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ABSTRACT

Bone age assessment (BAA) helps doctors determine how a child’s bones grow and develop in clinical medicine.
Traditional BAA methods rely on clinician expertise, leading to time-consuming predictions and inaccurate results.
Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing
additional annotations. This operation is costly and subjective. To address these problems, we propose a multi-
scale attentional densely connected network (MSADCN) in this paper. MSADCN constructs a multi-scale dense
connectivity mechanism, which can avoid overfitting, obtain the local features effectively and prevent gradient
vanishing even in limited training data. First, MSADCN designs multi-scale structures in the densely connected
network to extract fine-grained features at different scales. Then, coordinate attention is embedded to focus on
critical features and automatically locate the regions of interest (ROI) without additional annotation. In addition,
to improve the model’s generalization, transfer learning is applied to train the proposed MSADCN on the public
dataset IMDB-WIKI, and the obtained pre-trained weights are loaded onto the Radiological Society of North
America (RSNA) dataset. Finally, label distribution learning (LDL) and expectation regression techniques are
introduced into our model to exploit the correlation between hand bone images of different ages, which can obtain
stable age estimates. Extensive experiments confirm that our model can converge more efficiently and obtain a
mean absolute error (MAE) of 4.64 months, outperforming some state-of-the-art BAA methods.
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1 Introduction

Bone Age (BA) is the age of the human skeleton, which is different from a person’s actual age. BA
is inferred from the skeleton’s growth, maturation, and aging patterns [1], and bone age assessment
(BAA) is a medical diagnostic procedure. By analyzing X-rays of the left hand, medical specialists
predict a patient’s skeletal age and compare it with the patient’s actual age, then determine whether
the growth rate and bone maturation are regular. It is a diagnostic and therapeutic guide for adolescent
growth and development abnormalities, hereditary diseases and chronic diseases [1–3]. BAA is widely
used in pediatric clinical, sports medicine, forensic medicine, and genetic medicine [2,3].
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In clinical medicine, Greulich-Pyle (G-P) [4] and Tanner-Whitehouse (TW3) [5] are the most
common BAA methods. The G-P method establishes two sets of standard templates for males and
females and derives bone age estimates by comparing the subject’s radiographs to gender-specific
profiles. The G-P method is primary and quick, but it is subjective and image comparisons cannot be
performed with absolute precision. The TW3 method divides a hand bone into 20 regions of interest
(ROI) and derives bone age by comprehensively analyzing each ROI. Compared to the G-P method,
TW3 can reduce the impact of subjective and individual differences and can improve the prediction
accuracy. However, it is complex and time-consuming in clinical practice.

In addition, machine learning techniques-based methods have provided various analysis for
medical image processing, especially automatic BAA. Generally, traditional automatic BAA methods
extract manually labeled features, classify them by linear or nonlinear filters, and then map the
categories to BA [6–9]. However, manually extracted features require high expertise for the marker.

In recent years, deep learning-based methods have focused on locating critical regions using
bounding boxes and critical point annotations. Then, the labeled data is fed into the CNN to learn
and extract the appropriate features [10–13]. However, manual annotation and specialized domain
knowledge are inapplicable in large-scale application scenarios. Besides, most existing BAA systems
primarily rely on CNN structures. They build deep convolutional neural networks (DCNNs) by
simply stacking convolutional layers, which impede gradient propagation and are prone to gradient
disappearance [14]. Several solutions to this problem have been proposed in related papers, including
residual networks (ResNet) [15], fractalNets [16] and high-speed neural networks [17]. However, these
methods are not applicable for limited training data, particularly for medical image processing. To
address these issues and develop a reliable and automatic BAA method, we propose the multi-scale
attentional densely connected network (MSADCN). The advantages of this network include:

1. A new multi-scale convolutional structure is designed to extract rich and complementary infor-
mation from hand bone images. The multi-scale convolutional layers are densely connected
into dense blocks, which can make the feature information efficiently transmitted.

2. Within the densely connected blocks, the coordinate attention mechanism (CAM) is embed-
ded, which directs the network to focus on more helpful information and automatically locate
the ROI of the most distinguished hand bones.

3. Transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-
WIKI, and the obtained pre-training weights are loaded onto the RSNA dataset. Besides,
label distribution learning and expectation regression are implemented to get the bone age
expectation. Experimental evaluations show that the performance of MSADCN outperforms
some mainstream neural network methods.

