [1] provided summaries of datasets in the domains of common use and ATCC. To
further verify the effectiveness of the proposed method, we also conducted experiments on the
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AISHELL-1 [74] dataset2, an open-source, high-quality Mandarin speech recognition corpus recorded
in a quiet indoor environment. It is extensively used in the speech community and encompasses eleven
domains, including smart home, autonomous driving, industrial production, etc. The total duration
of the dataset is 178 h, indicating a dataset of moderate scale. It sampled at 16 kHz, mono, and 16 bits,
and stored in WAV format. In addition, we divided the dataset into training, validation, and testing
sets in an identical ratio of 8:1:1. Table 4 presents the detailed division of train, validation, and test
sets for the two datasets.

Table 4: Division and size of the two datasets. The symbols #Utterances and #Hours denote the sample
size and total duration of speech utterances, respectively

Dataset Train Dev Test

#Utterances #Hours #Utterances #Hours #Utterances #Hours

ATCC 8777 20.13 1097 2.52 1097 2.52
AISHELL-1 113280 142.4 14160 17.8 14160 17.8

4.2 Implementation Detail

The text encoder and cross-modal speech encoder each consist of six stacked layers of Transformer
with a representation dimension of 768, 12 attention heads, and a feed-forward layer with a size of 3027.
On the other hand, the decoder comprises a single layer of LSTM with a dimension of 768. Using an
initial learning rate of 5e-5, we used the Adam [75] optimizer to optimize the trainable parameters
during model training. In addition, we utilized a linear-decayed learning rate schedule with a warm-
up period [76]. During the fine-tuning phase, we leveraged the AdamW [77] optimizer with an initial
learning rate of 1e-5. Additionally, we employed a cosine annealing learning rate schedule [78] to
achieve optimal performance. We used four NVIDIA A100-SXM4-40G GPUs for the experiment,
with a batch size of eight.

We adopted the Character Error Rate (CER) as the evaluation metric since speech recognition
aims to transcribe speech into text with character as the primary modeling unit. The CER directly
corresponds to individual character errors within the text to ensure more accurate recognition
precision, which can be calculated using the following formula:

CER = I + S + D
N

, (22)

where I , S, D represent the number of inserted, substituted, and deleted characters, respectively, and
N represents the total number of characters in the ground truth labels. The CER can range from
a minimum of 0 to a maximum greater than 1, with lower values indicating higher recognition
accuracy. The Levenshtein distance algorithm3 is the most commonly used implementation method
for calculating the CER.

The proposed two-stage training strategy consists of the first-stage pre-training of the speech-
text multimodal encoding module for 80 epochs and the second-stage fine-tuning of the entire E2E
network for 30 epochs. In contrast, we introduced an additional experimental setting for comparison
to demonstrate the effectiveness of the proposed strategy, as illustrated in Fig. 6b. In the first stage,

2The AISHELL-1 dataset can be downloaded from the website https://www.openslr.org/33/.
3The details of Levenshtein distance algorithm can be accessed from http://en.wikipedia.org/wiki/Levenshtein_distance.

https://www.openslr.org/33/
http://en.wikipedia.org/wiki/Levenshtein_distance
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the encoding and decoding modules are trained E2E with paired speech-text multimodal inputs,
integrating the MLM loss, CMAM loss, and cross-entropy loss to optimize the entire network
simultaneously. In the second stage, the whole E2E speech-text multimodal speech recognition network
is also fine-tuned using solely speech data.

Figure 6: Two experimental setup variants for the two-stage training strategy. “LMLM” and “LCMAM”
denote the loss of MLM task and CMAM task, respectively. “LCE” is the cross-entropy loss. The
“<mask>“ token is a special marker to represent a blank space that needs to be filled or predicted
based on context. ”Ours�−X” and “Ours�+ < mask >” are the two second-stage fine-tuning strategies
corresponding to the descriptions (a) in the figure. “Ours# − X” and “Ours#+ < mask >” are the two
second-stage fine-tuning strategies corresponding to the descriptions (b) in the figure

