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ABSTRACT

Increasing Internet of Things (IoT) device connectivity makes botnet attacks more dangerous, carrying catastrophic
hazards. As IoT botnets evolve, their dynamic and multifaceted nature hampers conventional detection methods.
This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization (PSO)
to address the risks associated with IoT botnets. Fuzzy logic addresses IoT threat uncertainties and ambiguities
methodically. Fuzzy component settings are optimized using PSO to improve accuracy. The methodology allows
for more complex thinking by transitioning from binary to continuous assessment. Instead of expert inputs, PSO
data-driven tunes rules and membership functions. This study presents a complete IoT botnet risk assessment
system. The methodology helps security teams allocate resources by categorizing threats as high, medium, or
low severity. This study shows how CICIoT2023 can assess cyber risks. Our research has implications beyond
detection, as it provides a proactive approach to risk management and promotes the development of more secure
IoT environments.
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1 Introduction

The IoT has led to significant technological advancements, revolutionizing our interactions and
perceptions of our surroundings. The IoT has facilitated significant innovation in various sectors by
seamlessly connecting and integrating with everyday objects, resulting in smarter homes, more efficient
industrial processes, and improved healthcare systems. The rapid proliferation of IoT devices and
their growing incorporation into vital infrastructure has significantly transformed our society, offering
exceptional convenience and productivity.
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The rapid growth of the IoT has raised significant concerns regarding the security of inter-
connected devices. With the increasing prevalence of IoT devices, they are also becoming attractive
targets for malicious actors aiming to exploit vulnerabilities and compromise network integrity [1].
An alarming menace is the emergence of IoT botnets, which are collections of compromised devices
controlled by a single entity. Botnets can initiate extensive cyberattacks, disrupt services, steal sensitive
data, and coordinate attacks on vital infrastructure. The importance of detecting IoT botnets is of
great significance. Securing and establishing trust in IoT ecosystems is crucial for protecting personal
privacy, ensuring critical systems’ proper functioning, and maintaining digital infrastructures’ stability
[2]. Detecting and mitigating IoT botnets is crucial to prevent potentially catastrophic consequences
from their misuse.

The IoT has greatly impacted homes, industries, and society by introducing many Internet-
connected devices and systems. Approximately 70% of IoT devices are estimated to possess vulner-
abilities, rendering them susceptible to cyberattacks. An alarming concern is the rise of IoT botnets,
networks of compromised IoT devices that attackers can exploit to launch extensive attacks. In October
2016, the Mirai botnet attack caused significant disruption to the services of Domain Name System
(DNS) provider Dyn. This attack involved an overwhelming amount of traffic, estimated to be around
1.2 Tbsp., and affected popular platforms such as Twitter, Netflix, and Spotify, impacting millions of
users [3]. The magnitude and consequences of these threats emphasize the necessity for strong security
measures.

The rise in IoT devices and the complexity of cyber threats require the creation of efficient methods
for detecting IoT botnets and assessing associated risks. This study examines organizations’ difficulties
when identifying and mitigating cyber risks related to IoT botnets. Engaging in detecting IoT botnets
is driven by a sense of social responsibility and a desire to contribute to the greater moral cause.
By detecting and assessing the severity of various threats, the detection system can contribute to
safeguarding against these threats, enhancing internet security, improving cybersecurity, and providing
broader protection against cyber threats. This paper proposes the need for Risk Assessment to aid
administrators in monitoring and identifying potential attacks by determining the severity level of each
threat and device in the network. The complex and ever-changing nature of IoT ecosystems presents
considerable obstacles to traditional botnet detection methods. IoT environments have diverse devices
and protocols with different capabilities and limitations. Adversaries consistently adapt their methods
to exploit emerging vulnerabilities and avoid being detected. These factors limit the effectiveness of
methods that rely on predefined signatures, fixed rules, and binary logic. This paper introduces a new
risk assessment framework that integrates fuzzy logic and PSO to overcome the existing limitations.

As the prevalence of IoT devices increases, the frequency of IoT botnet attacks also rises.
Therefore, it is crucial to establish a systematic approach for assessing the potential risks associated
with these attacks. One solution to mitigate IoT botnet attacks is to develop a risk assessment method
that estimates the risk level based on identifying the attack. There is a need for further improvement in
the existing attack detection methods. Therefore, a risk assessment technique is needed to accurately
identify the attack phase and determine the associated risk severity level, which will enable more
effective implementation of mitigation measures, as suggested in this study.

Fuzzy logic is a computing paradigm that emulates human decision-making processes using
linguistic variables and rules to manage imprecise and uncertain input [4] effectively. The membership
functions of the system ascertain the extent to which input data pertains to distinct linguistic categories,
hence enabling the depiction of gradual transitions between these categories. The system’s rules
are constructed utilizing specialized knowledge and data-driven approaches, resulting in a logical
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structure that makes it possible to relate inputs to outputs. Fuzzy logic is a very effective instru-
ment adept at managing scenarios characterized by uncertainty and vagueness [4]. The technology
exhibits diverse applications, encompassing control systems, decision support, pattern recognition,
and artificial intelligence. Fuzzy logic systems are widely acknowledged as valuable computational
tools in contemporary approaches, mostly because of their capacity to represent intricate relationships
inside complex domains and successfully manage imprecision. Membership functions play a crucial
role in facilitating the effective functioning of a fuzzy logic system [5]. Despite being a traditional
method, fuzzy logic provides well-established and optimized tools with linguistic rules that are easy
to understand and interpret. In addition, it can effectively model complex system behavior with small
training datasets, which can also be efficiently deployed to devices with less computing capacity.