2 Related Work

In previous clinical BAA tasks, G-P and TW3 methods were time-consuming, error-prone and
subjective. Therefore, scholars have been exploring the use of computer-aided medical image process-
ing and analysis to design automated BAA methods. These methods can be divided into traditional
and deep learning-based BAA methods. This section will briefly introduce the representative studies
of both.

2.1 Traditional BAA Methods

Most traditional image processing BAA methods mainly have three steps. Firstly, extract manually
designed features from an entire image or a specific ROI. Then, classify these features with a classifier
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trained with a few samples. Finally, the BAA results are obtained by matching the classification
results with the corresponding classes. Niemeijer et al. [6] developed a automatic BAA method.
They segmented bone blocks by using an active shape model technique to obtain shape and texture
information of hand bones. de Luis-Garcia et al. [7] segmented ROI by active contours (SNAKES) to
determine the outlines of bone blocks. Pan et al. [8] extracted bone features by segmenting images of
the wrist using Gradient Vector Flow (GVF) combined with SNAKES. Giordano et al. [9] designed
a fully automated BAA system, which extracted epiphyseal and metaphyseal ROIs (EMROIs) using
image processing techniques. Then, it extracted the corresponding bone block characteristics by the
TW2 criterion. Thodberg et al. [18] created a three-layer architecture called Bone Xpert, including a
bone reconstruction model, feature analysis and bone age prediction. Kashif et al. [19] proposed the
scale-invariant feature transform (SIFT) to extract critical features at specific locations of bone blocks,
and then classify them using SVM to get bone age assessment. Due to these methods based on manual
extraction of hand bone feature regions, they obtained limited performance with the MAE results
ranging from 10 to 28 months. The BAA methods based on traditional techniques require manual
extraction of specific features, which need a high level of expertise for the marker and cannot compete
with medical experts.

2.2 Deep Learning-Based BAA Methods

Nowadays, deep learning-based methods have been essential in medical image processing [20–22],
which can learn the intrinsic structures and patterns of the input data through specific algorithms.
Accordingly, a variety of deep learning methods for BAA have been presented, some of which exceed
the performance of experts. Lee et al. [23] utilized pre-trained fine-tuned CNN for BAA, which
obtained 57.32% and 61.40% accuracy for females and males, respectively. Spampinato et al. [10]
designed BoNet for BAA by using a deformation layer to address bone non-rigid deformation.
Liu et al. [11] developed a multi-scale data fusion framework based on non-subsampled contour
wave transform (NSCT) and CNN to acquire multi-scale and multi-directional features. Li et al. [12]
designed a CNN for fine-grained bone age image classification. This network can automatically locate
ROI and fuse the extracted local features with the global features, which get the accuracy for males
and females with 66.38% and 68.63%, respectively. Nguyen et al. [13] extracted the hand key points by
pre-processing images. They applied transfer learning to gender determination and the BAA model,
which obtained an MAE of 5.31 months. Deng et al. [24] manually segmented the articular surfaces and
epiphyseal ROIs of hand bones, and then used five mainstream CNNs to predict bone age. Li et al. [25]
used visual heatmaps to locate the epiphyseal region and combined gender input into the bone age
prediction network. Jian et al. [26] developed a multi-feature lateral fusion TENet,which extracted
ROIs using hand topology blocks while enhancing hand bone edge features.

In recent years, many studies have applied attentional localization to the ROI of the input images.
Fu et al. [27] devised an RA-CNN algorithm, which iteratively generates region attention by recursively
learning multi-scale and fine-grained feature maps. Chen et al. [28] obtained attention maps of the
hand bone by training a classification network to obtain the critical regions and aggregating them
from different detected regions. Zulkifley et al. [29] proposed an attention-aware network (AXNet)
to normalize hand bone images and predict bone age. Ren et al. [30] proposed a weakly supervised
regression CNN by using an attention module to generate coarse and fine attention maps, which
obtained the MAE between 5.2 and 5.3 months. Deep learning-based BAA methods automatically
extract ROIs through CNN and predict bone age by using classification or regression ideas, which can
save time, be robust, and provide more accurate results.
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3 Methods

In this paper, the BAA task is divided into three modules: (1) image pre-processing, (2) MSADCN-
based feature extraction phase, and (3) regression of bone age expectation based on label distribution
learning. Fig. 1 depicts the proposed method of the BAA task. Firstly, the input X-rays are pre-
processed to get high-resolution and low-noise images of the same size. Then, MSADCN is loaded
with pre-trained weights on the IMDB-WIKI dataset, and transfer learning is used to extract features
and automatically locate ROIs from the processed hand bone images. Finally, the extracted features
are combined with the gender information of each image to obtain the bone age estimates through
labeled segment learning. The three modules will be introduced in detail as follows.

