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ABSTRACT

Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.
Although the Gaussian mixture model enhances the flexibility of image segmentation, it does not reflect spatial
information and is sensitive to the segmentation parameter. In this study, we first present an efficient algorithm
that incorporates spatial information into the Gaussian mixture model (GMM) without parameter estimation.
The proposed model highlights the residual region with considerable information and constructs color saliency.
Second, we incorporate the content-based color saliency as spatial information in the Gaussian mixture model. The
segmentation is performed by clustering each pixel into an appropriate component according to the expectation
maximization and maximum criteria. Finally, the random color histogram assigns a unique color to each cluster
and creates an attractive color by default for segmentation. A random color histogram serves as an effective tool
for data visualization and is instrumental in the creation of generative art, facilitating both analytical and aesthetic
objectives. For experiments, we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research
in Cambridge dataset. In the study, the proposed model showcases notable advancements in unsupervised image
segmentation, with probabilistic rand index (PRI) values reaching 0.80, BDE scores as low as 12.25 and 12.02,
compactness variations at 0.59 and 0.7, and variation of information (VI) reduced to 2.0 and 1.49 for the BSDS-
500 and MSRC datasets, respectively, outperforming current leading-edge methods and yielding more precise
segmentations.
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1 Introduction

Image segmentation is the process of decomposing a digital image into several regions having
similar characteristics to obtain a significant form of the image [1,2]. Segmentation [3–5] plays a
central role in a broad range of applications [6–8]. It is a commonly used critical step in many image
understanding algorithms [9,10], practical computer vision systems [11,12], and object recognition [13–
15]. Moreover, the fundamental objective of image segmentation is to depict an image using a limited
number of meaningful segments rather than an excessive number of individual pixels. Additionally, the
concept of image segmentation can be viewed as a clustering methodology, wherein pixels that meet
a specific criterion are organized into a cluster, while pixels that lack the requirement are assigned to
separate groups.

Recently, various methods, such as boundary-based image segmentation [16,17] have been intro-
duced for image segmentation [18]. Boundary-based algorithms search for the most dissimilar pixels.
The dissimilarity, which represents discontinuities in the image, can be processed via segmentation and
pixel labeling. Region-based methods [19] search for the most similar areas. On the contrary, color
histogram methods are strongly based on pixel colors to describe for each color level the number of
corresponding pixels which usually convert images in color space such as RGB, or HSV. The algorithms
[20] incorporate pixel-based clusters depending on their intensity and spatial locations.

In computer vision, image segmentation is the prime research area which is equivalent to
dividing an image into its objects or regions of interest. It groups the image pixels into sections
that are similar to each other. Numerous image-based applications, including pattern recognition,
biometric identification, medical imaging, object detection and classification, and pre-processing, go
through this stage [21]. Several notable uses include content-based image retrieval [21–23], machine
vision [24,25], medical image analysis [26,27], object recognition [28], and autonomous vehicle video
surveillance [29]. Content-based image retrieval [30] is the process of searching for digital images that
are relevant to a given query within extensive databases. The retrieval results are acquired based on the
content of the query image. Image segmentation is employed to extract the contents contained inside
an image. Machine vision [31] utilizes image-based technologies for robotic inspection and analysis,
primarily within industrial settings. Segmentation is a procedure that involves extracting relevant
information from a collected image that is associated with a machine or processed information.
Medical imaging [32] plays a crucial role in various aspects of medical science, encompassing medical
diagnosis and treatments [33]. Image segmentation, in particular, has emerged as a valuable tool in
this domain, facilitating the analysis and interpretation of medical images. Several instances may be
cited to illustrate the application of image segmentation in medical imaging. One such example is
the segmentation of tumors, which is performed to accurately locate their presence within the body.
Additionally, the segmentation of tissue is employed to measure the corresponding volumes of specific
anatomical structures. Furthermore, the segmentation of cells is utilized to facilitate numerous digital
pathological activities. Various parameters can be included in the analysis of cellular characteristics,
such as cell count and nuclei categorization, among others. Object recognition and detection [34,35] is
a significant application within the field of computer vision. In this context, an object may be denoted
as a pedestrian, a facial structure, or various aerial entities such as highways, forests, crops, and so
on. This application is crucial for the process of image segmentation, as it facilitates the extraction of
the intended item from the image. Video surveillance [36] involves the utilization of video cameras to
record and monitor the movements inside a certain area of interest. These recorded videos are then
analyzed to accomplish specific objectives, such as identifying the actions taking place in the footage
or managing the flow of traffic. Quantifying the quantity of things and various other tasks. In order to
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do the analysis, segmentation is required. A thorough understanding of the region under investigation
is of paramount importance.

Although humans may perceive the task of segmenting an image into its relevant segments as
straightforward, it is rather challenging for computer vision systems. There exist a multitude of issues
that have the potential to impact the performance of an image segmentation method. A variation in
illumination is a key issue endured in the process of image segmentation, which has major effects on
distinct pixels. The observed variation is driven by the diverse lighting conditions present during the
process of image capture. Intra-class variation is an immense obstacle in this domain since it entails
the presence of diverse manifestations or formations of the region of interest. The complexity of the
backdrop is the presence of a complicated background in an image poses a significant obstacle. The
process of segmenting an image into regions of interest can be challenging due to the presence of
complex environmental factors and various limitations.

While there are various challenges and limitations to unsupervised image segmentation, the
field of image segmentation in artificial intelligence research is undergoing significant development,
employing sophisticated methodologies to detect and separate individual components within an image
without the need for human guidance. The proposed unsupervised object segmentation methodology
frequently entails spatial insertion, wherein the algorithm discerns the precise positioning of objects
within a designated spatial domain. A noteworthy approach involves the incorporation of saliency
residuals, a technique that emphasizes regions within a picture that exhibit distinctiveness in com-
parison to their surrounding context. This method proves beneficial in facilitating the process of
object detection. The aforementioned proposed technique is frequently used with Gaussian mixture
models (GMM), a statistical technique that characterizes the existence of subpopulations within a
larger population. In the context of this scenario, Gaussian mixture models are employed to analyze
individual pixels or clusters of pixels in a picture. This process facilitates the grouping of comparable
regions, hence assisting in the differentiation of separate entities. In conclusion, the utilization of
random color histograms is employed as a technique to examine the dispersion of colors inside an
image, introducing an additional level of distinction for various items. The complex nature of this
approach is indicative of the convergence of multiple research fields, such as statistics, computer
vision, and cognitive science, each offering distinct perspectives and methodologies. Interdisciplinary
contributions can be observed in various domains, such as neurology, where knowledge of human
perception informs the design of algorithms, or in data analytics, where clustering techniques guide
approaches for image segmentation. The amalgamation of these disparate disciplines highlights the
comprehensive character of progress in artificial intelligence, wherein the incorporation of separate
ideas and approaches yields more resilient and efficient solutions.