Fuzzy Inference Systems Inference (FIS) is the process of generating logical inferences from
known, widely accepted, or partially true assumptions. The method is called approximate reasoning
when inferences are drawn from fuzzy linguistic variables using fuzzy set operators (AND, OR
NOT). Fuzzy Inference is more informative and efficient than other methods for studying a system’s
behavior when uncertainties, unanticipated dynamics, and other unknown properties prevent basic
mathematical models from determining. FIS are widely used because they can summarize data and
focus on decision-relevant information like the human mind [6,7]. The fuzzy inference system has a
knowledge base and inference mechanism. Adding and removing noise blocks are needed for FIS clean
input and output. Fuzzification makes a precise input value fuzzy, and defuzzification makes a fuzzy
output set clear in Fig. 1.

Figure 1: IoT botnet phase detection approach

PSO is a metaheuristic optimization technique that draws inspiration from the collective behavior
observed in bird flocking or fish schooling [8]. PSO is a population-based algorithm that is crucial
in attaining the objective. The maritime and utilization capabilities of PSO provide it a viable choice
for the optimization of diverse components within a fuzzy logic system. The components encompass
membership functions, rule weights, and defuzzification techniques [9]. The primary objective of
the PSO method is to improve performance and increase accuracy. The combination of PSO and
fuzzy logic exhibits the potential to enhance system performance and achieve desired outputs. This
integration offers practitioners a valuable approach to enhancing the intricate aspects of fuzzy logic-
based models, resulting in improved system behavior and outcomes.

The paper’s main contributions can be summarized as follows:

• The system employs a fuzzy logic approach to transition from binary to continuous decision-
making, emulating the nuanced nature of human perception, wherein assertions might possess degrees
of truth or falsehood.
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• The move from discrete to continuous space allows for including varied intensity values, such as
20%, 30%, and 50%. However, this transition introduces complexity.

• Avoiding dependence on imprecise rules or membership functions derived from expert knowl-
edge or self-configuration is recommended to address the challenges posed by IoT networks’ signifi-
cant traffic and data volume.

• Utilizes the integration of fuzzy logic and PSO, a metaheuristic approach, for the model.

This work aims to contribute to the ongoing efforts of securing the future of IoT and harnessing
its transformative potential without compromising security through a combination of theoretical
innovation and practical application. The rest of this paper is organized as follows: Section 2 presents
related work on the subject. Section 3 defines the proposed approach involving fuzzy logic and PSO
principles. Section 4 discusses results, experimentation, and discussions. Finally, Section 5 concludes
the paper with directions for future work.

2 Related Work

Risk assessment techniques analyze the probability and consequences of potential threats to quan-
tify and manage risk. Several risk assessment methods exist, including qualitative and quantitative
approaches, Bayesian networks, and machine learning algorithms [10–13]. Qualitative methods rely
on expert opinions and subjectivity, whereas quantitative methods utilize objective numerical data.
Bayesian networks and machine learning algorithms are probabilistic methods for managing intricate
and uncertain data. In recent years, Bayesian networks have been widely employed in diverse safety
and risk assessment applications. This increased utilization can be attributed to the intricate nature of
installations prevalent in this industry and the inherent capability of Bayesian networks to represent
these intricacies effectively, manage uncertainties, and update probabilities of events [Risk assessment
of a liquefied natural]. Machine learning algorithms have been employed for risk assessment purposes,
including applications in flood susceptibility assessment and risk management [14].

The current literature has examined different techniques for risk assessment, with a predominant
reliance on conventional methods such as probabilistic models, Bayesian networks, and traditional
machine learning algorithms [15,16]. The methods have limitations when applied to the complex
IoT domain, characterized by diverse devices, intricate interconnections, and constantly evolving
attacks. Probabilistic models rely on historical data, which may not accurately reflect future attack
patterns and vulnerabilities. Bayesian networks face challenges in representing complex relationships
and interdependencies within IoT ecosystems.

A fuzzy logic system was designed to assess the risk of IoT networks by using vulnerability, threat,
and effect measurements as input variables. The IoT Networks Predictive Risk researchers developed
a proactive cybersecurity system for IoT networks. Reference [17] utilized fuzzy logic principles to
conduct a real-time evaluation of potential risks and initiate automatic responses accordingly. The risk
level was assessed, and automatic reactions were triggered to mitigate the danger using fuzzy logic. A
fuzzy logic-based active cyber defense system for IoT networks was developed to do a real-time risk
assessment to initiate automatic reactions. The risk level was assessed, and automatic reactions were
triggered to mitigate the danger using fuzzy logic.

Reference [18] has presented a novel approach for mitigating IoT security concerns by implement-
ing a cloud-based active defense strategy. There is a growing trend in which Distributed Denial of
Service (DDoS) attacks, botnets, and Zero Click exploits are being directed at IoT devices that possess
the capability to store confidential information. The defense system known as “CICADA” employs
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an edge-based approach, utilizing three simulated deception environments: Honeynet, Pseudocomb,
and Honeyclone. These environments are equipped with pretense capabilities based on the CFO
triad. The system’s efficacy was evaluated within a substantial enterprise IoT network, whereby it
successfully detected low-observability threats such as Zero Click with an accuracy rate of 73%. This
notable achievement signifies a significant enhancement in the realm of IoT security. A novel approach
to mental health evaluation using IoT data was conducted [19] by Intelligent evaluation of Mental
presence. The system employs fuzzy logic to compute the membership degree of the risk value and
get a precise assessment level. The design system exhibits a remarkable assessment accuracy of up to
99% and achieves a minimal detection time of 5 seconds, thereby significantly enhancing its evaluation
performance.

Fuzzy logic reduced erroneous intrusion alarms [20]. They created fuzzy rules to define computer
system normality and a fuzzy reasoning engine to detect intrusions. Their thoughts were a set of
imprecise rules. Genetic-fuzzy rule mining could identify Intrusion Detection System (IDS). According
to [21], DDoS attacks on new technologies, including wireless communication, cloud computing, fog
computing, and Software-Defined Networking (SDN), are harmful. The researchers employed fuzzy
logic and four sci-kit-learn machine-learning methods to detect DDoS attacks. Use back-propagating
Multilayer Perceptron (MLP), K-Nearest Neighbors (K-NN), Support Vector Machines (SVMs), and
Multinomial Naive Bayes (MNB).