Figure 1: The proposed framework of MSADCN for the BAA task

3.1 Image Dataset and Preprocessing

The RSNA dataset has 14236 hand radiographs, including 12611 training images, 1425 validation
images, and 200 test images. Since the RSNA dataset are from different hospitals, the hand bone images
have different sizes, high resolution, and noise. Therefore, to get more accurate image training results,
the training images used in this paper refer to the image segmentation technique [31]. Fig. 2a shows
the image before segmentation, while Fig. 2b is the segmented image with a resolution of 1600 × 2080
pixels.

Figure 2: Comparison of hand bone images: (a) The original X-rays; (b) The segmented X-rays; (c)
The pre-processed X-rays

To get the more distinct area of the hand bone, the segmented image is preprocessed. First, the
appropriate size of the image is obtained by cropping the image borders and adjusting the width and
height ratios. Then, the image is scaled using bi-trivial interpolation in a 4 × 4 pixels region, and
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histogram equalization is utilized to enhance the image contrast. Finally, to ensure the consistency of
input data, the preprocessed image size is 512 × 512 pixels in Fig. 2c.

3.2 MSADCN-Based Feature Extraction Phase

The MSADCN-based feature extraction process will be described in this section. Firstly, the
composition of the multi-scale dense connectivity mechanism is introduced, which consists of multi-
scale dense blocks, CAM, and transition layer. Secondly, two-component structures are highlighted:
the multi-scale module for extracting multi-scale features and the coordinate attention module for
focusing on essential features. Finally, we will introduce the pre-training method on the IMDB-WIKI
dataset. Next, each component is described in detail.

3.2.1 Multi-Scale Dense Connection Mechanism of MSADCN

The multi-scale dense connection mechanism of MSADCN based on the principle that each layer
receives feature information from all former layers in the channel direction. Then the feature maps
received by the Lth layer can be expressed as a nonlinear function:

XL = HL ([X0, X1, · · ·, XL−1]) (1)

where [X0, X1, · · ·, XL−1] denotes the feature maps connection from layer 0th to layer L-1th. HL(·)
represents the nonlinear transformation of layer L, which includes batch normalization (BN), rectified
linear unit (ReLU) and the multi-scale 3 × 3 convolution (Conv) kernel. To decrease the amount of
input feature maps during the information transfer process and improve the computational efficiency,
we insert 1 × 1 Conv before the multi-scale 3 × 3 Conv. Therefore, as shown in Fig. 3a, the nonlinear
function HL (·) of the multi-scale dense layer consists of BN, ReLU, 1 × 1 Conv, and multi-scale 3 ×
3 Conv. In Fig. 3a, the growth rate k is 3, which can generate 4k feature maps following a 1 × 1 Conv.
Accordingly, a dense connection of multiple dense layers forms a multi-scale dense block. Fig. 3b
shows a dense block with three multi-scale dense layers. Since each multi-scale dense layer produces
only k feature maps, the number of feature maps generated by the Lth layer can be expressed as follows:

NL = k0 + k × (L − 1) (2)

where k0 denotes the number of output image channels. In addition, there is a transition layer between
each multi-scale dense block to downsample and compress the model. Assuming that the number of
output channels from the previous layer is m, the size of features is θm after the transition layer, where
θ is the compression factor, 0 < θ ≤ 1. Fig. 3c shows the structure of the feature extraction network
MSADCN, which consists of two multi-scale dense blocks, CAM and transition layer.

3.2.2 Multi-Scale Module

Inspired by Res2Net, which can enhance the capability of multi-scale representation at a finer
granularity level [32], we propose an efficient method for creating convolutional modules with
gradually increasing scales in a single convolutional module. The multi-scale module is one of the
essential structures of MSADCN, which can obtain more accurate feature maps during the feature
extraction phase of the BAA task. Next, the multi-scale module will be described in detail.