1.1 Supervised & Unsupervised Categories

Image segmentation can be classified into two categories: supervised segmentation and unsu-
pervised segmentation. The supervised classification primarily employs convolutional neural net-
work (CNN) and fully convolutional network (FCN) methodologies for image segmentation. These
techniques are feature-based learning approaches, performed to label the images and detect the
object of interest with the aid of human guidance. Supervised segmentation requires special train
data for residual region detection. For instance, Benediktsson et al. [37] obtained the basic features
using morphological characterizations and analyzed these features using neural networks. Most deep
learning methods require a large amount of manually labeled data restricted to different scenarios.
These methods are highly expensive for large-scale image classification. However, unsupervised
methods are effective and popular owing to their simplicity as well as their ability to work without
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training data and labeling images. This category instantly detects and distinguishes the residual
region, including the edge density feature [13], using local feature points [38,39] without training data.
An unsupervised segmentation approach attempts to automate the determination of the number of
resultant regions in the image and allocates optimal parameter values for the segmentation algorithm
[40]. Various unsupervised segmentation algorithms employ clustering techniques such as C-means
clustering [1,2], Gaussian mixture model [41,42], K-means clustering [43], graph cut [44], and so on for
image segmentation. These color segmentation techniques, which depend on the color feature of image
pixels, assume that similar colors in the image correspond to separate clusters, and hence meaningful
objects in the image. Each cluster defines a pixel class that shares similar color properties. Since the
segmentation results depend on the color space, a single-color space cannot yield satisfactory results
for all types of images. Therefore, several researchers have tried to determine the color space that
corresponds to the color image segmentation problem being studied [45,46]. A color space can be
defined as a systematic arrangement or structure that categorizes and organizes colors. In addition to
the process of physical device profiling, color spaces play a crucial role in facilitating the accurate
reproduction of color in both analog and digital formats. Color spaces can be conceptualized as
a theoretical mathematical framework that facilitates the numerical representation of colors. Color
theory is an academic discipline that elucidates the mechanisms underlying human perception of
color. This perceptual phenomenon arises from the interplay between the absorption, reflection, and
transmission of light by the surrounding objects. When an object is illuminated by light, certain
wavelengths are assimilated while others are reflected. It is through this process of reflection that we
can see the color of the thing. However, it is important to note that individuals possess diverse cultural
and environmental associations with color, which therefore influence our perceptions. In this work,
we combine the hue, saturation, value (HSV) model and the CIELUE color space with the residual
approach for the extraction of color saliency, to maximize the accuracy of the segmentation process.

1.2 Related Clustering Approach

Clustering association rules and the organization of common features of clusters are in general
critical problems encountered in various domains of science. Image segmentation can be considered
as a specific type of clustering. Clustering-based algorithms are widely used for segmentation owing
to their fast and efficient operation. Clustering aims to partition a set of data into clusters such that
similar data sets are grouped in the same clusters, and dissimilar data sets are grouped in different
clusters [1]. The purpose of clustering is to group data points into classes entirely without labels [47].
In unsupervised segmentation models, the clustering algorithm is widely used for grayscale and color
segmentation, which is beneficial for low- and high-dimensional data. Several model-based clustering
techniques have been presented to address the challenge of unsupervised image segmentation. Such
as, Gauss-Markov random fields [48,49] utilize the property that the conditional distribution of each
data point given all other points is Gaussian. The model is characterized by its local dependencies and
is commonly employed in the field of spatial data analysis. Gibbs random fields [50] are the specific
instances of Markov random fields observed, wherein the collective distribution of all data points is
represented as a multiplication of potential functions, with each function contingent upon a subset of
data points [51]. Gaussian autoregressive random fields [52] are characterized by the property that the
value of a variable is determined as a linear combination of the values of its neighboring variables,
along with a Gaussian noise term. Time series and geographical analysis frequently employ this
methodology. In univariate and multivariate analyses [53] in the context of clustering, the term feature-
wise pertains to the methodology wherein each feature is examined independently. The approach
is straightforward, although it fails to account for any potential relationships among the features.
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The multivariate approach [54] under consideration concurrently takes into account various variables
and is capable of accounting for relationships among the features. The concept of data clusters is
characterized by its complexity, however, it offers a comprehensive perspective on the subject matter.
In the Gaussian density model, it is assumed that the data is derived from an unimodal Gaussian
distribution. The proposed model is characterized by its simplicity and effectiveness in cases when
the data exhibit a natural tendency to form a cohesive group. The Gaussian mixture model [55] is an
extension of the Gaussian density model, which posits that the observed data is formed from a mixture
of many Gaussian distributions. The flexibility of the system allows for the modeling of intricate data
structures. The clustering processing has distinct features that spatial should be driven into description.
For example, an image segmentation clustering process specifies local features in the description. This
means that in addition to density values, pixel neighbors are predominantly used to assign each pixel to
a specific cluster. In most images, the cluster label is intentionally allowed to scatter between adjacent
spatial pixels. The incorporation of randomness in models like Gauss-Markov random fields, Gibbs
random fields, Markov random fields, Gaussian autoregressive random fields, and Gaussian mixture
models is fundamental for capturing the inherent complexities and uncertainties of data, particularly
in spatial and statistical analysis. In summary, randomness in these models is crucial for accounting
for the inherent uncertainties and variabilities in real-world data, enabling them to be more adaptable,
flexible, and capable of capturing complex data structures and relationships.

Recently, Balasubramanian et al. [56] proposed a hybrid approach that combines the gradient
method with Otsu’s method for unsupervised image segmentation. Bosch et al. [57] exploited the
diversity of segments produced by different choices of parameters and generated hypotheses to under-
segment an image. Kanezaki [58] joined pixels of similar features and assigned unique labels to spatially
continuous pixels during the self-training process, which enabled unsupervised image segmentation.
The local spatial information is incorporated into the fast robust fuzzy c-means [1] and the super
pixel fast fuzzy c-means [2] algorithms to enhance the segmentation effect. The automatic fuzzy
clustering framework based on prior entropy [59] incorporates spatial information. The proposed
approaches demonstrate interesting performances. Among these approaches, the main focus is on
the GMM for unsupervised image segmentation. The GMM is a well-known mechanism utilized for
image segmentation [60,61] and object segmentation in a video [62–64]. The expectation-maximization
(EM) [65–68] method is usually used to evaluate the parameters of the distribution. However,
similar to measurable mixture models, GMM does not analyze spatial information in images. The
traditional GMM estimates each pixel independently, but the objects of interest in the image constitute
relevant pixels that assign some shared statistical features such as values, colors, textures, and so on.
Several approaches that incorporate spatial information have been introduced to enhance traditional
GMM [69,70]. The Markov random field (MRF) [71] was used for supervising neighboring pixel
dependencies and measuring the level of smoothness for each cluster. Therefore, it was recommended
that spatial characteristics be included in the MRF-constructed mixture model [70,71] for image
segmentation. The main drawbacks of these models are complicated parameter estimation and the high
computational complexity of the MRF model. The mixture model [72,73], a pixel labeling algorithm
based on GMM, assigns pixels, and each pixel represents a distinct segment for the probability
distribution. Parameter estimation can be achieved efficiently using the maximum likelihood (ML)
method and the expectation-maximization (EM) algorithm. After parameter estimation, the ML
and EM assign a maximum posteriori (MAP) estimate to each pixel. However, the computational
cost reduces their effective utilization in functional applications. Reference [74] included local spatial
information by implementing a mean template, and it has been extended to [75,76] either arithmetic
or weighted. Despite the fact, that these models had high execution speeds, were robust to noise, and



