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ABSTRACT

With the advent of the information security era, it is necessary to guarantee the privacy, accuracy, and dependable
transfer of pictures. This study presents a new approach to the encryption and compression of color images. It is
predicated on 2D compressed sensing (CS) and the hyperchaotic system. First, an optimized Arnold scrambling
algorithm is applied to the initial color images to ensure strong security. Then, the processed images are con-
currently encrypted and compressed using 2D CS. Among them, chaotic sequences replace traditional random
measurement matrices to increase the system’s security. Third, the processed images are re-encrypted using a
combination of permutation and diffusion algorithms. In addition, the 2D projected gradient with an embedding
decryption (2DPG-ED) algorithm is used to reconstruct images. Compared with the traditional reconstruction
algorithm, the 2DPG-ED algorithm can improve security and reduce computational complexity. Furthermore, it
has better robustness. The experimental outcome and the performance analysis indicate that this algorithm can
withstand malicious attacks and prove the method is effective.
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1 Introduction

Owing to the advent of the big data era and multimedia technology, digital color images are
applied in every field of people’s lives with the advantages of high resolution and intuitive expression.
However, there are also many security risks in image transmission while being convenient [1].
Therefore, many scholars have been attracted to studying more secure encryption schemes in this field.
At present, techniques for text encryption have become increasingly mature within the information
encryption domain [2]. However, with the emergence of digital color images, simple text encryption
methods are no longer sufficient. With the improvement of technology, the means of attackers are also
becoming increasingly sophisticated. In today’s world, establishing a reliable and efficient encryption
technique has become crucial [3].

American meteorologist E. Lorenz originally put up the idea of chaos in 1963. Unpredictability,
unrepeatability, and nonrepeating ability define its behavior [4,5]. Consequently, numerous properties
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of chaotic systems apply to cryptography [6]. It has also aroused great interest in the last few decades
[7]. Among the often employed chaotic systems are 1D chaotic systems [8], 2D chaotic systems [9],
Multiple-dimensional chaotic systems, and hyperchaotic systems. In [10], a new chaotic system made
up of two chaotic systems was used as an image encryption scheme. A new algorithm combining
optics has been proposed by Liu et al. in [11]. In [12], a joint scrambling and diffusion scheme was
proposed by Li et al. Reference [13] proposed a unique SCCM system that is 1D. Additionally, it
provided a random DNA operation and SCCM-based image encryption technique. The scheme’s
strong encryption effect is confirmed by the experiment. Compared to high-dimensional chaotic
systems, the nonlinear behavior of the hyperchaotic systems is more intricate and unpredictable [14].
These characteristics show that applying a hyperchaotic system to image encryption will enhance
system security [15].

Due to the rapid development of compressed sensing (CS) technology [16], its application in image
processing has attracted the attention of many scholars. CS can compress and encrypt the image
simultaneously, so digital image processing using CS technology has become a new research hotspot
[17,18]. It is highly concerned in many fields, like computer vision and wireless communication.
Gong et al. proposed an advanced algorithm for compressing and encrypting images [19]. Arnold
transformation is used to arrange the image’s original, and then CS compresses and encrypts the
resulting image. Subsequently, Zhang et al. proposed a cryptographic technique combining double
random phase encoding with compressed sensing [20]. The scheme combines two images into one by
encrypting and compressing them, increasing the difficulty of the algorithm. The scheme’s efficacy
and sophisticated nature are demonstrated by the experimental results. In [21], Chai et al. offered
a block compression and multi-objective optimization-based image encrypting system. In [22], this
research proposed a unique data transfer paradigm that combines a hybrid cloud with semi-tensor
product compression sensing. The efficiency and security of this approach are shown by the results of
the simulation. Currently, most CS cryptographic algorithms are used to process gray images [23], so
effectively compressing and encrypting color images is a problem worth studying.

This paper presents a novel approach for image encryption that leverages 2D CS, the 4D
hyperchaotic system, and the joint permutation diffusion (JPD) approach to address this issue. There
are three stages to this paper’s encryption algorithm. Firstly, generating initial values of hyperchaotic
systems using the RSA algorithm. The system creates the matrix and chaotic sequence required for
encryption. The Lorenz hyperchaotic system is prepared for the scrambling operation. Secondly,
in the CS part, a grayscale mapping strategy is to process images and 2D CS to compress and
quantify the mapped image. Among them, the 4D hyperchaotic system generates one measurement
matrix, and the other is generated randomly, greatly increasing randomness. Finally, the encryption
part encrypts the processed image using scrambling and spreading algorithms simultaneously. The
decryption process consists of two distinct phases. The first step during the decryption process involves
performing the inverse operation of JPD. Then, the 2DPG-ED algorithm decrypts the ciphertext
image. Simulation experiments and performance analysis have demonstrated the effectiveness of the
algorithm presented in this paper, showcasing its resilience against common attacks. After comparative
analysis, the proposed algorithm has better encryption performance and less distortion ratio.

The remainder of this work is comprised of the following sections. Section 2 provides an overview
of the preliminary work. Section 3 provides a detailed description of the proposed encryption scheme.
Section 4 describes the experimental simulation results and analysis. Section 5 serves as the conclusion
in the end.
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2 Preliminary Work
2.1 The 4D Hyperchaotic System

A novel and extremely intricate 4D hyperchaotic system was suggested by [24]. Its definition is
using the equation below:

x̂ = a (y − x − w) + byz, ŷ = c (4x + y) − xz, ẑ = dx − ez + xy, ŵ = rx + f (3yz + y2), (1)

here, a = 80, b = 45, c = 22, d = 5, e = 21, f = 8 and 60 ≤ r ≤ 322.

