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ABSTRACT

Data is regarded as a valuable asset, and sharing data is a prerequisite for fully exploiting the value of data. However,
the current medical data sharing scheme lacks a fair incentive mechanism, and the authenticity of data cannot be
guaranteed, resulting in low enthusiasm of participants. A fair and trusted medical data trading scheme based on
smart contracts is proposed, which aims to encourage participants to be honest and improve their enthusiasm
for participation. The scheme uses zero-knowledge range proof for trusted verification, verifies the authenticity
of the patient’s data and the specific attributes of the data before the transaction, and realizes privacy protection.
At the same time, the game pricing strategy selects the best revenue strategy for all parties involved and realizes
the fairness and incentive of the transaction price. The smart contract is used to complete the verification and
game bargaining process, and the blockchain is used as a distributed ledger to record the medical data transaction
process to prevent data tampering and transaction denial. Finally, by deploying smart contracts on the Ethereum
test network and conducting experiments and theoretical calculations, it is proved that the transaction scheme
achieves trusted verification and fair bargaining while ensuring privacy protection in a decentralized environment.
The experimental results show that the model improves the credibility and fairness of medical data transactions,
maximizes social benefits, encourages more patients and medical institutions to participate in the circulation of
medical data, and more fully taps the potential value of medical data.
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1 Introduction

In today’s information age, data has been regarded as an important asset [1]. However, in the
medical field, the safe and efficient use of digital assets and transaction management have always
faced challenges. According to the statistical results of 2,410 hospitals [2], less than 10% of patients
with access rights try to access their electronic medical records. In stark contrast, hackers have relatively
easy access to 399.5 million medical records [3]. The transaction flow of medical big data has become
a key trend in the field of health care. Under the premise of ensuring patient privacy and data security,
most patients are willing to share personal medical data [4].
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Healthcare Medical Data Compliance Circulation Standards provide a regulatory framework for
the circulation of medical data [5]. It is a groundbreaking milestone in the field of data circulation
within the healthcare industry. According to the market research report [6], the global market value
of electronic health records in 2021 is about 29,417.2 billion and is expected to grow to $ 42,203.5
billion by 2029. These data not only represent the individual’s health status but also provide the basis
for medical research, clinical decision-making, and public health policymaking. Especially for certain
significant diseases, their connection to society is profound. For instance, utilizing blockchain tech-
nology to trace COVID-19 infectious disease information [7]. Tracing infectious disease information
is necessary, but protecting patient privacy is also crucial. Therefore, when considering the research
on sharing medical data, it is essential to comprehensively balance individual privacy and societal
interests.

Medical data includes sensitive data such as disease history and personal health information. Once
illegally obtained, it not only violates personal privacy but also may lead to serious consequences such
as identity theft and credit crisis. At the same time, due to the lack of sufficient trust between data
owners and consumers, the authenticity of medical data will be questioned, and effective transactions
will be hindered. Therefore, there is a trade-off between privacy protection and data credibility, and
it is difficult to verify the validity of the data before the transaction is completed. In addition, due to
information asymmetry, data buyers may also have price fraud. Delgado-Segura et al. [8] proposed a
fair data transaction protocol based on the Bitcoin system. The delivery of data and the execution of
payments are atomic, because the seller cannot redeem the payment unless the buyer obtains the data,
and the buyer cannot obtain the data without paying. Although it avoids the refusal of payment in
data transactions, it is impossible to avoid price fraud due to information asymmetry in the pricing of
data transactions. The lack of a fair pricing strategy may result in a lack of reasonable returns for data
providers and a lack of sharing motivation, which limits the full sharing of data [9]. To promote the
effective and secure sharing of medical data, new technologies, and strategies must be used to solve
these problems.

Given the above problems, this paper proposes a credible and fair medical data transaction scheme
based on the intelligent contract technology of decentralized automatic execution. This scheme uses
zero-knowledge proof contracts before transactions to ensure the authenticity and credibility of data
under the premise of privacy protection and realizes a fair incentive game pricing strategy to achieve a
balance between data credibility and privacy protection and injects new vitality into data management
and transactions in the health care field. Through experimental verification, the advantages and
practicability of the scheme in data privacy protection, trusted verification, and fair incentives are
proved. The main contributions of this paper are summarized as follows.