3328 CMC, 2024, vol.78, no.3

uniformly allocated weights to the neighbor pixels. Additionally, obtaining precise segmentation in
color images is extremely challenging and complicated. Achieving satisfactory segmentation depends
essentially on methods for identifying similarities amongst feature values of images and appropriate
established regions that display similarities. Hence, there is a demand to integrate color saliency
as spatial information into the GMM process, which produces remarkable results in overcoming
the drawbacks of the GMM process and offers nature segmentation results. The proposed method
introduces color saliency as spatial information using a neighborhood-weighted GMM distribution
process. The original RGB image is transformed into HSV to extract the salient residual region.
The resultant color saliency is constructed via pixel multiplication of the residual features of the
salient region with the spatial features of CIE-LUV color. In the second stage, the color saliency is
incorporated as spatial information in the GMM to obtain a desirable histogram of a particular sub-
band of the color image. The EM method returns an average corresponding to a cluster and uses the
return index to label the particular cluster of the image. The pixel-cluster association by multiplication
with the color saliency highlights the significant region. In the final step, the implemented random
color histogram assigns a unique color to each cluster, which quickly yields significantly accurate
segmentation results. These highlights have advanced the significance of the proposed model in
conventional real-world applications. Fig. 1 depicts successful implementation of the proposed model.
This proposal is novel in that it incorporates color saliency as spatial information in GMM using a
random color histogram for unsupervised image segmentation.

Figure 1: In this visual illustration, we meticulously assess the efficacy of several leading-edge models in
the realm of object segmentation. This includes an exploration of the SFFCM, FRFCM, and AFCF
algorithms. Furthermore, we delve into the nuances of Kanezaki and Bosch model, alongside our
innovatively proposed algorithm. The visual outcomes compellingly demonstrate that our method
achieves exceptional accuracy in object segmentation when contrasted with the other algorithms

In this study, we propose an unsupervised image segmentation model that produces high-quality
segmentation results with low computational cost, yet achieves a high segmentation accuracy. This
study can be summarized as follows:

1. The prior feature and texture estimation are extracted by transforming the image to the HSV
and CIE-LUV [77] color space. These features allow the detection and construction of color
saliency during image processing.
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2. The color saliency is incorporated as spatial information in the GMM. The spatial information
highlights the role of meaningful pixels in assigning some specific weight to neighbor pixels of
the current pixels.

3. The expectation maximization (EM) algorithm of the Gaussian mixture model better controls
the range of the color and removes turbidites.

4. The general formwork of a random color histogram assigns a unique color to each unlabeled
cluster as well as searches for the immediate (nearest neighbor) label end implemented for
enhancing segmentation results.

The implementation of the traditional clustering approach is complicated and results in poor
image segmentation. GMM is suitable for hard clustering, sensitive to ambiguity, and preserves
additional innovative image information. The proposed model incorporating color saliency as a
spatial information in GMM successfully supports the preliminary aim of the proposed model for
unsupervised image segmentation. GMM is free from any parameter selection and is robust to images
corrupted by noise. GMM segments images with complex backgrounds in an efficient and significantly
effective manner. The incorporation of spatial information and implementation of the random color
histogram in the final stage strengthen and enhance the unsupervised segmentation process. Further
advantages offered by our proposed algorithm are mentioned below:

1. The proposed algorithm offers an automatic clustering framework and operates effectively
without parameters.

2. The utilization of the random color histogram and the spatial information inside GMM
provides accurate segmentation compared to other state-of-the-art algorithms.

3. The spatial information in the form of color saliency is used as a penalty term, which minimizes
the overall computational cost in segmentation processing.

The remainder of the paper is organized as follows: Section 2 describes the probabilistic model for
image segmentation and presents the improvements made to the proposed model; Section 3 provides
the comparative experimental results and tradeoff; and finally, Section 4 presents the conclusions and
future scope.

2 The Proposed Method

The three steps involved in developing the proposed statistical model for image segmentation are
visually depicted in Fig. 2, and described as follows: first, the color saliency must be constructed;
second, the color saliency must be included as spatial information in the GMM. The GMM estimates
the mixture parameters and determines the number of Gaussian components. The GMM implements
the EM algorithm to assign each pixel to an appropriate cluster, according to ML. Finally, the random
color histogram is used to ensure accurate unsupervised image segmentation.

2.1 The Salient Residual Color Saliency

The spectral residual model [78] is modified to extract color residential regions for constructing
color saliency. The main steps involved in this process are described below. First, the original image is
transformed into the HSV color [79,80] and CIE-LUV [81,82] color space to obtain spatial features.
Next, the spectral model is applied to the HSV image to extract salient residual regions. Finally, color
saliency is constructed by joint pixel multiplication of the spatial features of the CIE-LUV color space
with the residual features of the salient region. The model drives to separate salient regions for further
unsupervised image segmentation.
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Figure 2: This illustration elegantly delineates the proposed spatial weighted Gaussian mixture model,
designed for unsupervised image segmentation. It artfully unfolds the architecture, encompassing
color transformation, salience residual, color saliency, the spatial weighted Gaussian mixture model
itself, and a random color histogram, all seamlessly integrated for refining unsupervised image
segmentation

2.1.1 Color Transformation

The RGB color model is the color model that is generally accepted for representing image pixels.
Usually, in color image processing, the intensity of a pixel is shown as three values corresponding
to the tri-stimuli R (red), G (green), and B (blue). Various sets of color models, such as intensity,
saturation, and LAB, can be derived from the RGB color model by utilizing either linear or non-linear
conversions. Several color models such as CIE-LAB, CIE-LUV, and CIE XYZ, etc., are employed in
various applications to determine complex problems in color image processing. The HSV color space,
which can be easily adjusted, is further suitable for color extraction and can be easily inverted. In color
clustering methods, the chosen color highlights should specify a consistent color space. Several well-
organized research [17] on region segmentation have demonstrated that feature segments of the CIE
color space are efficient mechanisms for solving the segmentation problem. In this approach, the RGB
image is converted to HSV.

The HSV color space can be transformed into other shades. Additionally, we chose to represent a
3-channel RGB color image in terms of the L ∗ U ∗ V∗ color metric, which was specially designed
to ensure the best approximation of perceptually uniform color spaces. The perceptually uniform
CIE-LUV color values are also used as a color feature in our proposed method. The color and
texture features improve the performance and facilitate the segmentation process. The current model
implements the HSV and CIE-LUV color values, which are suitable for describing the texture feature
distributions. Given an input image I (x), the HSV [68] and L ∗ U ∗ V∗ color space [81,83,84] random
transformations can be written as:

I
HSV

(→
x
)

= (xH , xS, xV)
T . (1)
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where xH represents Hue, xS represents Saturation, and xV represents value in the HSV color space.

ILUV

(�x) = (X ∗
L, X ∗

u , X ∗
v )

T . (2)

where X ∗
L represents Luminance, X ∗

u , and X ∗
v represent the chromaticity coordinates in the LUV color

space.

The segmentation method commonly entails translating the image into the selected color space,
doing random transformations, and subsequently segmenting the image by the utilization of clustering
techniques such as the Gaussian mixture model. Achieving optimal results in this approach necessitates
finding a suitable equilibrium between the extent of transformation and the quality of segmentation.
This entails taking into account many elements such as computing complexity and the careful selection
of relevant parameters. This post-processing approach is commonly employed to enhance and improve
the outcomes of segmentation. The primary objective is to optimize segment discrimination while
upholding the standards of precision and efficiency in the segmentation procedure.