Fig. 4 depicts the structure of the multi-scale module, which is the constitutive principle of the
multi-scale 3 × 3 Conv in the dense layer in Fig. 3a. We assume that the 4k input feature maps from
all prior layers are rearranged and divided into s groups. Each group has 4k/s feature maps from
different dense layers. Since the number of produced feature maps increases with the depth of multi-
scale dense blocks, we directly connect the 1 × 1 Conv to the first group of the permutation operation,



2230 CMC, 2024, vol.78, no.2

and the other groups employ 3 × 3 Conv with regularization processing and activation function before
convolution. To reduce the number of parameters, we design the output channel of each 3 × 3 Conv as
4k/s. After finishing all 3 × 3 Conv operations, the first group without convolution is spliced after the
output feature maps of all 3 × 3 Conv. Finally, the features at different scales are fused by 1 × 1 Conv.
Significantly, the number of output channels at this stage equals the input channels. To maintain the
characteristic that each multi-scale dense layer produces only feature maps in the dense connection
mechanism, the output channels after 1 × 1 Conv are set to be the same as the growth rate, then as the
input to the next layer.

Figure 3: The general structure of MSADCN: (a) Multi-scale dense layer; (b) Multi-scale dense block;
(c) MSADCN for feature extraction of hand bone images

Next, we will analyze the number of parameters generated by the multi-scale dense layer convo-
lution structure of MSADCN and compare it with DenseNet [33]. The input and output channels of
the dense layer are the same in DenseNet and MSADCN, respectively.

In a dense layer of DenseNet, the number of input feature maps for 1 × 1 Conv is lk, and output
feature maps after 1 × 1 Conv are 4k. The number of input and output feature maps for 3 × 3 Conv
are 4k and k, respectively. Therefore, the number of parameters after a dense layer in the DenseNet
structure can be expressed as follows:

PDenseNet = lk × 4k + 4k × k × 3 × 3
= 4lk2 + 36k2 (3)
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In Fig. 4, the first group (the first 4k/s feature maps) has no parameters in the convolution layer,
while the input and output channels of the first 3 × 3 Conv are 4 k/s. The input channels of other
3 × 3 Conv are 8 k/s, and its number of output channels is 4k/s. Since the outputs of the first group
and all 3 × 3 Conv groups are the inputs of 1 × 1 Conv, it generates k output channels after the 1 × 1
layer. Consequently, the total number of parameters of a multi-scale dense layer in MSADCN can be
summarized as follows:

PMSADCN = lk × 4k + 4k
s

× 4k
s

× 3 × 3 + 8k
s

× 4k
s

× 3 × 3 × (s − 2) +
[

4k
s

+ (s − 1) × 4k
s

]
× k

= 4lk2 +
(

288
s

− 432
s2

+ 4
)

× k2

(4)

Figure 4: Multi-scale structure of dense layer in MSADCN

By comparing PDenseNet and PMSADC, it can be seen that both have a similar number of parameters
(the value of growth rate k is set to 32, and s is set to 8). Although the multi-scale module makes
the convolution process of MSADCN somewhat more complicated than DenseNet, the number
of parameters is not multiplied (within an acceptable range), and the information transmission of
MSADCN feature maps is superior to DenseNet. Additionally, several convolution kernels perceive
the information better than a convolution kernel, which can extract more accurate feature information.
Therefore, MSADCN can effectively capture the information from multiple scales in the source images
and achieve good results for the BAA task.
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3.2.3 The Coordinate Attention Module

Due to the vital feature reuse of the multi-scale dense connectivity mechanism, the MSADCN
generates a certain number of feature maps during the propagation process. To make the feature
transfer between dense layers more effective, the coordinate attention mechanism (CAM) [34] is
embedded after the multi-scale dense block. CAM can redistribute the raw features extracted by
MSADCN, and the model’s learning ability can be enhanced by focusing on essential features and
suppressing unnecessary features. Next, the structure of the attention module is described in detail.

CAM can be seen as a computing unit for enhancing the feature representation of a neural
network, which accepts intermediate feature X = [x1, x2, · · · , xc] ∈ RC×H×W as input and produces
augmented feature Y = [y1, y2, · · · , yc] of the same size. Fig. 5 illustrates CAM encodes channel and
long-distance relations of two processes: coordinate information embedding (CIE) and coordinate
attention generation (CAG).