Zero-knowledge proof does not need to expose specific data content when verifying the authen-
ticity of data, to achieve effective verification of data under the premise of protecting privacy. A solid
privacy protection barrier is established between data owners and users before the transaction.

The medical data transaction pricing strategy based on the improved Stackelberg game enables
the transaction participants to achieve the maximum benefits, thereby maximizing social welfare.
It provides a new idea to encourage data sharing, encourage data providers and data consumers to
actively participate in data transactions, and fully tap the potential value of data.

The structure of this paper is as follows. The second part introduces the related research work.
The third part provides the basic knowledge of the theoretical model. The fourth part first introduces
the framework of the scheme and introduces the key processes such as trusted verification and fair
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pricing strategy in detail. The fifth part includes experimental verification and analysis. Finally, the
sixth part summarizes and discusses.

2 Related Work

Recent years have seen a rapid development in data transactions. Traditional centralized third-
party trading platforms have been proposed, but their opaque transaction processes may lead to
dishonesty and harm participants’ interests. With the advancement of blockchain decentralization
technology, data transactions are shifting towards decentralization.

Juang et al. [10] proposed a secure data transaction scheme for cloud storage, where encrypted
data verification is challenging. Additionally, the involvement of a bank as a third party introduces
susceptibility to collusion attacks, resulting in an opaque transaction process. Chen et al. [11] proposed
an offline digital content trading system, entailing direct customer-store transactions with bank-
managed funds. Hwang et al. [12] proposed a provable fair file exchange protocol, enabling the file
owner to iteratively exchange notarized documents with various parties while preserving source and
participant anonymity. Jung et al. [13] proposed a data transaction liability agreement where brokers
monitor and penalize dishonest consumers during transactions by identifying misconduct. However,
the inclusion of third-party brokers escalates transaction costs and introduces potential trust issues.
Su et al. [14] believed that in the traditional data market, data buyers and data sellers must use a
centralized trading platform, which may be dishonest, affecting the fairness of data transactions and
damaging the interests of both parties. Li et al. [15] proposed a blockchain-based distributed IoT data
trading system, where users benefit from selling their data, and service providers purchase data for
access. Bajoudah et al. [16] proposed a market model to solve the problem that participants rely on
untrusted third parties for transactions while reducing transaction costs. Guan et al. [17] proposed a
secure, fair, and efficient data transaction scheme that does not rely on any third party, which solves
the problems of complex transaction processes, high transaction costs, and possible unfair exchange
in data transactions. Additionally, Nguyen et al. [18] introduced a solution for IoT data transactions
using distributed ledger technology, addressing inefficiencies and security concerns arising from the
reliance on centralized third-party entities in IoT systems. Nawaz et al. [19] proposed a data transaction
scheme for edge IoT, in which edge devices directly conduct data transactions with third parties
without intermediaries.

Data trading is different from general commodity trading [20], and data quality and value cannot
be specifically perceived and defined. Buyers want to buy the real data they need, while sellers want to
share the data and get reasonable rewards.

Kiyomot et al. [21] proposed a fair-trade protocol for anonymous data sets. Without exposing data
privacy, buyers need to verify the data multiple times to ensure that they have purchased the desired
data. Zhao et al. [22] proposed a fair data transaction protocol based on blockchain. It integrates ring
signatures, preventing double authentication signatures and similarity learning. It ensures the privacy
of data providers and the availability of transaction data. Sheng et al. [23] proposed a blockchain-based
copyright protection crowdsourcing data transaction framework and designed an auction algorithm
based on semantic similarity to ensure the authenticity and individual rationality of the auction.
Galteland et al. [24] constructed a fair-trading protocol based on smart contracts, which provides
participants with better privacy and solves the problem of privacy leakage of transaction-sensitive
data. Gao et al. [25] proposed a secure, fair, and instant data transaction scheme, which solves the
problems of unfair transaction, transaction delay, and illegal transaction data faced by bitcoin-based
data transaction schemes. Xue et al. [26] proposed a blockchain-based data trading framework that
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aims to ensure security, fairness, and privacy. While it supports fine-grained sales using medical data
for verification, there is still a privacy concern with partial attribute verification potentially revealing
sensitive information. Chen et al. [27] introduced a comprehensive data transaction framework for
vehicle networking based on blockchain, ensuring both the security and authenticity of data trans-
actions. To further improve transaction efficiency, the authors proposed an iterative double auction
mechanism, designed to incentivize increased participation in data trading. Zheng et al. [28] proposed
a decentralized blockchain-based data trading platform with smart contracts for efficient distributed
transactions and fair data rewards distribution. Li et al. [29] proposed a secure decentralized data
transaction model based on blockchain to solve the trust problem between buyer, seller, and agent
nodes and increase the incentive of user transaction data. Luong et al. [30] designed an unmanned
aerial vehicle data auction scheme based on deep learning, which maximizes the income of energy
service providers while ensuring incentives.