2.1.2 Color Saliency Transformation

Hou et al. [78] analyzed the log spectra for a large number of original images and observed
that the log spectra of complex images share similar trends. Hence, the details of the plane curves
must be displayed in various log spectra, which are significantly similar in shape. It is assumed that
the statistical characteristics of color may be effective for irregular objects and regions in the image,
where features of the objects are displayed. On subsequent investigation, the spectral residential model
is observed to drive the salient residual region from transformed spectral residuals. Therefore, the
saliency map is computed according to [78,85].

We obtain frequency in the image f by f = F
(

I
HSV

(→
x
))

, where F describes the Fourier

Transformation. The amplitude spectrum and phase spectrum can be represented as A (f ) and P (f ),
respectively, and expressed as shown below:

A (f ) = abs (f ) , (3)

P (f ) = angle (f ) . (4)

The spectral residual of the input image is defined as:

R (f ) = L (f ) − h (f ) × L (f ) (5)

where L (f ) computed as L (f ) = log (A (f )) is the log amplitude spectrum, h (f ) × L (f ) is the average
log amplitude spectrum, which denotes the general shape of log spectra, and h (f ) is a 3 × 3 local
average filter defined by:

h (f ) = 1
3 × 3

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠ . (6)

Additionally, R (f ) represents the residual regions. The saliency map in the spatial domain is
constructed via inverse Fourier transform.

S (xs) = F−1 [exp (R (f ) + P (f ))]2 , (7)

The saliency measure is utilized on the HSV color image to generate a salient residual represen-
tation, which is denoted as Isaliency, where F−1 denotes the inverse Fourier transform. Finally, the color
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saliency is constructed using the joint formulation:

S (p) = F−1[exp(R(HSV(p)) + P(HSV(p)))]2 (8)

The formula for converting the original image I into a salient residual image saliency in the HSV
color space can be expressed as follows:

Isaliency(p) = F−1[exp(R(HSV (p)) + P(HSV (p)))]2∀p ∈ I (9)

2.2 Spatial Weighted Gaussian Mixture Model

Incorporating both spatial information [69,70] and color saliency into a GMM for image pro-
cessing using the expectation-maximization (EM) algorithm is a technique to improve segmentation
or clustering by considering both the color attributes and spatial relationships of pixels. Assuming we
have the following definitions. Let M = {m1, m2, . . . , mN} denotes the observed data where each mi is
a pixel value in the image, C = {c1, c2, . . . , cN} represents the color saliency values corresponding to
each pixel, U = {

uij

}
symbolize the spatial weights between pixels i and j, where these weights express

the spatial relationship or proximity, Q = {q1, q2, . . . , qN} signifies the latent variables indicating the
component each pixel belongs to, ϕ = {

ξη, αη, Ση

}
for η = 1, . . . , K represents the parameters of the

GMM (mixing coefficients, means, and covariances, respectively). The goal of the spatial weighted
GMM with color saliency is to cluster pixels not only based on their color (as in a standard GMM)
but also considering their spatial closeness and saliency. Here is the mathematical formulation of the
EM algorithm incorporating both spatial weights and color saliency.

E-Step:

Compute the responsibilities β(qiη), which are the probabilities that pixel i belongs to component
η, given the current parameter estimates ϕ(t) and modified by the saliency and spatial information:

β
(
piη

) = ξ
(t)
k N

(
ci · mi|ci · α(t)

η
, Σ(t)

η

)
∑K

l=1 ξ
(t)
l N

(
ci · mi|ci · α

(t)
l , Σ(t)

l

) (10)

M-Step:

Update the parameter estimates considering the weighted responsibilities:

α(t+1)

η
=

∑N

i=1 β(qiη)ui · ci · mi∑N

i=1 β(qiη)ui · ci

(11)

Σ(t+1)

η
=

∑N

i=1 β(qiη)ui · (ci · mi − α(t+1)

η
)(ci · mi − α(t+1)

η
)T

∑N

i=1 β(qiη)ui

. (12)

ξ (t+1)

η
=

∑N

i=1 β(qiη)ui

N
. (13)

Here ui is the spatial weight for pixel i, which could be a function of the spatial distance from pixel i
to other pixels or a predefined weight map. The multiplication by ci; adjusts the influence of each pixel
on the parameter estimates according to its saliency. The responsibilities β(qiη) reflect the probability
that the salient color-modified pixel r, belongs to the Gaussian component η, and the parameters
αη, Ση, and ξη are updated to reflect the influence of both color saliency and spatial weighting. This
formulation allows the EM algorithm to group pixels that are not only similar in color but also close in
space and high in saliency, which can potentially lead to more coherent and meaningful segmentation
of images.
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Finally, the proposed residual transformation method, based on the HSV color space, entails
the calculation of a residual value for each data point. This residual value considers the color
characteristics of the data in the HSV color space and quantifies the extent to which these attributes
vary from a desired feature or model prediction. This can be conceptualized as a metric for saliency
that relies on color data.

The revised formula incorporates an HSV color image salient residual transformation and can be
expressed as:

ξ (t+1)

η
=

∑N

i=1 β(qiη)ui

N
+ THSV(RHSV ,i) (14)

THSV(RHSV ,i) is the transformation function applied to the residuals based on the HSV color model
RHSV ,i for the i − th data point. RHSV ,i represents the discrepancy between these values and the target or
expected HSV values.

2.3 Random Color Histogram

Multilevel segmentation methods provide effective performance in image analysis. However,
the automatic selection of cluster components has remained a challenge in unsupervised image
segmentation. In this section, we present a further explicit formulation of the problem and propose
the simplest approach for implementing the random color histogram. The color histogram is a 3-D
histogram specification in the RGB (red-green-blue) color space, which creates a uniform histogram
and assigns a unique color to each component of the r, g, and b values. Suppose each RGB component
of a given spatially weighted GMM, then the histogram representing the distribution of each cluster
component C is:

Hrgb (i) = (
GC

rgb

(�x) == i
)

, (15)

where GC
rgb

(→
x
)

= ∑
r+g+b≤3ni

p (Gsc) represents the probability distribution, and GC
rgb

(→
x
)

equals the value

of the histogram index represented by i in the specific level 0 ≤ i ≤ L − 1, where L is the label set. C
represents the cluster component, i.e., and assigns a unique random color to each cluster for accurate
unsupervised image segmentation. Algorithm is given below:

Algorithm 1: Algorithm steps for the proposed algorithm
Input: Read an original color image.
Step 1: Color Saliency Construction

Perform image transformation according to Eqs. (1) and (2).
Generate the saliency map using Eq. (8) and construct color saliency using Eq. (9).