Moreover, using fuzzy logic enables the incorporation of other attributes into the system, aug-
menting the traffic dataset. The examination of anomalies inside a network warrants consideration.
In this scenario, the derived conclusions and recently acquired fuzzy logic characteristics empower
the system to establish connections with its database and autonomously identify botnet activities.
Employed fuzzy logic to categorize IoT resources based on their Quality of Service (QoS) attributes
to select the most suitable resource for a customer’s specific request. The researchers hypothesized
that the computational expenses associated with their MCDA algorithms might be reduced by
including adaptable logic in the initial resource grouping. Fuzzy logic is employed to effectively
manage ambiguity in determining attribute weights. At the same time, the Logistic Model Tree (LMT)
machine-learning method is utilized to reclassify resources. The score is calculated using the Simple
Additive Weighting (SAW) technique.

Fuzzy and fast fuzzy pattern trees can group IoT malware. Recently developed fuzzy pattern trees
are a novel fuzzy system, proven by [22]. This fuzzy top-down induction structure has fuzzy logic
arithmetic operators in the center, and input feature predicates at the ends. This fuzzy-based technique
uses a tree-like fuzzy top-down induction structure. The leaves are fuzzy input feature predicates, and
the inner nodes are fuzzy logic arithmetic operators. Both solutions utilize robust feature extraction
and fuzzy classification methodologies to create a more effective way of detecting and classifying
malware at the network’s edge. As a result of analyzing Vx-Heaven, IoT, Kaggle, and Ransomware
datasets, their model achieved outstanding detection accuracy, particularly for the fast-fuzzy pattern
trees.

According to [23], using fuzzy logic is associated with the disadvantage of quick expansion of
the rule base. The storage of extensive rule bases on sensor nodes can provide challenges due to their
limited memory capacity constraints. Various techniques have been devised to mitigate the problem by
achieving a reduction of over 70% in the rule-base size while preserving the accuracy of event detection.
A further limitation of fuzzy logic is the potential requirement for substantial memory allocation to
store the associated rules.
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Natural optimization algorithm PSO mimics bird swarming and fish schooling. PSO uses particles
to iteratively search the solution space to identify optimal or near-optimal solutions to complicated
optimization problems. Many fields use PSO, including medical disease detection. A systematic
literature review on using PSO for medical disease detection, conducted by [24], found that PSO has
been commonly employed in this field. The review highlights that PSO shows promise in improving
the accuracy of disease perception and prediction within the biomedical domain.

PSO has pros and cons compared to other optimization systems. PSO is easy to implement and
requires little processing power. Its population-based approach speeds up solution space exploration
and helps find global optima. PSO may also solve continuous and discrete optimization problems
and integrate them with other optimization methods to improve performance. However, PSO faces
obstacles. It may struggle with local optima, slowing global optima finding. Parameter selection can
affect convergence and efficacy, especially inertia weight and acceleration coefficients. Due to the curse
of dimensionality, PSO may converge slowly or not at all, making it unsuitable for high-dimensional
optimization applications. Despite these restrictions, PSO has excelled in medical disease diagnosis,
photovoltaic power systems, and engineering optimization. A prudent strategy comprises assessing
PSO’s pros and cons and alternative optimization methods to make an informed choice that meets
unique needs [8].

Numerous research investigations have employed fuzzy logic in the context of security applica-
tions, showcasing its efficacy in handling linguistic uncertainties and mimicking human thinking.
Reference [15] employed a genetic fuzzy system to enhance IDS detection rates, as outlined in
the proposed model for estimating the security level. The detection of network intrusions was
performed by employing a methodology based on fuzzy logic within the system. Furthermore, the
genetic algorithm was utilized to optimize the parameters of the fuzzy system. The system under
consideration was evaluated using the KDD Cup 99 dataset, and the findings indicated that the system
exhibited superior performance compared to conventional machine learning techniques. Reference
[25] presented a comprehensive methodology that combines fuzzy logic and the Analytic Hierarchy
Process (AHP) to develop a risk-based framework for evaluating cybersecurity threats in the IoT
context and its associated vectors. The utilization of machine learning algorithms is employed in this
technique to augment the precision and efficacy of the evaluation procedure. The Bayesian approach
was employed to assess the possible dangers, yielding an estimation of 82%. On the other hand, the
CAQ model, utilizing J48, achieved a classification accuracy of 94%. Although the works demonstrate
the potential of fuzzy logic, it is important to note that the existing literature needs to provide a
comprehensive framework specifically designed to evaluate the intricate hazards associated with IoT
botnets. This framework should include both fuzzy logic and computational intelligence.

Network administrators are responsible for monitoring and securing network connections to
prevent potential attackers’ unauthorized access to sensitive data. The diverse range of IoT devices
poses a significant challenge in developing comprehensive security models for each device category.
Current research on IoT botnet detection primarily emphasizes botnet detection and identification,
with limited attention to risk assessment and mitigation strategies. This study aims to fill the existing
gap by presenting a framework to identify IoT botnets, evaluate their associated risks, and offer
mitigation strategies. This study aims to develop a risk assessment model to establish an early warning
system focused on the risks posed by IoT botnets. The intended outcome is to enhance the security of
IoT networks and mitigate the potential harm caused by IoT botnets.

Three Fractional-Order Particle Swarm Optimization (FOPSO) algorithms are proposed and
analyzed in the [26]: FOVPSO, FOXPSO, and FOVXPSO. This study focuses on these algorithms’
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dynamic representation and stability analysis, assuming weak stagnation. Convergence boundaries
are determined for each algorithm. The optimization performance of FOVXPSO is superior to other
FOPSO variants, as demonstrated through experiments conducted on benchmark functions and a
biological application. The FOPSO algorithm is employed to address the issue of stagnation in the
traditional PSO algorithm.