4.3 Comparative Experiments

Tables 5 and 6 display the recognition results under the same settings on the ATCC and
AISHELL-1 datasets, respectively. The experimental results demonstrate that the proposed multi-
modal models outperform the unimodal baseline model by a substantial margin for both datasets,
delivering performance improvements of 28.76% and 23.82% compared with the optimal baseline
model. Remarkably, our multimodal method denoted as Ours�, achieves the best results on both
datasets, demonstrating the effectiveness of the proposed two-stage training strategy. It indicates that
the first-stage pre-training process concentrating solely on the multimodal encoder contributes to
close semantic alignment between speech and text modalities, serving as a beneficial initialization
for the entire training procedure. Besides, two second-stage fine-tuning strategies are correspondingly
suitable for the two datasets.
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Table 5: The performance comparison of different methods on the ATCC dataset. The symbols � and #
denote the two experimental setup variants for the proposed two-stage training strategy in Figs. 6a and
6b, respectively. The symbols “+ < mask >” and “−X” represent the two second-stage fine-tuning
strategies in Figs. 5b and 5a, respectively. Note that a lower Character Error Rate (CER) indicates
better speech recognition performance. The bold values indicate the best recognition performance in
the corresponding column regarding CER (%)

Model Feature CER (%)

Dev Test

Speech-transformer [48] FBank 23.78 24.82
CTC-based [47] FBank 9.12 9.18
Ours�+ < mask > FBank 7.32 7.76
Ours� − X FBank 6.42 6.54
Ours#+ < mask > FBank 16.26 16.31
Ours# − X FBank 13.92 13.98

Table 6: The performance comparison of different methods on the AISHELL-1 dataset. The symbols
� and # denote the two experimental setup variants for the proposed two-stage training strategy in
Figs. 6a and 6b, respectively. The symbols “+ < mask >” and “−X” represent the two second-
stage fine-tuning strategies in Figs. 5b and 5a, respectively. Note that a lower Character Error Rate
(CER) indicates better speech recognition performance. The bold values indicate the best recognition
performance in the corresponding column regarding CER (%)

Model Feature CER (%)

Dev Test

Speech-transformer [48] FBank 11.28 11.46
CTC-based [47] FBank 15.82 15.95
Ours�+ < mask > FBank 8.53 8.73
Ours� − X FBank 11.02 11.14
Ours#+ < mask > FBank 31.66 31.78
Ours# − X FBank 15.10 15.14

For the ATCC dataset, the unimodal baseline model performs worse due to its limited modeling
capability on small amounts of data and long sequences of the paraphrase dataset. In contrast, the
proposed multimodal method efficiently captures and aligns cross-modal information with more
substantial context modeling capability, thereby increasing accuracy and enhancing generalization
capabilities. Hence, as presented in Table 5, the best results occur when pre-training only the mul-
timodal encoder in the first stage and turning off the text encoder directly in the second stage.
Inter-modal interaction in the first stage enhances acoustic long-distance context dependencies, and
deactivating the text encoder in the second stage benefits the generalization performance of semantics-
aware acoustic modeling.
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For the AISHELL-1 dataset, the model performs optimally when employing all <mask> tokens
as text-side input in the second stage, demonstrating the feasibility of this approach for fine-tuning
and inference, as shown in Table 6. Following the ATCC dataset, the performance of jointly training
the E2E encoder-decoder is inferior to training only the multimodal encoder module in the first stage.
Ideally, after pre-training the multimodal encoder, the model focuses more on the transfer learning
of semantics-aware acoustic feature distribution rather than feature extraction during the fine-tuning
phase. Otherwise, the model devotes more attention to adjusting parameters for speech recognition
tasks when training the encoder-decoder network following three objectives simultaneously in the first
stage, leading to potential interference between subtasks.