Step 2: Spatial Weighted Gaussian Mixture Model
Implement the E&M-step algorithm according to Eqs. (10)–(13).
Combine spatial weighted GMM with color saliency by pixel multiplication according to

Eq. (14).
Step 3: Random Color Histogram

Assign a unique color according to Eq. (15).
Output: Segmentation results.
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3 Experimental Results and Analysis
3.1 Experimental Setup

We conducted experiments using the various images of the challenging Berkeley Segmentation
Dataset and Benchmark (BSDS-500) [86,87] and the Microsoft Research Cambridge (MSRC) datasets
[88]. The benchmark consists of 500 images in total, which includes 200 training images, 100
validation images, and 200 test images with human-labeled ground truth segmentations. The BSDS-
500 benchmark is widely used by researchers for image segmentation. In BSDS-500, each image has
more than one ground truth, which is marked by numerous human subjects. The performance and
average runtime of the algorithms were tested on an Intel(R) Core(TM) i7-6700 CPU with a clock
speed of 2.5 GHz and 8 GB of RAM. The proposed algorithm was implemented using Matlab 2018.

3.2 Evaluation Criteria

The precise setting is established by comprehensive evaluation technique that integrates various
essential criteria, including PRI (probabilistic rand index), BDE (boundary displacement error),
changes in compactness (CV), and VI (variation of information). Below is a concise elucidation of
each.

The probabilistic rand index (PRI) [89] is a metric used to evaluate the degree of resemblance
between the segmentation outcome and the ground truth. A higher precision-recall index (PRI) value
signifies a stronger correspondence with the actual data, hence indicating improved precision in the
process of segmenting.

PRI =
∑

ij

[
pij · p′

ij + (1 − pij) · (1 − p′
ij)

]
(

n

2

) (16)

where pij and p′
ij are the probabilities that a pair of pixels and j are in the same segment in the ground

truth and the segmentation result, respectively, and n is the total number of pixels.

Boundary displacement error (BDE) [90] is a metric utilized to quantify the average displacement
error of boundary pixels inside the segmentation outcome concerning the reference ground truth.
A decrease in BDE values indicates a higher level of accuracy in the border delineation inside the
segmented image.

BDE = 1
N

∑N

i=1
minj ‖ bi − b

′
j ‖ (17)

where bi are the boundary pixels in the ground truth b′
j are the boundary pixels in the segmentation

result, N is the number of boundary pixels in the ground truth, and ‖ · ‖ is the Euclidean distance.

Compactness Variations: This metric quantifies [86] the degree of compactness shown by the
clusters generated during the segmentation procedure. It evaluates how tightly grouped the pixels
within each segment are. The achievement of optimal segmentation yields a high level of compactness,
which signifies the presence of distinct and well-defined boundaries between segments.

CV = 1
k

∑k

i=1
maxj 
=i

(
σi + σj

d(ci, cj)

)
, (18)

where k is the number of clusters, σi is the average distance of all elements in cluster i to their centroid
ci, and d(ci, cj) is the distance between centroids ci and cj.

The variation of information [86] metric is utilized to measure the extent of information that is
either lost or acquired throughout the process of segmentation. This analysis offers valuable insights
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regarding the efficacy of the segmentation technique in maintaining the informational integrity of the
initial image.

VI (U , V) = H (U) + H (V) − 2I (U , V) (19)

where H(U) and H(V) are the entropies of the clusterings and I(U , V) is the mutual information
between them.

Additionally, evaluating the execution time is pivotal in applications requiring rapid analysis.
Understanding execution times aids in optimizing the use of computational resources, particularly
in environments with hardware limitations or requirements for real-time processing. We evaluate
the suggested methodology using ten distinct approaches to ascertain each method’s scalability,
particularly executing MSRC and BSDS-500 datasets.

The aforementioned criteria were carefully chosen to conduct a thorough and multifaceted
assessment of our segmentation methodology. Collectively, these findings provide valuable infor-
mation regarding the accuracy, precision, and execution time of the suggested methodology. The
outcomes displayed in figures depict the algorithm’s performance across several parameters, offering
a comprehensive evaluation of its capabilities.

In the next section, we present the test data and details of these experiments and discuss the results
and their comparison.

3.3 Experimental Results and Discussion

We conducted comprehensive experiments on real images to demonstrate the effectiveness of the
proposed algorithm for the segmentation of real images. The size criteria for each image are the same.
The cluster number is set according to the respective object. We followed the baseline SFFCM [2],
FRFCM [1], AFCF [20], Kanezaki [58], and Bosch [57] method for the parameter. We evaluated these
models based on their performance metrics such as PRI, BDE, the covering (CV), and the VI. The
PRI counts the fraction of sets of pixels and demonstrates the label similarity of pixels between the
computed segmentation and ground truth. The CV estimates the overlapping results of a region in
terms of average conditional entropy by connecting two clusters. For the segmentation evaluation
process, the boundary displacement error is estimated using the BDE. The segmentation results are
generally considered to be optimum and significantly similar to the ground truth if the estimated PRI
and CV values are high. Conversely, smaller values of VI and BDE are desired.

The evaluation performance of the proposed method in unsupervised image segmentation using
the BSDS-500 dataset entails doing a visual comparison with five different state-of-the-art methods.
The visual representation of this comparison can be observed in Figs. 3 and 4. Additionally, a
quantitative assessment of the comparison is provided in Fig. 5, which presents performance data
for each technique. The metrics under consideration in this study include the PRI, BDE, Variation
CV, and VI. Based on both visual and quantitative analyses, the proposed technique exhibited visually
superior outcomes in comparison to the alternative algorithms. More specifically, it got higher PRI
and CV values, which suggest improved segmentation quality and consistency. Furthermore, the results
demonstrated decreased values for BDE and VI, indicating improved accuracy in border delineation
and a higher degree of resemblance to the ground truth segmentation.
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Figure 3: A visually compelling showcase contrasting the segmentation results of the proposed model
with those of five leading state-of-the-art models using BSDS-500 dataset images. Column (a) shows
the original images; column (b) shows the segmentation results of the proposed algorithm; column (c)
represents the results of SFFCM; column (d) shows results of FRFCM; column (e) shows results of
AFCF; column (f) shows results obtained by Kanezaki; and column (g) shows results obtained using
the Bosch method

Figure 4: This figure visually encapsulates a comprehensive comparative analysis of the proposed
methodology alongside five eminent state-of-the-art methods. Column (a) consists of original images;
column (b) shows the segmentation results of the proposed algorithm; column (c) represents the results
of SFFCM; column (d) shows results of FRFCM; column (e) shows results of AFCF; column (f) shows
results of the Kanezaki method; and column (g) shows results of the Bosch method
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Figure 5: We present a comparative analysis of the average performance metrics for our proposed
algorithm alongside SFFCM, FRFCM, AFCF, Kanezaki, and Bosch segmentation algorithms on
the BSDS-500 dataset. The metrics evaluated include the probabilistic rand index (PRI), variation of
information (VI), boundary displacement error (BDE), and compactness variation (CV)

The remaining techniques, including SFFCM, FRFCM, AFCF, Kanezaki, and Bosch exhibited
comparatively inferior outcomes in both visual appearance and quantitative measurements. In conclu-
sion, the proposed method demonstrated superior performance compared to alternative approaches
in the evaluation of segmentation outcomes on the BSDS-500 dataset. This suggests that the proposed
method is effective and accurate when used for unsupervised image segmentation tasks.

The evaluation of unsupervised image segmentation, an unsupervised image segmentation
methodology employed to partition an image into distinct segments without the utilization of
annotated data, was conducted using the MSRC dataset. The respective visual segmentation results
are shown in Fig. 6 and quantitative assessment of the comparison is presented in Fig. 7.