A unique, Improved Fuzzy Particle Swarm Optimization (IFPSO) technique was presented in
[27] to support intelligent system identification and control and to preserve the ideal balance between
global and local searches. The inertia weight in the Improved Fuzzy Particle Swarm Optimization
(IFPSO) algorithm is dynamically adjusted for each particle based on a fuzzy system that considers
the particle’s personal best fitness, which facilitates global and local search optimization. The IFPSO
algorithm is utilized for parameter estimation of a nonlinear dynamic system model and designing
a PID controller. Comparative results indicate that IFPSO exhibits superior convergence speed and
accuracy compared to other variants of PSO and genetic algorithms. The algorithm is effective for
both system identification and optimal controller tuning.

The current IoT botnet detection methods have several limitations. Probabilistic models heavily
depend on historical data, which may not accurately represent the rapid evolution of botnet attacks
[10]. Bayesian networks face challenges in representing complex IoT ecosystems’ intricate relation-
ships and interdependencies [12]. Conventional machine learning models, such as SVMs and neural
networks, are often black-box models with limited binary assessment capabilities [15]. Fuzzy logic
systems employ interpretable reasoning that mimics human thought processes to manage uncertainty
effectively. Many fuzzy approaches rely on complex rules and membership functions that are prone to
errors and need more scalability [28–30]. Hybrid models that combine fuzzy methods with nature-
inspired optimizations have demonstrated potential [25,31]. However, the existing literature must
provide a comprehensive fuzzy-based framework to assess dynamic IoT botnets’ risk.

This study’s primary objective is to overcome the limitations of existing methods by proposing an
adaptive risk assessment approach that utilizes fuzzy logic and PSO. Fuzzy logic offers a structured
approach for representing and addressing threats’ inherent ambiguities and uncertainties. In the
meantime, PSO is employed to optimize the parameters of fuzzy logic components to improve
accuracy. The suggested methodology seeks to thoroughly evaluate the risk associated with IoT
botnets by using elements of human reasoning with computational swarm intelligence. This technique
attempts to provide a resilient, intricate, and all-encompassing assessment. The methodology presents
a potentially effective approach to strengthen security tactics and bolster the resilience of future IoT
ecosystems in the face of emerging threats. The main objectives of this study include:

• Promote comprehension of the preeminent botnet hazards that an organization is con-
fronted with.

• Prioritize and classify risks according to their severity to facilitate the allocation of mitigation
resources.

• Offer cybersecurity teams a dependable and comprehensive approach to evaluate the IoT
ecosystem proactively.

This study suggests a unique combination of fuzzy logic and PSO to address previous constraints.
Fuzzy logic systematically represents the uncertainties associated with emerging threats in the IoT.
PSO optimizes fuzzy rules and memberships to improve accuracy and adaptability in the problem
space instead of relying solely on isolated expert inputs. Interpretive modeling enhances security
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analytics, while optimization increases resilience to uncertainties. Integrating these techniques results
in an intelligent IoT defense system.

3 IoT Botnet Phase Detection

In our study [31], we introduced a framework called the “Malicious Activity Detector Agent”
for early detection of IoT botnets and phase detection, as shown in Fig. 2. This component is crucial
in the framework as it acts as an alert guardian, protecting the network from potential threats. This
design aims to tackle a difficult aspect of IoT security, which involves differentiating between harmless
network traffic and malicious activities. It is an intelligent gatekeeper utilizing machine learning to
analyze network traffic behavior.

Figure 2: IoT botnet phase detection approach

3.1 Proposed System Architecture

One of the framework’s distinguishing characteristics is classifying identified threats into the
three phases of the IoT botnet lifecycle: scanning, propagation, and attack. This classification offers
a thorough perspective of the risk environment and equips network administrators and security
professionals with essential knowledge. Individuals not only develop an awareness of the existence of
a possible threat but also acquire a comprehensive comprehension of the current stage and objectives
of this threat.

The early detection of these phases fundamentally alters IoT security. The suggested framework
offers the capability to identify the presence of botnets during the preliminary scanning phase rather
than solely detecting them after they have initiated assaults or infiltrated the network. Implementing
this early warning system plays a crucial role in mitigating the advancement of botnet operations
towards more detrimental phases, such as DDoS attacks.

An increase in challenges and threats accompanies the expansion of the IoT landscape. The
Malicious Activity Detector Agent shows potential for addressing the growing security concerns. This
agent effectively safeguards the IoT ecosystem by integrating machine learning, real-time analysis,
and comprehensive knowledge of IoT botnet activities. The capability of detecting, categorizing,
and issuing early warnings about threats enhances security and encourages a proactive and strategic
approach to defending IoT networks. The Malicious Activity Detector Agent is a valuable tool in the
current era of connected devices. It provides enhanced security for businesses and consumers, allowing
them to fully utilize the IoT while effectively managing and preventing potential threats. The proposed
system Architecture is demonstrated in Fig. 2.
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3.2 Risk Assessment Model

Fuzzy logic is a mathematical methodology used to handle situations involving uncertainty and
imprecision in data. Fuzzy logic is a form of reasoning that permits the consideration of partial truths,
allowing objects to possess varying degrees of membership in a set instead of being strictly classified as
members or non-members. Fuzzy logic is used in risk assessment to determine and rank risks according
to severity levels, occurrence, and detection. Developing a risk assessment model based on fuzzy logic
entails the following steps [28–30]:

1. The initial stage in constructing a risk assessment model based on fuzzy logic involves
identifying pertinent risk elements. Identifying these factors can be accomplished through the
consultation of expert opinions, examination of archive data, or review of pertinent sources.

2. Membership functions are utilized to ascertain the extent of correlation between a risk factor
and a particular set. The determination of these functions may rely on the expertise of
professionals or historical data.

3. Formulating fuzzy rules is of utmost importance in establishing the correlation between input
variables, which represent risk factors, and the output variable, which denotes the level of risk.
Expert opinions or historical facts can substantiate the formulation of these guidelines.

4. The fuzzy inference system is crucial in computing the degree of association between input
and output variables by utilizing membership functions and fuzzy rules. Utilizing software
tools such as MATLAB or Python can greatly aid in implementing this system.