In summary, while decentralized blockchain architectures have addressed fairness and trust issues
in data trading, research on medical data sharing lacks sufficient focus on data credibility and
price fairness. This gap impacts data consumer confidence, making it challenging to balance privacy
protection, data authenticity verification, and meeting specific needs. The imbalance in transaction
price incentives reduces participant willingness, affecting enthusiasm and harming the interests of
both parties. Further development in blockchain-based medical applications is crucial to ensure secure
transactions, implement fair circulation schemes, and maximize the overall value of medical data.

3 Preliminary
3.1 Stackelberg Game

The Stackelberg game is a two-stage game with the concepts of leader and follower [31]. Leaders
and followers try to maximize their profits. Therefore, the game provides dual benefits for both players.
The Stackelberg game has been widely used to solve resource management problems in network
systems in a distributed manner. Cardellini et al. [32] formulated the single cloud multi-service resource
supply and pricing problem as a Stackelberg game to minimize service costs while maximizing provider
revenue. Guo et al. [33] proposed a hierarchical architecture of smart home based on mobile edge
computing and used the Stackelberg game to solve the problem of resource purchase and pricing
of access points and user devices. Li et al. [34] proposed a game theory model for coordinating the
exchange of EMR data among healthcare institutions to maximize social welfare. Therefore, this
paper proposes a pricing strategy based on the Stackelberg game to solve the problem of fair pricing
of medical data transactions, so that both data providers and data consumers have the best choice
strategy.

3.2 Blockchain

Nakamoto first proposed the development of a cryptocurrency called Bitcoin in 2008 [35].
Transactions can be conducted through this system, and transaction records are stored as immutable
records on the blockchain ledger. Therefore, it has been applied in areas such as copyright protection
[36]. Smart contracts [37] are stored and executed on the blockchain without the need for a trusted
third party, ensuring honesty. In this transaction model, we use smart contracts for verification and
negotiation to ensure trust and the unmodifiable on-chain records can serve as evidence in transaction
disputes.
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3.3 ZoKrates

Based on the zk-SNARK algorithm Groth16 [38], ZoKrates [39] enables off-chain computing
and on-chain verification in Ethereum. It provides a toolkit with domain-specific languages (DSLs),
compilers, and witness and proof generators. ZoKrates seamlessly integrates with Ethereum’s contract
deployment and invocation process. For trusted verification using zk-SNARK, ZoKrates adopts a
black-box approach. Specific calculations are written in a high-level language, compiled into flat code,
and converted to a rank-1 constraint system (R1CS). ZoKrates follows the standard setup phase
to generate common reference strings (CRS) and public keys—proof key and verification key. The
verification key is deployed as a contract on the blockchain, while the proof key is distributed to the
prover. The prover inputs information to calculate the zk-SNARK witness, generating proof based on
the witness and CRS. The proof, combined with public input, undergoes verification using the stored
verification key in the contract. Participants with the proof file can invoke the contract for verification.

4 Proposed Scheme
4.1 Scheme Framework

This paper proposes a smart contract-based application for trusted verification and fair trading of
medical data. Here, patients are treated in various medical institutions. For patients with a willingness
to share high-quality medical data, hospitals can generate a zero-knowledge proof contract for their
authenticity and specific attributes. Medical institutions, as data generators, provide guarantees for
their authenticity and data quality. In a decentralized blockchain, any participant who obtains proof
can verify medical data and trade. To facilitate the description of the scheme, some symbols are defined
in Table 1.