Figure 5: The execution process of CAM

In the CIE phase, CAM uses two pooling kernels (H, 1) and (1, W) to encode spatial information,
which obtains the feature of dimension C × 1 × W and C × H × 1, respectively. Therefore, the output
of the cth channel with width w can be expressed as

zh
c (w) = 1

W

∑
0≤j<H

xc (j, w) (5)

where xc(j, w) denotes the value of feature maps. Similarly, given a height of h, the output of the cth
channel can be expressed as

zh
c (h) = 1

W

∑
0≤i<W

xc (h, i) (6)

Eqs. (5) and (6) enable the attention block to acquire distant dependencies along one of the spatial
directions while maintaining accurate location information along the other spatial direction, which can
help our model to localize the ROI more accurately.

In the CAG phase, the features generated by Eqs. (5) and (6) are concatenated. Then, the features
are transformed by the 1 × 1 Conv function, BatchNorm, and nonlinear activation as follows:

f = δ
(
F1

([
zh, zw

]))
(7)
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where
[
zh, zw

]
denotes the concatenation operation of the spatial feature in Eqs. (5) and (6), δ is a

nonlinear activation function, f ∈ RC/r×(H+W) is an intermediate feature, and r is a reduction factor.
Then, f is divided into two features, f h ∈ RC/r×H and f w ∈ RC/r×W , which are transformed into a
tensor by two 1 × 1 Conv (Fh and Fw) with the same channels as the input X. After that, the feature
transformation is performed by a sigmoid function σ to make its dimension consistent with the input
X. These processes can be expressed as follows:

gh = σ
(
Fh

(
f h

))
(8)

gw = σ (Fw (f w)) (9)

Finally, to create a new feature map by integrating all the sub-feature maps, outputs gh and gw are
ultimately integrated into a weight matrix as follows:

yc (i, j) = xc (i, j) × gh
c (i) × gw

c (j) (10)

After the input feature maps are processed by CIE and CAG, the weights of each feature map
comprise channels, horizontal spatial, and vertical spatial information. MSADCN has the nature
of feature reuse, however, not every feature information needs to be utilized completely. Therefore,
the CAM module is introduced to focus on the critical features of the network. CAM can generate
more discriminative feature representations by rearranging the original feature maps and enhancing
channel information exchange. In this paper, the CAM module was embedded between the previous
dense block and the subsequent transition of the MSADCN. As shown in Fig. 6, the feature maps
F ∈ RC×H×W generated from the previous multi-scale dense block input the CAM module, which can
obtain the attention maps from the channel and position information. Then, the output feature maps
F ′ ∈ RC×H×W are obtained by redistributing the original feature maps’ weights, which are input to the
transition module, downsampled by the transition layer and ultimately input to the next dense block.

Figure 6: The attention module of MSADCN

3.2.4 The Pre-Training Method for the BAA Task

IMDB-WIKI is a large face dataset with over 500 thousand images, which can be used for age
prediction, face recognition, and other tasks. To ensure the significant similarity between the face age
prediction task and the target task of the bone age prediction, we first apply the same pre-processing
to IMDB-WIKI. Then, input the pre-processed images and gender information into MSADCN for
training to get the age prediction results. Finally, we use the trained model with the best face age
prediction results as the pre-trained weights for the BAA task. The generalization ability of the
MSADCN model is improved by model adaptation, which transfers the feature extraction capabilities
learned in the face prediction domain to the bone age prediction domain.
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3.3 Regression of Bone Age Expectation

In practical applications, radiographs look very similar if images are of similar age. For instance,
when a person’s bone age is 280 or 281 months, their radiographs are almost identical. Existing
methods view the BAA task as a general regression or a discrete classification problem and do not take
full advantage of the correlation information between adjacent ages, which can affect the accuracy of
bone age prediction. Therefore, we exploit the correlation of hand images in adjacent ages to learn the
age distribution for each hand image instead of a single age label by using label distribution learning
(LDL) [35,36]. This can prevent the network from overconfidence and yield more robust age estimates.