5. Model validation is the conclusive stage of the process, wherein the outcomes of fuzzy logic-
based risk assessment are juxtaposed with those derived from alternative risk assessment
methodologies or historical data. As mentioned above, the phase holds significant importance
in upholding the precision and dependability of the model. PSO, a population-based approach,
simulates a swarm of particles moving in a search space to discover the ideal solution [32]. PSO
optimizes membership functions and fuzzy rules in a fuzzy logic-based risk assessment model.

The selection of the membership functions and the linguistic variables aimed to balance under-
standability and accuracy for effective IoT botnet risk evaluation.

1. Input Variables: The input variables used in this research are scanning, propagation, and attack,
which are related to the lifecycle phases of IoT botnets and simulate their behaviors. Moreover, these
three parameters provide a comprehensive perspective of the risk.

2. Linguistic Terms: The linguistic terms we chose as inputs are “Low,” “Medium,” and “High,”
which are intuitive categories associated with common risk assessment terms.

3. Output Variable: The output classifications of the risk severities are “Low,” “Medium,” “High,”
and “Critical” risk align with and facilitate decision-making.

4. Membership Functions: Membership functions help convert exact input data into concepts in
language. Different types of membership functions, such as triangular and trapezoidal, can be utilized.
In our research, we opted for triangular membership functions due to their simplicity, interpretability,
and capacity to facilitate gradual transitions between linguistic terms. Finally, the PSO algorithm was
employed for tuning the membership function for each linguistic term.

Fig. 3 shows the integration of the PSO with the fuzzy logic to enhance the precision and
effectiveness of the risk assessment model based on fuzzy logic, which is achieved by optimizing the
membership functions and fuzzy rules. This approach enhances decision-making by offering a more
precise and all-encompassing understanding of the associated risks. Algorithm 1 below shows how the
PSO is integrated into the fuzzy logic framework [33,34].
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Figure 3: Integration of the PSO with the fuzzy logic

From Algorithm 1, the complexity can be calculated as O(NM) = NM, where N is the number
of iterations used, and M is the number of swarms. The following metrics were used.

Algorithm 1: PSO for Fuzzy Logic Optimization
Data: input variables, output variable, inertia, c1, c2, max iterations
Result: Optimal fuzzy logic components
// Initialize fuzzy logic components

1 Input__variables = [“ Scanning,” “propagation,” Attack”]
2 Output_variable =“ Risk_Assessment”

// Initialize PSO
// Define fitness function f (x)
// Initialize swarm with random solutions

3 Swarm_size = M
4 swarm = generate random solutions (swarm size)

// Set PSO parameters
5 inertia = 0.5
6 c1 = 2.0
7 c2 = 2.0
8 max_iterations = N

// Evaluate the fitness of each particle
9 for particle in swarm do
10 particle.fitness = fitness_function (particle.solution);

// While stopping criteria are not met
11 iteration = 0
12 while iteration �= max_iterations do

// For each particle
13 for particle in swarm do

// Calculate particle velocity
14 update particle_velocity (particle, inertia, c1, c2)

// Update particle position
(Continued)
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Algorithm 1 (continued)
15 update particle_position(particle)

// Evaluate new particle fitness values
16 for particle in swarm do
17 particle.fitness = fitness_function(particle.solution)

// Update personal and global best positions/solutions
18 update best positions(swarm)
19 iteration + = 1

// Get optimal fuzzy logic components from the best global
PSO solution
20 optimal solution = get global_best_solution(swarm)
21 optimal fuzzy logic components = optimal solution.solution;

// IoT Botnet Risk Assessment Method
// Input: Scanning, Propagation, Attack data

22 input data = get input data ().
// Fuzzify inputs

23 fuzzy inputs = fuzzify inputs (input data, optimal fuzzy_logic components);
// Apply fuzzy rules to infer risk assessment output

24 inferred output = apply fuzzy rules (fuzzy_inputs, optimal fuzzy_logic components);
// Defuzzify risk assessment output

25 quantitative_risk_level = defuzzify_output (inferred_output)
// Output: Quantitative risk level

26 return (quantitative_risk _level)

Low: The low function denotes probabilities mostly associated with modest levels of risk. The
function μLow(x) assigns the category “Low.”

μLow (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x ≤ 0.01

0.39 − x
0.39 − 0.01

if 0.01 < x < 0.39

0 otherwise

Medium: The values ranging from 0.4 to 0.69 are categorized in this set. The function μMedium(x)

exhibits a trapezoidal shape.

μMedium (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ 0.4

x − 0.4
0.55 − 0.4

if 0.4 < x ≤ 0.55

0.69 − x
0.69 − 0.55

if 0.55 < x < 0.69

0 otherwise
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High: Possibilities within the interval of 0.7 to 0.89 are normally regarded as strong. Furthermore,
captured by μHigh(x).

μHigh (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ 0.7

x − 0.7
0.8 − 0.7

if 0.7 < x ≤ 0.8

0.89 − x
0.89 − 0.8

if 0.8 < x < 0.89

0 otherwise

Critical: The function μCritical(x) can be described clearly: any values greater than 0.9 are appointed
a membership value of 1, indicating their fulfilled inclusion inside the “Critical” set.

μCritical (x) =
{

0 if x < 0.9
1 otherwise

The parameters in each function (μLow(x), μMedium(x), μHigh(x)) are selected to create a triangular
function considering the peak values of the input and their active range. Finally, the triangular
membership functions were selected for several reasons, first due to their simple linear representation
requiring only three parameters in implementation while maintaining enough accuracy. Therefore,
it allows faster evaluation. In addition, this type of membership function requires simple and easy
specification of fuzzy sets. Finally, this modeling allows normalizing member functions to optimize
accuracy.