Table 1: Symbol definition

Symbol Definition

Cid The file identifier returned by IPFS.
Sign_Cid The Cid of the patient and the doctor’s private key are signed in turn.
Proof Proof for verification.
prk_d, puk_d Doctor’s private key and public key.
prk_o, puk_o The private key and public key of the data owner.
Attr Specific attributes of data.
[min, max] The scope of specific attribute declarations.

The architecture of trusted fair trading based on blockchain is shown in Fig. 1. The proposed
architecture consists of six components: data owner, data collector, data consumer, doctor, blockchain
network, and IPFS. Assuming that all participants have completed the registration and other steps,
the program runs as follows four steps.

Step 1 As the owner of the data, Step 1 patients look for medical institutions for medical diagnosis
and decide whether to share the generated medical data to obtain the corresponding rewards. The
rewards are not actual monetary compensation but are solely used to offset medical expenses.
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Step 2 The doctor generates an electronic medical record for the patient encrypts it uploads
it to IPFS, which returns the corresponding Cid. Then the doctor generates Proof and guarantees
information for patients who are willing to share personal medical data. By re-signing the Cid of
the patient’s private key prk_o signature to generate Sign_Cid, and generating zero-knowledge proof
contracts and proof for it, the contract is deployed to the blockchain network to verify the data
attribute range characteristics. Proof and Sign_ Cid, puk_d will be shown back to the patient.

Step 3 If the data owner has the willingness to share personal medical data and obtain certain
benefits, Proof , Sign_Cid, and puk_d can be sent to the data collector. The data collector is a trusted
medical institution, which can only verify the data based on the re-signature verification and the proof
call verification contract. The verification data is owned by the patient and has specific attributes and
integrity. After the verification is valid, it is saved as medical data to be traded. During the verification
process, in addition to verifying whether the patient’s statement information is correct or not and
whether it is owned by the patient, no personal information about the patient will be obtained to
ensure the patient’s privacy protection before the transaction.

Step 4 Data consumers can be many medical research institutions, pharmaceutical research and
development companies, or medical insurance companies, and there is a competitive relationship
between data consumers. When they need a certain type of medical data with specific attributes,
they will negotiate with data collectors, reach Nash equilibrium through game bargaining of smart
contracts, and seek pricing strategies to maximize the interests of all parties.

Figure 1: Scheme framework

4.2 Data Validation with Zero Knowledge Proof

In blockchain-based systems, despite transactions being securely recorded and tamper-proof, the
intricate audit trail process remains a challenge for detecting illegal or malicious transactions. Mali-
cious activities by anonymous participants often manifest as the exchange of false data. Particularly
in the context of medical data exchange, data consumers face challenges in evaluating the authenticity,
quality, and conformity of specific attributes (such as age, blood pressure, and blood glucose) with
expectations. Additionally, due to the sensitivity of medical data, data owners are reluctant to disclose
specific information before transaction finalization, resulting in diminished trust among transaction
participants.
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To address these challenges, employing zero-knowledge proof to verify specific attribute values
in medical data aims to ensure data authenticity and alleviate privacy concerns. This trustworthy
verification is conducted under the premise of safeguarding data privacy. The process of proof
generation and verification using ZoKrates is illustrated in Fig. 2.

Figure 2: Zero-knowledge proof generation and verification

GenZok → Zok code: Doctors utilize the ZoKrates’ DLS language to describe the zero-knowledge
proof constraint verification program Zok. The arithmetic circuit enables users to prove the specific
attribute value Attr in the patient’s data within the declared range without disclosing the exact values
of the attributes. Additionally, it includes the doctor’s private key prk_d for signing the data identifier
Cid, ensuring the authenticity and integrity of the medical data. The medical data is generated by the
doctor, who bears responsibility for the data, guaranteeing its truthfulness and completeness.

Private and public input: According to the above Zok function description, the private input of
the program Zok should include several attribute values Attr of the patient data, and the public input
should include the maximum value max and the minimum value min file identifier Cid of the declared
attribute value range to calculate and generate Witness.