A total of six methods, comprising one proposed method and five existing state-of-the-art
procedures, were evaluated in terms of four metrics: PRI, BDE, CV, and VI. The aforementioned
criteria evaluate the quality of segmentation, accuracy of boundaries, consistency, and similarity to
the ground truth, respectively. The evaluated approaches included the proposed method, SFFCM,
FRFCM, AFCF, Kanezaki method, and Bosch method. The method developed in this paper exhibited
robust performance across multiple measures, hence emphasizing its efficacy in image segmentation
by accurately capturing inherent patterns and features. The evaluation also demonstrates that SFFCM
obtained better results than FRFCM due to the implementation of adaptive local spatial information.
Moreover, the computational cost of SFFCM is low. The FRFCM utilizes multivariate morphological
reconstruction and membership filtering (MMRMF) to obtain better segmentation performance
compared to the state-of-the-art AFCF and Bosch methods. This is because the AFCF and Bosch
methods mostly retain image contours, and their results vary for different shapes. Kanezaki method
performs poorly, and the extensive iterations involved in this method lead to high computational costs.
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The segmentation results using evaluation metrics in Fig. 7 demonstrate that the proposed method
achieves superior segmentation, closely aligning with the ground truth.

Figure 6: An elegant visual representation showcasing segmentation outcomes, employing the MSRC
dataset, juxtaposed with the performance of five advanced state-of-the-art methods alongside our
proprietary method. Column (a) consists of original images; column (b) shows the segmentation
results of the proposed algorithm; column (c) represents the segmentation results of SFFCM; column
(d) shows the segmentation results of FRFCM; column (e) shows the segmentation results of
AFCF; column (f) shows the segmentation results of Kanezaki method; and column (g) shows the
segmentation results of Bosch method

Figure 7: We present a comparative analysis of the average performance metrics for our proposed
algorithm alongside SFFCM, FRFCM, AFCF, Kanezaki, and Bosch’s segmentation algorithms on
the MSRC dataset. The metrics evaluated include the PRI, VI, BDE, and CV
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3.4 Comparison Results on Recent State of Arts Models

We analyzed the proposed method and state of art models AG [46], Casaca et al. [91], Nicolás-
Sáenz et al. [45], Wang et al. [92], and Jia et al. [93]. The visual illustration is shown in Fig. 8.
Our proposed approach in the present investigation demonstrates the greatest PRI score of 0.80
on the BSDS-500 dataset as shown in Fig. 9, revealing a stronger alignment with the ground truth
segmentation, is evident that the proposed approach exhibits higher performance in the realm of
image segmentation for BSDS-500 dataset. Additionally, it possesses the lowest value of the VI index,
specifically 2.00, which implies the presence of a fewer number of clusters that are more significant in
nature. AG and Jia models display competitive PRI scores of 0.77 and 0.79, respectively. However, it is
worth noting that their elevated VI scores suggest a lower level of precision in segmentation. Casaca,
Nicolás-Sáenz, and Wang demonstrated moderate performance across all criteria.

Figure 8: Visually compelling, this illustration contrasts the results of our proposed model with those
of five contemporary, leading-edge models developed by AG, Nicolás-Sáenz, Casaca, Wang, and Jia

Figure 9: Performance evaluation of five recent state of arts models and the proposed method based
on PRI, BDE, CV, and VI using images of the BSDS-500 dataset. The resultant score indicates that on
four evaluation metrics, the proposed algorithm has the highest PRI score of 0.80, CV score of 0.59,
and the lowest BDE and VI scores
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The proposed approach on the MSRC dataset exhibits superior performance compared to state
of the arts methods, as evidenced by the highest PRI score of 0.80 and the lowest BDE and VI scores
shown in Fig. 10. These results indicate improved accuracy in border delineation and classification.
Other state-of-the-art methods, such as those proposed by AG, Casaca, and Nicolás-Sáenz, exhibit
inferior performance across all evaluated metrics. The CV score of 0.70 achieved by the proposed
method is noteworthy as it demonstrates a favorable equilibrium between segment compactness
and separation, surpassing alternative methods. In general, the results illustrate that the proposed
technique reliably yields better PRI scores and lower BDE and VI scores on both datasets. These
findings indicate that the recommended approach offers a more accurate and consistent segmentation
compared to the other techniques that were assessed.

Figure 10: Analyzation of the performance of five recent state of arts models and the proposed method
based on PRI, BDE, CV, and VI on the MSRC dataset. The tabulated score describes that on four
evaluation metrics, the proposed algorithm has the highest PRI score of 0.80, CV score of 0.7, the
lowest BDE 12.5, and VI scores 1.49, respectively

3.5 Average Execution Time

The proposed approach demonstrates a notable enhancement in the average duration per image on
the BSDS-500 dataset, achieving a time of 1.02 s. However, it is worth noting that this performance is
topped by the SFFCM method, which achieves a time of 0.74 s. Several other approaches demonstrate
extended execution durations, ranging from 1.25 to 1.57 s. This suggests that although these methods
may be effective in accomplishing segmentation tasks, they are comparatively less efficient in terms of
time when compared to the proposed method.

In the context of the MSRC dataset, the proposed technique exhibits superior performance
compared to its competitors, as evidenced by its average processing time of 1.01 s per image. This
outcome showcases the algorithm’s commendable combination of efficiency and efficacy. It ranks
second in terms of running time, with SFFCM holding the record for the shortest duration at
0.29 s. The other approaches exhibit runtime durations ranging from 0.9 to 1.3 s. Although these
durations are competitive, they do not achieve the same level of efficiency as the one proposed.
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In general, the strategy proposed demonstrates a robust equilibrium between performance and
efficiency across both datasets. The proposed method not only yields improved segmentation out-
comes, but also exhibits a shorter computational time in comparison to other state-of-the-art models,
except SFFCM, as visually verified in Fig. 11. The equilibrium achieved by the proposed method
renders it a highly appealing option for image segmentation tasks that prioritize both precision and
efficiency.

Figure 11: Illustration of average running time image per second on the BSDS-500 and MSRC datasets
of the ten methods and the proposed model. The visually tabulated data show that the performance
based on the average running time of the proposed model is higher except for the SFFCM model

3.6 Trade-Off Consideration

The current implementation of our method exhibits a longer execution time compared to
the SFFCM approach. The aforementioned outcome is a direct result of the intricate procedures
our algorithm executes to guarantee a high level of accuracy and quality in segmentation. It is
acknowledged that the time-sensitivity of certain applications may present a constraint. Nevertheless,
the careful consideration of the trade-off between execution speed and accuracy is a fundamental
aspect of our design approach. Applications that call for a high level of precision, such as intricate
environmental modeling, have a reduced sensitivity to processing time and instead prioritize the
accuracy and level of detail in the segmentation process. In the context of these applications, the
advantages of employing our approach’s meticulous and precise segmentation surpass the drawbacks
associated with the additional time required for execution. In contrast, in scenarios where rapidity
is of utmost importance, additional refinement of our approach will be imperative. Subsequent
research endeavors will prioritize the optimization of processing procedures and the integration of
enhanced computational methodologies while ensuring that the quality of segmentation remains
uncompromised.