The age distribution includes a collection of probability values, illustrating how each age impacts
the hand picture and depicts the connection between adjacent ages. We assume that F (xi) ∈ Rm is the
feature information output from the feature extraction network MSADCN, G

(
gi

) ∈ Rn is the gender
information of the i th sample (−1 for female and 1 for male), where m and n denote the dimension of
the image and gender features, respectively. Fig. 7 shows the LDL-based bone age prediction process.
Firstly, the feature and gender information are fused by fi = [

F(xi); G
(
gi

)] ∈ Rm+n, which will be
transmitted to a fully connected layer zi ∈ R240 as follows:

zi = W Tfi + b (11)

where W T is the weight matrix of features, and b is the bias. Then, converting zi into an age distribution
by the activation function of Eq. (12).

pi,k = exp (zi)∑
k exp (zi)

, k = 1, 2, · · ·, 240 (12)

where pi,k denotes the probability that the i th sample belongs to age k, k ∈ {1, 2, · · · , 240}. Finally, the
output layer obtains the expectation of bone age ŷi.

ŷi =
k=240∑

k=1

k · pi,k (13)

Figure 7: LDL-based bone age expectation regression

For a given sample of input characteristics and gender information, the regression task aims to
minimize the MAE, which reflects the error between the actual age y and the predicted age ŷ. The
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lower its value, the better the performance.

LMAE = 1
N

N∑
i=1

∣∣ŷi − yi

∣∣ (14)

A Gaussian distribution [37] Gi,k represents the probability of age k associated with the i th data.
σ is the hyperparameter in charge of the age uncertainty.

Gi,k = 1√
2πσ

exp

{
−(k − yi)

2

2σ 2

}
(15)

The predicted age distribution should be concentrated in a small range of the actual age and follow
a Gaussian distribution. However, this property is difficult to guarantee. The estimated age distribution
should be centred on a smaller range of actual ages and follow a Gaussian distribution. However, this
property is difficult to guarantee. Therefore, two criterions are used in this paper to assess the merit
of the training parameters. One criterion is MAE, and the other criterion is the similarity between the
target probability and the predicted probability distribution, measured by Kullback-Leibler (KL) [38]
scatter. The loss function KL can be described as follows:

LKL = 1
N

N∑
i=1

240∑
k=1

pi,k ln
pi,k

Gi,k

(16)

where pi,k and Gi,k are described respectively in Eqs. (12) and (15). Finally, we use LMAE and LKL to
define the joint loss function L.

L = λMAELMAE + λKLLKL (17)

where λMAE and λKL are the hyperparameters that balance the loss functions LMAE and LKL, respectively.

Besides, root mean square error (RMSE) is adopted as the evaluation metric, y and ŷ denote the
actual age and the predicted age, respectively.

RMSE =
√√√√ 1

N

N∑
i=1

(
ŷi − yi

)2
(18)

4 Experiment Result and Analysis

The proposed model is trained on the Windows 10 operating system. The hardware environment is
AMD Ryzen 75800H with Radeon Graphics 3.20 GHz processor, 16G RAM and NVIDIA GeForce
RTX 3080Ti Laptop GPU. The software environment is Python 3.6, the deep learning framework is
PyTorch, and the development tool is PyCharm 2021.

Since the RSNA dataset has 200 test images without published bone age, our model is tested
on the RSNA test set, and obtains the bone age prediction result MAE of 4.64 months. Fig. 8
shows the relationship of actual age between deviation age and predicted age. We assume the deviation
is the difference between predicted and actual age. As shown in Fig. 8a, the absolute deviation of the
prediction result is stable within 15 months and is mainly concentrated within eight months. From
Fig. 8b, we can see that our predicted age is highly consistent with the actual age for males and females,
which demonstrates the proposed model can achieve excellent performance.
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Figure 8: Experimental results of the proposed method. (a) The result of actual and deviation age; (b)
The result of actual and predicted age

Fig. 9 is the loss comparison between the initial weights and the loaded pre-trained weights of
MSADCN. Fig. 9a shows the loss of the training set, and Fig. 9b shows the loss of the validation set.
It can be visualized that the training loss is decreasing with epochs for both methods. The validation
loss with loaded pre-training weights is lower than that with initial weights and the change levels off
after 30 epochs. Therefore, the MSADCN model loaded with pre-training weights is more robust.