Setup → keys: The Setup step of ZoKrates generates CRS, that is, proving key proving key, and ver-
ifying key. According to the G16 [38] algorithm, the output form of a non-interactive linear proof for a
quadratic arithmetic program is given by R = (F , �, {ui(X), vi(X), wi(X)}m

i=0, t(X)). The relationship is
defined as (a1,. . . , a�) ∈ F � and the witness (a�+1,. . . , am) ∈ Fm−l such that a0 = 1, and an (n−2)-degree
polynomial h (X) (where n is the degree of t (X)) satisfies the equation:

∑m

i=0 aiui (X) · ∑m

i=0 aivi (X) =∑m

i=0 aiwi (X) + h (X) t (X). Here, F is the field, l is a parameter, and ui (X) , vi (X) , wi (X) , t (X) are
polynomials.
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(σ , τ) ← Setup(R): Choose α, β, γ , δ, x ← F
∗, where 0 < l < m, and set τ = (α, β, γ , δ, x) and

σ =
(

α, β, γ , δ, {xi}n−1
i=0 ,

{
βui(x) + αvi(x) + wi(x)

γ

}l

i=0

,
{

βui(x) + αvi(x) + wi(x)

δ

}m

i=l+1

,
{

xit(x)

δ

}n−2

i=0

)
.

The above expression includes random variables selected by the verifier from the finite field F
∗:

α, β, γ , δ, x. Additionally, ui (x) , vi (x) , wi (x) and t (x) are polynomials related to the zero-knowledge
proof constraint verification program ZoK, generated through operations such as arithmetic circuit
transformation, R1CS transformation, and quadratic arithmetic program (QAP) transformation.

Generate proof: The proof is generated by computing the witness in the second step and creating
the proof key in the third step, then saved by the data owner.

π ← GenProof(R, σ , a1,. . . , am): Choose r, s ← F, and compute π = Πσ = (A, B, C), where A =
α + ∑m

i=0 aiui (x) + rδ, B = β + ∑m

i=0 aivi (x) + sδ, C =
∑m

i=l+1 ai(βui(x) + αvi(x) + wi(x)) + h(x)t(x)

δ
+

As + rB − rsδ.

Export and deploy SC: The doctor uses ZoKrates to create a zero-knowledge proof verification
smart contract (Verification SC). This contract utilizes the Ethereum blockchain’s pre-compiled elliptic
curve operation library for bilinear pairing and assessment. Its main purpose is to verify whether
the input parameter, Proof , meets the pairing requirements. Once the Verification SC is successfully
generated, doctors deploy it on the Ethereum blockchain.

Send proof and public input: After the data owner requests medical services, the doctor returns the
generated proof to the user. When users are willing to share personal medical data but prefer not to
disclose specific details before the transaction, they can send both the Proof and a public input to the
data collector for verification. In this scenario, the public input represents a declared content, which
is a certain range rather than specifying specific values.

Verify: The collector, serving as a pre-transaction verifier, utilizes the Proof provided by the data
owner to invoke a smart contract for verifying the correctness of the public input declaration.

true/false ← Verify (R, σ , a1,. . . , al): This involves computing a quadratic multivariate polyno-
mial t such that t (σ , π) = 0. This equation corresponds to verifying whether A · B = α · β +∑l

i=0 ai (βui (x) + αvi (x) + wi (x))

γ
·γ · δ is equal. If equality holds, the result is true, indicating that the

data is trustworthy. Otherwise, it is false, signifying that the declared range is not trustworthy.

4.3 Stackelberg Game Pricing Strategy

In this section, the pricing strategy based on the Stackelberg game is introduced to help transaction
participants determine the best data pricing and demand. By realizing the Nash equilibrium of the
proposed game, a fair pricing strategy for data providers and data consumers can be achieved.