4.4 Ablation Study

In this section, ablation experiments were conducted on the ATCC and AISHELL-1 datasets to
validate the effectiveness of critical components in our model, as reported in Table 7. By comparing
the results of setting (a) with our approach, we observed a performance degradation when modeling
without the text modality, which indicates that incorporating semantically rich textual information as
an auxiliary dramatically contributes to recognition performance. In configuration (b), the CER goes
up when excluding the MLM task from the text encoder. It demonstrates the significance of learning
high-level semantic representations for the speech recognition task in the text modality. For setting (c),
we retained only the information flow between speech and text, removing the CMAM task from the
cross-modal speech encoder. The dramatic drop in performance highlights the necessity of modeling
both the intra-modal acoustic information and the inter-modal interaction between speech and text
for comprehensive understanding and modeling of speech signals.

Table 7: The results of the ablation study conducted on critical components of the proposed speech-text
multimodal approach. The indicator MAM denotes that the speech encoding module is pre-trained
via a masked acoustic modeling objective. Note that a lower Character Error Rate (CER) indicates
better speech recognition performance. The bold values indicate the best recognition performance in
the corresponding column regarding CER (%)

Settings Text Input MLM CMAM ATCC AISHELL-1

CER (%) CER (%)

Dev Test Dev Test

w/o text input (MAM) 14.85 14.94 16.95 16.96
w/o MLM � � 13.19 13.33 14.38 14.41
w/o CMAM � � 16.39 16.41 17.08 17.11
Ours� � � � 6.42 6.54 8.53 8.73

4.5 Effect of Model Capacity on Recognition Performance

Hyperparameter selection experiments were conducted on the ATCC dataset to investigate the
effect of the model capacity on recognition performance by varying the number of encoder layers
for two modalities, as presented in Table 8. The recognition performance boosts as the number of
encoder layers increases. The larger capacity enables the model to convey more semantic information,
producing better results for semantics-related speech recognition tasks. Ultimately, the performance
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peaks at six encoder layers; however, it then degrades since the model may struggle to learn and adapt
due to insufficient data.

Table 8: Effect of model capacity on recognition performance on the ATCC dataset. Note that a lower
Character Error Rate (CER) indicates better speech recognition performance. The bold values indicate
the best recognition performance in the corresponding column regarding CER (%)

Settings CER (%)

Dev Test

N = 2 14.15 14.22
N = 4 8.38 8.45
N = 6 6.42 6.54
N = 12 18.22 18.34

4.6 Case Study

Examples of the proposed speech-text multimodal speech recognition model on the ATCC and
AISHELL-1 datasets are presented in Tables 9 and 10, respectively. The tables provide the Mandarin
pinyin pronunciation of keywords within the sentences and the corresponding English translation of
the entire sentences, with the light gray background marking the incorrectly recognized characters.
The proposed multimodal method outperforms the unimodal approach on both datasets regarding
recognition accuracy. As Table 9 shows, the unimodal network suffers from significant insertion errors
due to insufficient acoustic modeling capability for long sequences. Regarding semantic reliability,
the results derived by the unimodal method are syntactically reasonable but contain several semantic
errors, especially evident in the AISHELL-1 dataset.

Table 9: Examples of different speech recognition methods on the ATCC dataset, with the light gray
background marking the incorrectly recognized characters. /../ denotes pinyin pronunciation for the
Mandarin characters, where the number represents the character’s tone. The symbol ∗∗∗ is employed
to align character units for ease of observation regarding the insertion errors

/guai3/ /liu4/ /san1/

Reference /guai3/ /liu4/

Controller: CSN6776, surface wind 080 degrees, 3 m/s, runway 02L,
cleared for takeoff.
Pilot: Cleared for takeoff, runway 02L, CSN6776.

/ba1/ /wu3/ /liang3/

1 Speech-transformer eight five two runway
[48] /ba1/ /wu3/

(Continued)
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Table 9 (continued)

eight five
/guai3/ /liu4/ /san1/

Ours� seven six three
/guai3/ /liu4/

seven six
/jiu3/

Reference /jiu3/

Controller: Hello, CES5216, runway A9, facing east, hold short of the
runway.
Pilot: Runway A9, facing east, holds short of runway, CES5216.