Figure 9: Loss comparison of initial and pre-trained weights: (a) Train loss; (b) Valid loss

To understand more intuitively the key regions that MSADCN focuses on during the feature
extraction phase, we visualize the heat map. In Fig. 10, attention maps are from four skeletal
development stages: prepubertal, early-mid, late, and post-pubertal [39]. The carpals and the mid-
distal phalanges are the main targets of the prepubertal attentional map (a). Attention maps for early-
mid and late adolescence (b and c) concentrate less on the carpal bones and more on the phalanges,
suggesting that in patients during that time, their carpal bones are more significant predictors of BAA.
Since the radius and ulna close last in the post-pubertal attention plot (d), focus more on the wrist bone
[39]. As shown in Fig. 10, our proposed method validates this well. Therefore, relying on additional
labels or manual extraction of ROI regions is not precise and challenging enough for BAA because
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the critical regions of hand bone used to characterize bone age differ for different ages. By visualizing
the heat map, we can better understand which areas of the hand bone image are significant for BAA.

Figure 10: Heat map of the four stages of skeletal development: (a) Prepubertal, (b) Early-mid pubertal,
(c) Late pubertal, (d) Post-pubertal

5 Discussion
5.1 Comparison with Advanced Methods

In this section, the performance of the proposed method will be compared to the state-of-the-
art BAA methods [13,24–26,40–45]. From Table 1, we can observe that: (1) Current advanced BAA
methods have promising results, but these methods depend on additional annotations such as sex
labels or obtaining ROIs by segmentation [13,24,41,43]. (2) Our method without additional labels
and transfer learning achieves superior results than [13] without providing additional annotations. In
addition, the proposed method based on transfer learning also predicts better results than the [13]
method that provides sex labels. (3) Compared to other neural networks, MSADCN can preserve
the most information flow across layers, and each layer is subject to extra supervision, making the
model converge more quickly. Besides, the multi-scale module within the dense layer can extract rich
feature information while generating fewer parameters, and the attention mechanism between multi-
scale dense blocks can significantly concentrate on the bone age features relevant to the model. Finally,
the transfer learning-based MASDCN method can improve the model’s performance and obtain more
robust prediction results. Overall, the proposed method is superior to some state-of-the-art methods.

5.2 Parameter Analysis

The network’s important parameters affect the model’s performance on the BAA task. To
maximize the performance of the model, we analyze the impact of various hyperparameters, including
scales, blocks, growth rate k, compression factor θ and loss coefficients λMAE and λKL.
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Table 1: Comparison with the latest methods on the RSNA set

Method Extra labels or ROI annotation Data augment MAE

AXNet [40] No Yes 7.699
Five mainstream CNN [24] ROI annotation No 7.34
FR-CNN + RNN + AF-SFO [41] ROI annotation No 6.987
MobileNetV3 [42] No Yes 6.20
U-Net + VGG [43] ROI annotation Yes 5.98
MD-BAA-ResNet50 [44] No No 5.53
Inception V3 + CBAM [25] No Yes 5.45
TENet [26] No Yes 5.35
CNN + transfer learning [13] No Yes 5.31
Mask R-CNN [45] No Yes 4.97
CNN + transfer learning [13] Sex labels Yes 4.68
MSADCN No Yes 4.72
MSADCN + transfer learning No Yes 4.64

Scales: In the feature extract stage of MSADCN, scales represent the multi-scale dimension of the
3 × 3 Conv in the multi-scale dense layer structure. The more multi-scale branches there are, the better
the model can capture various image details and characteristics. However, too many branches will
cause information loss and increase the model’s complexity. Fig. 11a depicts the influence of scales
on the model. Under the same conditions (growth rate is 12, number of blocks is 3), the prediction
result tends to be a concave function. When the number of scales is 8, the prediction is optimal, and
the model’s performance reaches its peak.

Number of blocks: Every two multi-scale dense blocks are connected by a transition layer, which
has the effect of down-sampling and compressing the model. A proper sampling degree can make the
model perform better, which depends on the number of multi-scale dense blocks. The experiments
test the impact of the multi-scale dense blocks while keeping other parameters constant. As shown in
Fig. 11b, when the dense blocks is 3, the model achieves the best prediction result for BAA.

Growth rate k: During the feature transfer process, each dense layer adds k feature maps to the
next layer. As stated in Eq. (2), k determines how many feature maps each multi-scale dense layer
produces. By fine-tuning the value of k while fixing other parameters, the experiment tests the effect
of the growth rate on the model performance. Fig. 11c shows that a slight change in the growth rate
significantly affects the BAA results. The reason is that k determines how many new features each
dense layer contributes to the global state. Too large or too small will reduce the accuracy of the model
prediction, i.e., the MAE value will be too large. As shown in Fig. 11c, the model performs best when
k is about 32.