The entities involved in the pricing strategy game include medical data collectors and data
consumers. The economic strategic game of Stackelberg game is used to model and describe how
medical data maximizes the interests of all parties. Data collectors collect and verify medical data.
As representatives of many medical data owners, they bargain with data consumers. In addition, in
the proposed scheme, medical data is stored in IPFS, and the same medical data has the same index,
which can effectively prevent the data owner from double sharing operations. In this pricing strategy
model, the electronic medical record data collector plays the role of “leader” in making decisions, while
the data consumer is the “follower” of the subsequent decision-making.
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4.3.1 Definition of Game Pricing Strategy

First, the leader sets the unit data price strategy {p = pi(i ∈ N) : pmin ≤ pi ≤ pmax}, where pi is
the price of the i-th (i ∈ {1, 2, . . . , N}) data consumer. Here, the medical data owner determines the
proportion q(0 < q < 1) of the transaction price to the data collector as a fee and encourages the
receipt collector to actively participate. The minimum price is the minimum cost requirement for all
costs. Therefore, the unit additional cost of operation and maintenance costs c < pi, by deducting the
cost c, the expected return sum incentive function of the data provider (collectively, the collector and
the data owner) can be expressed as:

RP = pidi − cdi (1)

Among them, di is the data demand of the i-th data consumer, and the demand is determined
according to the action of the “leader”. There are usually N data consumers competing for medical
data resources. For specific consumers, it can be determined that as the amount of data of the same
type increases, the new amount of information obtained by data consumers from the data will decrease.
Initially, increasing the number of units of data may bring greater information gain than later, resulting
in a larger increase in utility. However, as the amount of data increases, the newly added data may
only bring a small amount of additional information, and the increase in utility gradually decreases.
Therefore, the utility function of the i-bit data consumer is described by the natural logarithmic
function as follows:

RC = αiIn (di + ki) − pidi (ki > 1, di > 0) (2)

where dmin is the minimum demand of the i-th consumer, αi is a predefined non-zero positive factor,
and ki >1, ensuring that the satisfaction utility function is non-negative even when the demand is very
small. pidi is the data cost paid by the i-th consumer for medical data.

Based on the above utility function, medical data providers and consumers will perform sequential
decision-making processes until the optimal data price and quantity are achieved. The data provider
first sets the price, and then the data consumer sets the demand according to the pricing strategy.
Next, data collectors try to maximize their utility by maximizing the price and amount of data, while
data consumers want to reduce the price and increase the amount of data to maximize their utility.
When the proposed Stackelberg game reaches Nash equilibrium, the maximum return of “leader” and
“follower” can be achieved. Then, medical data providers and consumers will be motivated by this
strategy to achieve their best returns. The Nash equilibrium between data providers and consumers
can be described as follows.

If any price pi and demand di satisfy the following conditions, then point (p∗,d∗) is the Nash
equilibrium point, where p∗ represents the optimal unit price of resource data, and d∗ represents the
data demand of consumers.

Rsum(p∗, d∗) ≥ RP(pi, di) + RC(pi, di) (3)

{
RP (p∗, d∗) ≥ RP(pi, d∗)

RC (p∗, d∗) ≥ RC (p∗, di)
(4)

4.3.2 The First Stage of the Stackelberg Game

Calculate the optimal data demand of the i-th data consumer. The data consumer chooses the
optimal demand d∗ that can maximize the revenue according to the pricing. For the data demand di,
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the first-order and second-order partial derivatives of the consumer utility function RC are as follows:

∂RC

∂di

= αi

di + ki

− pi

∂2RC

∂d2
i

= − αi

(di + ki)
2 < 0

(5)

Therefore, it can be concluded that RC is a convex function. At the same time, the demand p∗ for

price pi can be expressed by solving
∂RC

∂di

= 0.

d∗ = αi

pi

− ki (6)

4.3.3 The Second Stage of the Stackelberg Game

The optimal data price of the itch data consumer is calculated. Since different pricing has an
impact on the optimal demand of data consumers, we substitute the expression (6) of demand d∗

about price pi into (1), and the incentive function RP of the data provider is converted into:

RP = pi

(
αi

pi

− ki

)
− c

(
αi

pi

− ki

)
(7)

Then, we calculate the partial derivative of the activation function RP concerning pi. The first-
order and second-order partial derivatives of Eq. (7) are as follows:

∂RP

∂pi

= cαi

p2
i

− ki

∂2RP

∂p2
i

= −2cαi

p3
i

< 0
(8)