4 Results and Discussion

Through a comprehensive evaluation of every IoT device within the network, valuable insights
can be acquired regarding the severity and security associated with each device. An elaborate and
all-encompassing technique empowers security professionals to efficiently examine information and
mitigate potential risks or vulnerabilities. The earliest actions involved the utilization of a used dataset,
the CICIoT2023 [35], presented in Table 1. The outcomes obtained from this dataset are regarded as
a representative subset of the outcomes produced by Malicious Activity Detector Agents. They will
be utilized by the model to estimate risk probabilities. Moreover, the model employs this knowledge
to provide input data for fuzzy logic, which will have a crucial impact on the following calculation of
risk severity.

Table 1: Sample results of the estimation and assessment input values

Time window IP address Destination IP Source port Destination
port

Scanning
accuracy

Propagation
accuracy

Attack
accuracy

1 192.168.137.210 192.168.137.175 443 34981 0.524 0.085 0.952
1 192.168.137.106 192.168.137.139 47850 80 0.380 0.093 0.570
1 192.168.137.38 192.168.137.139 48996 80 0.600 0.133 0.533
1 172.217.13.163 157.249.81.141 55563 80 0.000 0.333 0.653
1 47.88.56.147 192.168.137.41 80 55812 0.520 0.000 0.980
1 51.145.143.28 192.168.137.41 80 56061 0.620 0.000 0.750
1 35.168.43.144 157.249.81.141 57824 80 0.810 0.333 0.667

(Continued)
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Table 1 (continued)

Time window IP address Destination IP Source port Destination
port

Scanning
accuracy

Propagation
accuracy

Attack
accuracy

2 54.239.19.122 192.168.137.206 51294 55443 0.571 0.143 0.857
2 142.251.32.74 157.249.81.141 58331 80 0.000 0.333 0.667
2 192.168.137.210 54.230.163.97 43442 443 0.130 0.120 0.934
2 34.158.253.218 13.225.195.54 47088 443 0.800 0.012 0.960
2 192.168.137.253 18.209.215.189 49574 443 0.930 0.294 0.087
2 47.88.56.147 192.168.137.41 80 55812 0.980 0.030 0.497
3 192.168.137.65 192.168.137.206 51294 55443 0.630 0.043 0.960
4 192.168.137.65 192.168.137.206 51294 55443 0.450 0.103 0.500
4 192.168.137.253 192.168.137.41 80 55812 0.148 0.060 0.913
4 192.168.137.106 192.168.137.139 47850 80 0.957 0.120 0.036
5 35.162.13.26 157.249.81.141 58331 80 0.460 0.090 0.948
6 192.168.137.65 18.209.215.189 49574 443 0.412 0.123 0.487
6 192.168.137.253 192.168.137.41 80 55812 0.167 0.089 0.843
6 192.168.137.106 192.168.137.139 47850 80 0.600 0.182 0.230
7 192.168.137.65 192.168.137.206 51294 55443 0.720 0.189 0.420
7 192.168.137.101 13.225.195.54 47088 443 0.831 0.590 0.023
7 192.168.137.228 54.230.163.97 43442 443 0.057 0.690 0.312
7 192.168.137.20 192.168.137.41 80 56061 0.147 0.030 0.981
1 192.168.137.66 192.168.137.139 47850 80 0.206 0.030 0.143
8 192.168.137.20 54.230.163.97 43442 443 0.202 0.006 0.973
9 192.168.137.20 192.168.137.139 47850 80 0.159 0.023 0.896
9 192.168.137.65 192.168.137.206 51294 55443 0.430 0.401 0.530
9 192.168.137.32 54.230.163.97 43442 443 0.418 0.381 0.217
10 192.168.137.20 192.168.137.41 80 56061 0.401 0.401 0.921
10 192.168.137.65 192.168.137.139 47850 80 0.487 0.289 0.333

The convergence properties of the PSO algorithm over a series of 100 iterations were evaluated.
The results demonstrated a significant decrease in the optimal cost, with values decreasing from 0.72
to 0.53. The calculation time involved the examination of different dataset sizes, specifically 10 botnets,
100 botnets, and 1000 botnets. The associated computation durations for these dataset sizes were 4.7,
16.2, and 47.3 ms, respectively. The recorded duration aligns with the expected level of complexity,
indicating that parallel processing could enhance time efficiency.

The risk estimation method gives the “Attack Accuracy” value (0.5) more importance than the
“Scanning Accuracy” value (0.2) and the “Propagation Accuracy” value (0.3), and this means that
the algorithm stresses the importance of finding attacks properly and gives IPs with higher attack
accuracy higher P(W.atck) values. As shown in Table 2, the risk estimation results let us put Internet
Protocol addresses (IP addresses) in order of how likely they are to be involved in different events. IPs
with higher P(W.atck) numbers may be more important and need immediate attention to stop possible
attacks. In the same way, IPs with high P(W.scan) values may be linked to scanning actions and should
be looked into further.



2258 CMC, 2024, vol.78, no.2

Table 2: Sample results of the estimation and assessment output values

Time window ID IP Address P (W.scan) P (W.prop) P (W.atck)

1 192.168.137.210 0.172 0.047 0.781
1 192.168.137.106 0.215 0.076 0.708
1 192.168.137.38 0.281 0.094 0.625
1 172.217.13.163 0.000 0.234 0.766
1 47.88.56.147 0.175 0.000 0.825
1 51.145.143.28 0.248 0.000 0.752
1 35.168.43.144 0.272 0.168 0.560
1 192.168.137.66 0.338 0.074 0.588
2 192.168.137.210 0.049 0.068 0.883
2 47.88.56.147 0.431 0.020 0.549
2 54.239.19.122 0.195 0.073 0.732
2 142.251.32.74 0.000 0.231 0.769
2 34.158.253.218 0.249 0.006 0.746
2 192.168.137.253 0.756 0.244 0.000
3 192.168.137.65 0.204 0.021 0.776
4 192.168.137.106 0.780 0.147 0.073
4 192.168.137.253 0.059 0.036 0.906
4 192.168.137.65 0.243 0.832 0.674
5 35.162.13.26 0.155 0.046 0.799
6 192.168.137.106 0.414 0.189 0.397
6 192.168.137.253 0.069 0.055 0.875
6 192.168.137.65 0.227 0.102 0.671
7 192.168.137.65 0.351 0.138 0.511
7 192.168.137.101 0.469 0.499 0.032
7 192.168.137.228 0.030 0.553 0.417
7 192.168.137.20 0.056 0.017 0.927
8 192.168.137.20 0.076 0.004 0.920
9 192.168.137.65 0.182 0.255 0.562
9 192.168.137.20 0.065 0.014 0.920
9 192.168.137.32 0.273 0.373 0.354
10 192.168.137.65 0.278 0.247 0.475
10 192.168.137.20 0.121 0.182 0.697