The algorithm we have proposed exhibits a thorough analysis when compared to contemporary
state-of-the-art methods. The performance of the proposed algorithm encounters issues in certain
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scenarios, particularly in handling varying intensity levels and other real-world conditions, as demon-
strated in Fig. 12, thereby providing readers with a distinct understanding of its specific limitations.

Figure 12: Illustration of failure cases where the proposed algorithm demonstrates poorer segmenta-
tion performance compared to other methods

Additionally, it shows a conscientious approach to addressing feedback, which indicates a strong
comprehension of its position within the field. The upcoming improvements, which have been designed
to tackle the identified concerns, are anticipated to boost the performance of the system by effectively
managing the inherent trade-offs between speed and accuracy. The drive to continual improvement
exhibited by our research is a reflection of the ever-evolving nature of the sector and our aim to provide
a promising tool for object segmentation.

4 Conclusion

This paper introduces an innovative approach for unsupervised image segmentation, utilizing
a spatially weighted GMM combined with a random color histogram. This novel algorithm is
underpinned by a statistical image formation model, providing a solid theoretical foundation for
integrating multiple image cues, such as saliency and color. It employs a transformation of color
images into the HSV and CIE-LUV color spaces, with the color saliency being constructed through an
efficient spectral residual method in conjunction with the CIE-LUV space. A significant feature of this
method is the incorporation of color saliency as spatial information into the GMM, enabling accurate
cluster assignments. This integration results in a penalty term that effectively bypasses the need for
iterative computation of a conventional local neighbor, thus simplifying the parameter setting process
and reducing computational complexity. The method demonstrates robust performance without the
necessity for extensive parameter tuning. The model’s efficiency is further enhanced by using a
random color histogram, which addresses the influence of neighboring pixel class distributions on
segmentation quality. However, a limitation arises when dealing with low-color correlation scenarios.
The study highlights the model’s superior performance in unsupervised image segmentation, evident
in its high Probabilistic Rand Index values of 0.80, low Boundary Displacement Error scores of 12.25
and 12.02, compactness variations at 0.59 and 0.70, and reduced Variation of Information to 2.0 and
1.49 for the BSDS-500 and MSRC datasets, respectively, surpassing existing leading-edge methods and
achieving more precise segmentations. In the future, we foresee several practical improvements for the
proposed algorithm, such as highly complex clustering with additional features and RGB saliency cues
for object detection and hypothesis.

However, the algorithm’s inability to effectively handle indistinct boundaries may stem from its
insufficient ability to distinguish between similar characteristics in the presence of varying illumination
and intra-class variations. This limitation could potentially be addressed in the future by integrating
advanced edge detection methods and employing machine learning models that have been trained on
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a broader range of lighting conditions. The extended duration of execution arises from the utilization
of rigorous sampling methodologies, which can be alleviated in the future through the optimization of
the algorithm’s sampling parameters and the exploration of more effective computational approaches,
such as parallel processing.
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[55] B. Panić, M. Nagode, J. Klemenc, and S. Oman, “On methods for merging mixture model compo-
nents suitable for unsupervised image segmentation tasks,” Math., vol. 10, no. 22, pp. 4301, 2022. doi:
10.3390/math10224301.

[56] G. P. Balasubramanian, E. Saber, V. Misic, E. Peskin, and M. Shaw, “Unsupervised color image segmen-
tation using a dynamic color gradient thresholding algorithm,” in Human Vision and Electronic Imaging
XIII , International Society for Optics and Photonics, 2008, vol. 6806, pp. 68061H.

[57] M. Bosch, C. M. Gifford, A. G. Dress, C. W. Lau, J. G. Skibo and G. A. Christie, “Improved image
segmentation via cost minimization of multiple hypotheses,” arXiv preprint arXiv:1802.00088, 2018.

[58] A. Kanezaki, “Unsupervised image segmentation by backpropagation,” in 2018 IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), IEEE, 2018, pp. 1543–1547.

[59] T. Lei, P. Liu, X. Jia, X. Zhang, H. Meng and A. K. Nandi, “Automatic fuzzy clustering framework for
image segmentation,” IEEE Trans. on Fuzzy Sys., vol. 28, no. 9, pp. 2078–2092, 2019.

[60] N. Bouguila, “Count data modeling and classification using finite mixtures of distributions,” IEEE Trans.
Neur. Netw., vol. 22, no. 2, pp. 186–198, 2010. doi: 10.1109/TNN.2010.2091428.

[61] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of experts,” IEEE Trans. Neur. Netw.
Learn. Syst., vol. 23, no. 8, pp. 1177–1193, 2012. doi: 10.1109/TNNLS.2012.2200299.

[62] H. Bi, H. Tang, G. Yang, H. Shu, and J. L. Dillenseger, “Accurate image segmentation using Gaus-
sian mixture model with saliency map,” Pattern Anal. Appl., vol. 21, no. 3, pp. 869–878, 2018. doi:
10.1007/s10044-017-0672-1.

[63] M. S. Allili, N. Bouguila, and D. Ziou, “Finite generalized Gaussian mixture modeling and applications
to image and video foreground segmentation,” in Fourth Canadian Conf. Comput. Robot Vis. (CRV’07),
IEEE, 2007, pp. 183–190.

[64] M. Shah, J. Deng, and B. Woodford, “Illumination invariant background model using mixture of Gaussians
and SURF features,” in Asian Conf. Comput. Vis., Springer, 2012, pp. 308–314.

[65] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the
EM algorithm,” J. Royal Statist. Soc.: Series B (Methodologic.), vol. 39, no. 1, pp. 1–22, 1977. doi:
10.1111/j.2517-6161.1977.tb01600.x.

https://doi.org/10.1080/01621459.1972.10481214
https://doi.org/10.1109/TGRS.2023.3301494
https://doi.org/10.1007/BF02761538
https://doi.org/10.1007/s10044-021-01050-3
https://doi.org/10.1016/j.imavis.2014.07.002
https://doi.org/10.1016/j.oraloncology.2023.106399
https://doi.org/10.3390/math10224301
https://doi.org/10.1109/TNN.2010.2091428
https://doi.org/10.1109/TNNLS.2012.2200299
https://doi.org/10.1007/s10044-017-0672-1
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x


CMC, 2024, vol.78, no.3 3347

[66] T. Denœux, “Maximum likelihood estimation from fuzzy data using the EM algorithm,” Fuzzy Set. Syst.,
vol. 183, no. 1, pp. 72–91, 2011. doi: 10.1016/j.fss.2011.05.022.

[67] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions. Hoboken, New Jersey, USA: John
Wiley & Sons, Inc., 2007.

[68] M. Lorenzo-Valdés, G. I. Sanchez-Ortiz, A. G. Elkington, R. H. Mohiaddin, and D. Rueckert, “Segmen-
tation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm,” Med. Image Anal., vol.
8, no. 3, pp. 255–265, 2004. doi: 10.1016/j.media.2004.06.005.

[69] K. Blekas, A. Likas, N. P. Galatsanos, and I. E. Lagaris, “A spatially constrained mixture model for image
segmentation,” IEEE Trans. Neur. Netw., vol. 16, no. 2, pp. 494–498, 2005. doi: 10.1109/TNN.2004.841773.

[70] T. M. Nguyen and Q. J. Wu, “Gaussian-mixture-model-based spatial neighborhood relationships for pixel
labeling problem,” IEEE Trans. Syst., Man, Cybernet., Part B (Cybernetics), vol. 42, no. 1, pp. 193–202,
2011. doi: 10.1109/TSMCB.2011.2161284.