From Eq. (8), it can be concluded that RP is a convex function curve that increases first and then

decreases. Therefore, RP can reach the maximum value at
∂RP

∂pi

= 0, and p∗ can be obtained.

p∗ =
√

cαi

ki

(9)

In the proposed Stackelberg game-based pricing strategy, medical institutions negotiate with many
data consumers as data collectors. Therefore, data collectors can find the optimal unit price p∗ for data
resources, and data consumers can also choose the optimal amount of data d∗ according to the price.
Therefore, when the Nash equilibrium point (p∗,d∗) is reached, data collectors and data consumers,
as well as patients, can obtain the best revenue incentive. The pricing model takes into account the
maximum benefits of all parties, has fairness, and encourages all parties to actively participate in the
sharing and circulation of medical data.

5 Experiment and Analysis

The proposed scheme is implemented and tested on an AMD Ryzen 7 5800H with Radeon Graph-
ics 3.20 GHz and 16 GB RAM computer. The operating system is Windows 10 Home Chinese version.
The blockchain test network is a test network named “Ropsten”. The smart contract is compiled and
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run using the online compiler Remix on the Chrome browser 116.0.5845.112 (official version 64-bit).
zk-SNARK is initialized in Remix extension ZoKrates: 0.8.4. It is mainly divided into three aspects:
zero-knowledge proof verification use case test, game pricing strategy numerical simulation, and zero-
knowledge proof contract performance test to verify the feasibility and practicability of the proposed
scheme.

5.1 Verification Case

At present, the algorithms that can realize the non-interactive zero-knowledge proof of zk-
SNARKs mainly include PGHR13, GM17, G16, etc., and the scheme selection is G16. Compared with
other algorithms, the G16 algorithm has the smallest verification time and concise zero-knowledge
proof and has completeness and reliability [38].

In this test, only the specific attribute of age is verified, where the range [min, max] is publicly
declared information. The specific age information is private input, revealed solely during the doctor’s
proof generation process, and remains concealed from the verifier. ZoKrates automatically computes
the requisite witness based on the circuit. Subsequently, the global parameter configuration and proof
generation are executed.

In the non-interactive zero-knowledge proof contract, the contract interface such as Fig. 3 is
provided. During the verification process, only public inputs and Proof need to be sent to the verifier,
as depicted in Fig. 4a. Any participant, including data collectors and data consumers, can use the
proof information to call the contract for verification. If the verification is passed, True is returned as
Fig. 4b, indicating that the declaration information is credible. Otherwise, False is returned as Fig. 4c,
the declaration is incorrect, and the data is not credible.

Figure 3: Verification contract interface

Figure 4: Smart contract verification
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5.2 Numerical Simulation of Pricing Strategy

According to the pricing strategy, data consumers first select the optimal amount of data
according to the price set by the data collector. Simulate the impact of data demand on the satisfaction
of the same data consumer at different prices set by the data collector. The non-zero positive factor
α = 10000 is set here, and the minimum demand dmin is set to 100. When the amount of data is lower
than the minimum demand, the initial information gain k is greater than the minimum demand, so
when the demand is lower than the minimum demand, the satisfaction is non-negative. To facilitate
the simulation data, k is set to 1.5 times the minimum demand, k = 150, price p = 10, 20, 30, 40, 50.
To facilitate the calculation and ensure that the cost c is lower than the changing price p, set the cost
c = 1.

For the same data consumer, the impact of demand on satisfaction is shown in Fig. 5. In the
case of different pricing by data collectors, data consumer satisfaction will increase first and then
decrease with the increase of data demand, indicating that data consumer satisfaction will not
continue to increase with the increase of data demand without considering the impact of data price.
Therefore, data consumers have the optimal data demand to maximize their satisfaction. In addition,
for the same data demand, data consumer satisfaction gradually decreases with the price increase,
which means that data consumers need to pay more to obtain the same income. Under the same
satisfaction, the lower the price, the higher the amount of data required.