Compression factor θ : θ is a compression of the feature map size output from the previous multi-
scale dense block by the transition layer, which serves to downsample and compress the model. The
appropriate compression factor affects the model’s performance to some extent. Fig. 11d depicts the
effect of different compression factors size of the prediction results. When the compression coefficient
is 0.5, the prediction result is the best.
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Figure 11: The effect of different hyperparameters on model performance: (a) Scales; (b) Blocks; (c)
Growth rate k; (d) Compression factor θ

λMAE and λKL: The hyperparameters λMAE and λKL, which are used to balance the joint loss function
in Eq. (18), impact the estimation of age by the model. Fig. 12 depicts the effect of λMAE and λKL of
the bone age prediction results. The model tends to converge after 35 iterations when λKL is 1, and
λMAE is 0.5. At this point, the prediction results obtained in the validation set are more accurate, which
suggests that a proper trade-off between age distribution and expected regression can improve model
performance and obtain more robust age predictions.

Figure 12: The effect of different loss coefficient values on model training: (a) λMAE = 1, λKL = 1; (b)
λMAE = 1, λKL = 0.5; (c) λMAE = 0.5, λKL = 1
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5.3 Ablation Experiments

To validate the effectiveness of the proposed method for the BAA task, we evaluate the perfor-
mance of each module of MSADCN on the RSNA dataset. Six different variants are constructed: (1)
unmodified baseline DenseNet, (2) DenseNet load pre-trained weights, (3) multi-scale dense connec-
tivity mechanism, (4) coordinate attention dense connectivity mechanism (CAM dense mechanism),
(5) MSADCN, (6) MSADCN based on transfer learning.

Table 2 compares the MAE results with the above six variants respectively. We can see that: (1)
DenseNet with pre-trained weights yields superior prediction results compared to DenseNet alone,
which also has been confirmed by numerous. (2) Compared to DenseNet loaded with pre-trained
weights, the densely connected mechanism combined with either the multi-scale module or CAM can
obtain superior outcomes. It indicates that both can enhance the network’s ability to perceive features
to a certain degree, thus further improving the model’s performance. (3) Compared to other methods,
the proposed method performs best because it considers the fine-grained multi-scale level, and CAM
can focus on the weight distribution during training. Besides, MSADCN based on transfer learning
can further improve the model’s performance and generalization ability to a certain extent by loading
the pre-trained weights on a large dataset.

Table 2: BAA results of MSADCN and DenseNet-based backbone networks

Modle MAE RMSE

DenseNet 6.54 8.87
Pre-training weights DenseNet 6.07 8.32
Multi-scales dense mechanism 5.87 7.65
CAM dense mechanism 5.90 7.86
MSADCN 4.72 6.34
MSADCN + transfer learning 4.64 6.12

6 Conclusions

A multi-scale attentional densely connected network based on transfer learning is proposed in
this paper for the BAA task. Firstly, the model constructs a multi-scale dense connection mechanism
that allows more efficient feature transfer with fewer parameters, which is less likely to suffer from
overfitting and converges more quickly, even when the training dataset is limited. In addition,
MSADCN extracts the features from the multi-scale level and employs coordinate attention to identify
the discriminative regions of bone age features, making the extracted ROI more accurate and effective
for model training. Finally, MSADCN based on transfer learning can significantly improve the model’s
generalization ability by loading the pre-trained model, which provides a good research idea for
medical image processing with limited data volume. Experiment results on the RSNA dataset confirm
that our model can achieve comparable results.

Although current study has demonstrated the contribution of the proposed approach in BAA
tasks, there are some limitations and uncertainties in this study. The model is more friendly to pre-
processed hand bone images during training and predicts more accurate results. Therefore, there is a
slight error in the predicted bone age for raw images with low resolution or high noise. In addition, the
subject population of this study was the patients’ X-rays published by RSNA, and other populations
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are not currently available to be validated in the studied method. In future work, we will endeavor
to collect additional data, and further investigate the effectiveness of BAA methods based on deep
learning to assist orthopedic surgeons automatically and predict bone age objectively.
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