[71] S. P. Chatzis and T. A. Varvarigou, “A fuzzy clustering approach toward hidden Markov random field
models for enhanced spatially constrained image segmentation,” IEEE Trans. Fuzzy Syst., vol. 16, no. 5,
pp. 1351–1361, 2008. doi: 10.1109/TFUZZ.2008.2005008.

[72] F. Picard, “An introduction to mixture models,” Research Report No. 7, 2007.
[73] T. Lei and J. K. Udupa, “Performance evaluation of finite normal mixture model-based image

segmentation techniques,” IEEE Trans. Image Process., vol. 12, no. 10, pp. 1153–1169, 2003. doi:
10.1109/TIP.2003.817251.

[74] H. Tang, J. L. Dillenseger, X. D. Bao, and L. M. Luo, “A vectorial image soft segmentation method based
on neighborhood weighted Gaussian mixture model,” Comput. Med. Image Grap., vol. 33, no. 8, pp. 644–
650, 2009. doi: 10.1016/j.compmedimag.2009.07.001.

[75] H. Zhang, Q. J. Wu, and T. M. Nguyen, “Image segmentation by a robust modified gaussian mixture
model,” in 2013 IEEE Int. Conf. Acoust., Speech Signal Process., IEEE, 2013, pp. 1478–1482.

[76] H. Zhang, Q. J. Wu, and T. M. Nguyen, “Incorporating mean template into finite mixture model for
image segmentation,” IEEE Trans. Neur. Netw. Learn. Syst., vol. 24, no. 2, pp. 328–335, 2012. doi:
10.1109/TNNLS.2012.2228227.

[77] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, “Frequency-tuned salient region detection,” in 2009
IEEE Conf. Comput. Vis. Pattern Recognit., IEEE, 2009, pp. 1597–1604.

[78] X. Hou and L. Zhang, “Saliency detection: A spectral residual approach,” in IEEE Conf. Comput. Vis.
Pattern Recognition, IEEE, 2007, pp. 1–8.

[79] D. Khattab, H. M. Ebied, A. S. Hussein, and M. F. Tolba, “Color image segmentation based on different
color space models using automatic GrabCut,” Sci. World J., vol. 2014, no. 2, pp. 1–10, 2014. doi:
10.1155/2014/126025.

[80] E. Chavolla, A. Valdivia, P. Diaz, D. Zaldivar, E. Cuevas and M. A. Perez, “Improved unsupervised color
segmentation using a modified color model and a bagging procedure in-means,” Math. Probl. Eng., vol.
2018, no. 1, pp. 1–23, 2018. doi: 10.1155/2018/2786952.

[81] L. Busin, N. Vandenbroucke, and L. Macaire, “Color spaces and image segmentation,” Adv. Imag. Elect.
Phys., vol. 151, no. 1, pp. 65–168, 2008.

[82] M. Podpora, G. P. Korbas, and A. Kawala-Janik, “YUV vs RGB-Choosing a color space for human-
machine interaction,” in 2014 Federated Conf. on Comput. Sci. and Inf. Syst., Warsaw, Poland, 2014, pp.
29–34. doi: 10.15439/978-83-60810-60-6.

[83] P. A. Mlsna, Q. Zhang, and J. J. Rodriguez, “3-D histogram modification of color images,” in Proc. 3rd
IEEE Int. Conf. Image Process., IEEE, 1996, vol. 3, pp. 1015–1018. doi: 10.1109/ICIP.1996.561000.

[84] S. J. Sangwine and R. E. Horne, The Colour Image Processing Handbook. British publishing house in
London: Springer Science & Business Media, 2012.

[85] S. Li, H. Tang, and X. Yang, “Spectral residual model for rural residential region extraction from GF-1
satellite images,” Math. Probl. Eng., vol. 2016, no. 1, pp. 1–13, 2016. doi: 10.1155/2016/3261950.

[86] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,”
IEEE Trans. Pattern Anal., vol. 33, no. 5, pp. 898–916, 2010. doi: 10.1109/TPAMI.2010.161.

https://doi.org/10.1016/j.fss.2011.05.022
https://doi.org/10.1016/j.media.2004.06.005
https://doi.org/10.1109/TNN.2004.841773
https://doi.org/10.1109/TSMCB.2011.2161284
https://doi.org/10.1109/TFUZZ.2008.2005008
https://doi.org/10.1109/TIP.2003.817251
https://doi.org/10.1016/j.compmedimag.2009.07.001
https://doi.org/10.1109/TNNLS.2012.2228227
https://doi.org/10.1155/2014/126025
https://doi.org/10.1155/2018/2786952
https://doi.org/10.15439/978-83-60810-60-6
https://doi.org/10.1109/ICIP.1996.561000
https://doi.org/10.1155/2016/3261950
https://doi.org/10.1109/TPAMI.2010.161


3348 CMC, 2024, vol.78, no.3

[87] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its
application to evaluating segmentation algorithms,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Meas. Ecologic. Statist., 2002, vol. 2, pp. 416. doi: 10.1109/ICCV.2001.937655.

[88] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextonBoost: Joint appearance, shape and context
modeling for multi-class object recognition and segmentation,” in European Conf. Comput. Vis., Springer,
2006, pp. 1–15.

[89] R. Unnikrishnan, C. Pantofaru, and M. Hebert, “Toward objective evaluation of image segmenta-
tion algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 929–944, 2007. doi:
10.1109/TPAMI.2007.1046.

[90] X. Wang, Y. Tang, S. Masnou, and L. Chen, “A global/local affinity graph for image segmentation,” IEEE
Trans. Image Process., vol. 24, no. 4, pp. 1399–1411, 2015. doi: 10.1109/TIP.2015.2397313.

[91] W. Casaca, J. P. Gois, H. C. Batagelo, G. Taubin, and L. G. Nonato, “Laplacian coordinates: Theory and
methods for seeded image segmentation,” IEEE Trans. Pattern Anal., vol. 43, no. 8, pp. 2665–2681, 2020.
doi: 10.1109/TPAMI.2020.2974475.

[92] C. Wang, W. Pedrycz, Z. Li, and M. Zhou, “Residual-driven fuzzy C-means clustering for image segmen-
tation,” IEEE/CAA J. Automat. Sin., vol. 8, no. 4, pp. 876–889, 2020. doi: 10.1109/JAS.2020.1003420.

[93] X. Jia, T. Lei, X. Du, S. Liu, H. Meng and A. K. Nandi, “Robust self-sparse fuzzy clustering for image
segmentation,” IEEE Access, vol. 8, pp. 146182–146195, 2020. doi: 10.1109/ACCESS.2020.3015270.

https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.1109/TPAMI.2007.1046
https://doi.org/10.1109/TIP.2015.2397313
https://doi.org/10.1109/TPAMI.2020.2974475
https://doi.org/10.1109/JAS.2020.1003420
https://doi.org/10.1109/ACCESS.2020.3015270

	Unsupervised Color Segmentation with Reconstructed Spatial Weighted Gaussian Mixture Model and Random Color Histogram
	1 Introduction
	2 The Proposed Method
	3 Experimental Results and Analysis
	4 Conclusion
	References