/jiu4/

2
Speech-transformer [48] at once

/jiu4/

at once
/jiu3/

Ours� nine
/jiu3/

nine

In some cases, compared with ground truth, specific character recognition results have the same
pronunciation but incorrect semantics. For example, in Case 1 of Table 10, the unimodal method
misidentified “ ” (shi4 zuo4, regard as) as “ ” (shi4 zuo4, try doing) while the multimodal
approach correctly recognized it, demonstrating that the multimodal method has superior repre-
sentation capability with a closer semantic alignment between speech and text. Introducing textual
information for multimodal interaction enhances contextual semantic information and certainty, and
reduces sensitivity to phonemic overlap and confusion in acoustic modeling, thereby mitigating errors
related to homophony. Nonetheless, as exhibited in Case 3 of Table 10, it is not ideal for the multimodal
network to cope with rare proper nouns, which may benefit from more effective semantics-aware
acoustic representations.
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Table 10: Examples of different speech recognition methods on the AISHELL-1 dataset, with the light
gray background marking the incorrectly recognized characters. /../ denotes pinyin pronunciation for
the Mandarin characters, where the number represents the character’s tone

AISHELL-1

/shi4/ /zuo4/ /sha1/ /pai2/
Reference

Regarded as the rising star of Chinese beach volleyball.

1 /shi4/ /zuo4/ /sha1/ /pai2/

Speech-transformer [48]
try doing killing cards

/shi4/ /zuo4/ /sha1/ /pai2/
Ours�

regarded as beach volleyball

/yin1/ /qi2/ /li2/ /gang3/
Reference

Yin Zhu (Athena Chu) and her close friend Shaofen Cai (Ada Choi)
left Hong Kong together.

2 /yin1/ /qi1/ /li3/ /gang3/

Speech-transformer [48]
cause wife Lee post

/yin1/ /qi2/ /li2/ /gang3/
Ours�

Yin together left Hong Kong

/bao1/ /yi1/ /ji4/ /ju4/ /yi3/ /er4/ /chun2/
Reference

Other items on the list include enteric-coated capsules and
polyethylene glycol.

3 /bao4/ /yi4/ /ji4/ /ju4/ /yu4/ /er4/ /chun2/

Speech-transformer [48]
violent escape memory giant preview pure

/bao4/ /yi1/ /ji4/ /ju4/ /yi3/ /er4/ /chun2/

Ours�

violent one giant pure
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5 Conclusion

In this paper, we propose a speech-text multimodal speech recognition method via dual-tower
architecture for Mandarin Air Traffic Control Communications (ATCC), which employs cross-modal
interactions to achieve close semantic alignment across modalities during the encoding phase. Besides,
we devise a two-stage training strategy to derive semantics-aware acoustic representations effectively.
The first stage focuses on pre-training the speech-text multimodal encoding module with masked
language modeling and cross-modal masked acoustic modeling strategies to enhance inter-modal
semantic alignment and acoustic long-distance context dependencies. The second stage fine-tunes the
entire network to bridge the input modality variation gap between the training and inference phases
by deactivating the text encoder or employing all <mask> tokens as text-side input.

Extensive experiments demonstrate the effectiveness of the proposed speech-text multimodal
speech recognition method on the ATCC and public AISHELL-1 datasets. It reduces the character
error rate to 6.54% and 8.73%, respectively, and exhibits substantial performance gains of 28.76% and
23.82% over the best baseline model. Remarkably, the first-stage pre-training process concentrating
solely on the multimodal encoder contributes to close semantic alignment between speech and text
modalities, serving as a beneficial initialization for the second-stage training procedure. Even though
the ATCC dataset has a small amount of data and long sequences, the first-stage inter-modal
interactions make it easier to model acoustic long-distance context dependencies. Besides, two second-
stage fine-tuning strategies are correspondingly suitable for the two datasets. Deactivating the text
encoder works best for the ATCC dataset, while the AISHELL-1 dataset benefits most from employing
all <mask> tokens as text-side input in the second stage.

In the future, we plan to investigate more speech-text multimodal frameworks and optimize
training strategies further. In addition, we will also explore various efficient ways to lessen the
dependence on multimodal paired data and tackle the issue of low-resource speech recognition.
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