Figure 5: Impact of data demand on consumer satisfaction

As mentioned above, price has a great influence on data demand. To meet their maximum
satisfaction, data consumers adjust the optimal demand strategy for different prices. Under the same
parameter conditions, the impact of data price on the optimal demand of data consumers is shown in
Fig. 6. When the data collector’s pricing is low, the data consumer chooses to purchase a large amount
of data to meet the maximum satisfaction. As the price of data increases, data consumers will reduce
the amount of data purchased to balance the cost of expenditure to maximize their satisfaction. For
data consumers, according to the pricing of data collectors, select the appropriate demand to achieve
the maximum benefit.
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Figure 6: The impact of price on the optimal demand

Data demand is affected by data prices. For data providers, it is not that the higher the price, the
greater the revenue. Set non-zero positive factors α = 10000, 15000, 20000, 25000 to represent different
data consumers. For any data consumer, the impact of price on the total revenue of the data provider
is shown in Fig. 7. As the price increases, the total revenue increases first and then decreases due to
the change in data consumer demand for data as shown in Fig. 6. Therefore, there is an optimal price
to maximize the benefits of data providers.

Figure 7: The impact of price on the total revenue of data provider
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5.3 Smart Contracts Cost

We compiled the smart contract using the Solidity programming language in the Remix online
compiler and deployed it. The expected gas costs for deploying the contract and executing it are shown
in Table 2. The gas consumed here is only a test value and does not represent a real cryptocurrency.
In the real system, the alliance chain and more efficient consensus algorithm can be used to further
improve the efficiency of the blockchain network.

Table 2: Gas cost of the smart contract

Function Deploy contract gas Transaction gas

Verification SC 1485734 244927
Pricing SC 893573 23749

5.4 Schemes Comparison

To illustrate the advantages of the proposed scheme, it is compared with the data transaction-
related schemes (different schemes are selected from the related work, as well as the traditional
centralized architecture scheme). An analysis was conducted comparing five key aspects: Decentral-
ized architecture, Tamper-proof records, Privacy protection for attribute information, Trustworthy
validation of data on the blockchain, and Fair incentive pricing strategy.

The comparison results are shown in Table 3, from which we can see that the scheme has significant
advantages. It should be particularly emphasized that compared with the comparison scheme, this
paper adopts the decentralized architecture to verify the chain with zero knowledge proof and realizes
the credible verification of data under the premise of attribute information privacy protection. At
the same time, in terms of fairness and incentives for transaction prices, and from the perspective of
maximizing social welfare, the improved Stackelberg game pricing strategy is used to enable all parties
to achieve the best returns and encourage participants to actively participate and maintain honest
behavior.

Table 3: Scheme comparison

Scheme Decentralized
architecture

Tamper-proof
records

Privacy
protection for
attribute
information

Trustworthy
validation of
data on the
blockchain

Fair incentive
pricing strategy

Traditional scheme × × × × ×
Nguyen et al. [19] √ √ × × ×
Zhao et al. [22] √ √ × √ ×
Gao et al. [25] √ √ × × ×
Xue et al. [26] √ √ × √ ×
Zheng et al. [28] √ √ × × √
Proposed scheme √ √ √ √ √
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6 Conclusions

This paper proposes a trusted and fair medical data transaction scheme based on smart contracts,
which solves the problem of untrustworthy data and unfair prices in the process of medical data
transactions. In terms of data trustworthiness verification, zero-knowledge scope proof is used to
verify data trustworthiness under the premise of protecting attribute privacy, which effectively protects
patient privacy. In terms of data transaction pricing, the improved game model is used to select the best
strategy for both parties to the transaction, which proves the existence of Nash equilibrium, so that all
parties can obtain the maximum return and maximize social welfare. The research will provide useful
guidance and innovative ideas for the future development of medical data transactions, to promote
the field of health care towards more secure, credible, and fair data transactions.

Although blockchain technology provides a distributed and decentralized security guarantee for
medical data transactions, its performance in dealing with large-scale transactions has been widely
scrutinized and questioned. Due to limitations in the consensus mechanism, when transaction volume
and load are high, the blockchain network may experience transaction delays, making it challenging
to meet real-time demands. Additionally, there are difficulties in integrating with hospital systems
in practical applications. Therefore, the next research direction will focus on optimizing consensus
algorithms to enhance the efficiency of the blockchain network and exploring methods that facilitate
easier integration with real-world hospital systems.
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