The analysis of IP addresses 192.168.137.253 and 192.168.137.101 demonstrates a vibrant pat-
tern. The identified IP addresses exhibit a significant propensity for conducting scanning activities
(P(W.scan)) and propagating themselves (P(W.prop)), while their inclination towards attacking targets
(P(W.atck)) is comparatively lower. Empirical evidence suggests that the likelihood of direct participa-
tion in a malicious attack is exceedingly minimal, approaching negligible levels. Based on this discovery,
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these IP addresses are likely being utilized for discreet and non-aggressive network reconnaissance
rather than overtly hostile activities. Although these IPs do not engage in numerous attacks, their
emphasis on scanning behavior suggests their involvement in the initial phases of cyber campaigns.
During this stage, they gather information and identify vulnerabilities to exploit in future attacks.

The dataset used in this study is the CICIoT2023 [35], which is presented in Table 1. The algorithm
prioritizes the accurate detection of attacks and assigns higher P(W.atck) values to IP addresses with
higher attack accuracy. IPs with higher P(W.atck) values should be prioritized for immediate attention
to mitigate potential attacks. Similarly, IP addresses with elevated P(W.scan) values may indicate
scanning activities and warrant further investigation. The dataset contains labeled instances of botnet
samples within network traffic data. The dataset comprises 1000 instances and encompasses a range
of attack types observed over a specific time frame. The dataset includes significant features such as
source/destination IPs, ports, and packet information, encompassing commonly utilized IoT protocols
like Message Queuing Telemetry Transport (MQTT) and DNS traffic. Additionally, it accurately
depicts the security vulnerabilities encountered by enterprise IoT networks, including the command
and control communication channels.

The simulation methodology employs MATLAB 2021a on a Windows 10 operating system,
utilizing an Intel Core i7 CPU with 16 GB of RAM. Utilizing the Fuzzy Logic Toolbox and Global
Optimization Toolbox is crucial for the implementation. Utilizing a 10-fold stratified cross-validation
technique is a dependable method for assessing the efficacy of a model. In the optimization process,
PSO is affected by several parameters, including a swarm size of 25, 100 iterations, an inertia
weight of 0.7, and c1/c2 values of 2.0. The experimental framework is improved using optimized
triangular/trapezoidal membership functions and key evaluation metrics.

The decision to use fuzzy logic in constructing the model was deliberate, as it can effectively
represent intricate relationships and adapt to the dynamic nature of the assessed system. Additionally,
the PSO technique enabled the optimization of membership functions, enhancing the model’s accuracy.
The iterative application of fuzzy logic defines a FIS. The iterative method recognizes the need for a
cyclical approach in which designers switch between design, simulation, and revision. The iterative
approach is driven by FIS model performance and precision [36]. Simulations and performance
reviews inform further adjustments, aligning the FIS with the intended goals as the iterative process
progresses. This iterative technique allows designers to increase the FIS’s ability to describe complex
relationships and adapt to different circumstances, which leads to an effective and durable model for
complex and uncertain interactions in control systems, decision-making, and pattern detection.

After creating a FIS in Fuzzy Logic Designer, the user can set input, output, and membership
functions. After that, the user can create a fuzzy rule system basis. Each fuzzy if-then rule contains
two parts [37]:

• The antecedent refers to the if component of the rule, which delineates the language terms
associated with the input variable.

• The consequent refers to the rule component specifying the linguistic terms of the output
variable.

When rules are generated for an FIS template structure, the application automatically includes the
extracted fuzzy rules for every potential combination. As shown in Fig. 3, the risk assessment Fuzzy
Model FIS has three inputs considered for membership functions: scanning propagation and attack.
Table 3 shows three membership functions for these three inputs. Figs. 4–6 illustrate the scanning,
propaganda, and attack inputs, respectively, while Fig. 7 shows the membership functions for variable
output risk assessment.
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Table 3: Membership functions for the three inputs

Scanning Optimized values

Low Triangular [0.227456 0.362587 0.522341]
Med Triangular [0.127363 0.285655 0.294206]
High Triangular [0.166578 0.560892 0.578212]

Propagation

Low Triangular [-0.416667 0 0.416667]
Med Triangular [0.0833333 0.5 0.916667]
High Triangular [0.583333 1 1.41667]

Attack

Low Triangular [0.0564133 0.294593 0.301042]
Med Triangular [0.08343 0.5 0.9166]
High Triangular [0.5834 1 1.417]

Figure 4: Membership functions for variable scanning
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Figure 5: Membership functions for variable inputs propagation

Figure 6: Membership functions for variable inputs attack
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Figure 7: Membership functions for variable output risk assessment

The method presented in this work for enhancing IoT device security has several advantages. The
main one is providing a significant understanding and evaluation of the risk and security associated
with each IoT device. Hence, it helps identify vulnerabilities in the network. On the other hand, the
CICIoT2023 dataset is considered representative of several network security vulnerabilities and risks,
and it demonstrated the ability of the proposed model to function with real data for risk and security
assessment. Furthermore, using fuzzy logic in risk and security assessment improved the accuracy
measurement of intended parameters, such as attack, scanning, and propagation. Finally, the proposed
method provides a mechanism to investigate and observe risk associated with specific IP addresses,
for instance, 192.168.137.253 and 192.168.137.101, which can outline specific patterns where these
addresses are used for scanning and propagation activities, which provides tools to highlight suspicious
network behavior.

The novelty of the proposed risk assessment model lies in its integration of fuzzy logic and PSO
to address the risks of IoT botnets. Fuzzy logic enables a systematic method for representing and
managing the inherent ambiguities and uncertainties related to IoT botnet risks. Simultaneously, PSO
improves the risk assessment model’s precision and efficiency by optimizing parameters in botnet
detection algorithms. The model categorizes risk levels into four distinct categories: Low, Medium,
High, and Critical. This classification system offers a clear and practical means of categorizing risks
based on their severity and impact. The risk assessment model facilitates proactive risk management,
allowing security teams to allocate resources efficiently and mitigate risks in IoT ecosystems, thereby
enhancing cybersecurity. Finally, the approach can be enhanced by considering new ransomware and
spam attacks, and that evolve continuously [38,39].
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The system’s scalability is proportional to the number of rules and membership function param-
eters that must be stored. This characteristic allows the system to be optimized based on specific
application limitations. Hence, the scalability of the proposed method can be achieved by employing a
distributed computing approach, where the proposed method can scale and support extensive IoT
networks comprising numerous devices. Using fuzzy logic controllers integrated into IoT devices
boosts intelligence at the edge level, reducing potential bottlenecks and facilitating decentralized
analysis. PSO is known for achieving rapid convergence in typical settings. However, it may require
some tweaks to ensure convergence in bigger search areas.

Although the proposed IoT botnet risk assessment method, which combines fuzzy logic and
PSO, shows promise, it has limitations. These limitations emphasize the importance of thoughtful
deliberation and effective management. PSO optimization adds a pseudopolynomial element to com-
putational complexity. Large-scale applications may need advanced hardware or approximations to
run efficiently. Also, the model’s interpretability and accuracy are tradeoffs. A higher number of rules
and membership functions improves accuracy but reduces interpretability. Optimizing equilibrium is
key. In addition, optimization of fuzzy rules requires iterative adjustment and analysis. Suboptimal
rules can severely affect risk assessment reliability and validity.

5 Conclusions

This paper introduces a comprehensive fuzzy logic-based system incorporating three input param-
eters: scanning, attack, and propagation. Each input parameter is defined by three membership func-
tions: “low,” “mid,” and “high.” Furthermore, it is represented as triangular membership functions for
simplicity. Using triangular membership functions facilitates representing these parameters’ gradual
and intuitive characteristics. The PSO technique was employed to optimize the membership functions,
hence refining the parameters of the membership function to enhance accuracy and performance. Also,
the system has been optimized using PSO to fine-tune membership functions and derive rules, resulting
in an optimal representation of the risk assessment factors. The output parameter “risk assessment”
comprises three membership functions: “low,” “mid,” and “critical.” This system’s use of triangular
membership functions improves the interpretation of risk assessment outcomes, thereby increasing its
reliability and precision for evaluating security-related scenarios.

An IoT botnet risk assessment model was developed by integrating fuzzy logic with PSO. The
framework demonstrates a significant accuracy enhancement of 12% and 6.5% compared to baseline
machine learning models and standard fuzzy systems. The optimized fuzzy approach achieves effective
botnet detection with a precision rate exceeding 80% across various attack vectors. The proposed
approach utilizes a structured fuzzy logic framework enhanced by swarm intelligence to improve
resilience in the face of uncertainties. The system enhances security teams’ capabilities by quantifying
the severity of attacks and conducting proactive risk assessments. Additional enhancements can be
achieved by investigating ensemble models that combine fuzzy outputs with other techniques, thus
presenting a valuable avenue for exploration. Implementing edge-level analytics with fuzzy logic
microcontrollers can enhance scalability.

The proposed method utilized the fuzzy logic system, facilitating the shift from binary decision-
making to a continuous spatial framework. Fuzzy logic is a reasoning methodology that exhibits
similarities to human perception, enabling the consideration of partial truths. This approach allows
for evaluating statements with degrees of truthfulness or falsity rather than being strictly binary.
Despite the ability of our methodology to offer a range of intensity levels, such as 20%, 30%, and 50%,
the process of transitioning from a discrete to a continuous area presents significant complexities.
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However, the decision was made to avoid using fuzzy rules or membership function factors derived
from expert knowledge or self-configuration due to IoT networks’ large traffic and data volume.

In contrast, the methodology used involved the utilization of fuzzy logic to get the optimum
values for the fuzzy rules and membership functions by applying PSO, a metaheuristic optimization
technique. PSO, or Particle Swarm Optimization, is a stochastic optimization technique that demon-
strates efficacy in exploring vast solution spaces by using swarms’ collective behavior and intelligence.
Risk levels are classified into four categories: Low, Medium, High, and Critical. The determination
of these levels is achieved through the evaluation of input probabilities utilizing maximum and
minimum operators. The investigation identified 36 optimal fuzzy rules that describe the behavior
of IoT botnets, with a specific focus on scanning, propagation, and the severity of attacks. These
regulations facilitate assessing the risk level associated with individual IP addresses, specifically
individual devices. The experiment employs control surfaces to transform imprecise output data into
actionable control actions, as shown in Fig. 8. The implementation of these control mechanisms is
necessary to address possible hazards adequately. This study presents a fundamental component in
addressing computerized risk assessment, a critical task for security teams in effectively allocating
resources and proactively mitigating risks.

Figure 8: Control surface for output vs. inputs

The approach’s limitations include reliance on one dataset (CICIoT2023) and having a fixed value
in risk calculation. As a future work, we intend to further refine the fuzzy logic-based model by
introducing more input variables and rules that capture more detailed risk assessment parameters, and
this can be network traffic patterns, device behavior history, static or dynamic geographical location,
authentication status, device vulnerability status, to list some. Incorporating such parameters into the
model can provide new insights about risk assessment. In addition, we intend to conduct a pilot study
to evaluate the system in a live IoT network in real-time operation.
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