The system’s motion characteristics are represented by the Lyapunov exponent. For chaotic
systems, they require at least one Lyapunov exponent to be positive. The system is said to be
hyperchaotic when at least two of the exponents are positive. When r = 100, the Lyapunov exponents
are LE1 = 25.6206, LE2 = 11.2401, LE3 = 1.717e−5, LE4 = −115.0336. Therefore, system Eq. (1) is
in a state of hyperchaos. Fig. 1 depicts its hyperchaotic attractor when the initial condition is (0, 0.5,
0.5, 0.5).

Figure 1: The system (1)’s hyperchaotic attractor at r = 100. The projections are as follows: (a) in
x−y−z, (b) in x−y, (c) in x−z, and (d) in y−z

2.2 RSA Algorithm

In 1977, Rivest, Shamir, and Adleman proposed the public-key cryptography known as RSA. It
is an asymmetric cryptographic algorithm [25]. It can be used to encrypt and digitally sign data, and
for encryption and decoding, the system requires two distinct keys. The most extensively researched
algorithm for public-key cryptography is the RSA algorithm. It has been put forth for almost 30 years
and has also faced criticism on several occasions. The process of generating ciphertext using the RSA
algorithm is shown in Fig. 2.

Figure 2: RSA algorithm



1980 CMC, 2024, vol.78, no.2

2.3 2D CS

In the process of sampling the signal, the signal compression is completed simultaneously by the
CS theory; therefore, many image compression and encryption techniques employ CS theory [26]. For
2D CS, consider an N×N image P, in sparse form, which can be expressed as: β = ΨPΨT , β is a sparse
representation of the P, Ψ is an N × N orthogonal base. Two measurement matrices: Φ1 and Φ2. They
are needed for the 2D image P sampling and compression processes. The dimension of both matrices
is M × N (M < N). Y ’s measurement value is represented as a M × M matrix. It can be expressed as:
Y = Φ1PΦT

2 , where Φ1 and Φ2 meet the Restricted Isometry Property (RIP). Furthermore, by figuring
out the following equation: min ‖β‖0 s.t.Y = Φ1PΦT

2 , where ‖β‖0 is the l0 norm of β, we may precisely
recreate P from Y .

An orthogonal matching pursuit algorithm is the primary CS reconstruction method [27], a
reconstruction algorithm based on smooth l0 norm [28], a base tracking algorithm, gradient projection
for sparse reconstruction [29], etc. The reconstruction algorithm in this paper adopts the 2DPG-ED
method [30]. Under the premise of fast signal reconstruction, the algorithm ensures the quality of the
image reconstruction by keeping the image information.

3 The Proposed Encryption Scheme
3.1 Encryption Process

Fig. 3 depicts the encryption processing flowchart; a further discussion of the procedure will
follow:

Figure 3: The procedure flow chart for the image encryption

Step 1: Generate initial values for the hyperchaotic system Eq. (1). At random, four large positive
integers (m1, m2, m3, m4) are chosen. According to Fig. 2, then the public key (e, n) will be used for the
computation of ci = me

i mod n, i = 1, 2, 3, 4. Using Eq. (2), the initial value of the 4D hyperchaotic
system is computed as the final step.
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x0 = sqrt(log (c1 + m1)), y0 = sqrt(log (c2 + m2)), z0 = sqrt(log (c3 + m3)), w0 = sqrt (log (c4 + m4)) . (2)

Step 2: Generate a chaotic sequence. Based on the initial values Eq. (2), the system Eq. (1)
generates a sufficiently long sequence iteratively. In the jth iteration, it is possible to obtain four status
values rj = {

xj, yj, zj, wj

}
. Upon completing the iteration, by joining all the rj (j = 1, 2, · · · , n), it can

obtain the hyperchaotic sequence S. It is shown in the Eq. (3).

S = {
r1, r2, · · · , rn

} = {x1, y1, z1, w1, · · · , xn, yn, zn, wn} = {r1, r2, r3, r4, · · · , r4n−3, r4n−2, r4n−1, r4n} . (3)

Step 3: Generate mask matrix M and index matrices I , T . The chaotic sequences are utilized
to select four sequences at random, r1, r2, r3, and r4, which are then arranged in ascending order
to generate si1, si2, si3, and si4. Matrices I , T and M, specifically, they are described as follows:
I (i, j) = si1 (mod (i + si2 (j) − 1, w) + 1), T (i, j) = si3 (mod (i + si4 (j) − 1, w) + 1). Next, a sequence
r5 is chosen at random, and M = reshape

(
mod(((r5 − �r5�) × 232), 256), [h, w]

)
, to obtain matrix M,

here, w denotes the image’s width and h its height.

Step 4: Generate the measurement matrix. First, remove the first 3001 items from the chaotic
sequence S to obtain better randomness. The chaotic sequence S is standardized through formulas, and
the measurement matrix Phi1 is obtained. A slight disturbance Pe is added to x every 1000 iterations
to make it more complex. Then, assume that Phi2 are random matrices of size M × N.

Phi1 =

⎡
⎢⎢⎣

S1 SM+1 · · · SM(N−1)

S2 SM+2 · · · SM(N−1)+1

...
...

. . .
...

SM S2M · · · SMN

⎤
⎥⎥⎦ . (4)

Step 5: The optimized Arnold transformation. The pseudo-random numbers a and b are obtained
using the Lorenz hyperchaotic system. The matrix of images is transformed into a vector A’ in one
dimension. Obtaining an updated coordinate position (p’, q’), perform the scrambling operation at
any given point coordinate location (1, j) of the vector A’ to acquire the image U . Its representation is
shown in Eq. (5).[

p′

q′

]
=

[
1 a
b ab + 1

] [
1
j

]
. (5)

Step 6: Mapping of the grey values of the scrambled image to the range −128 to 128 using a grey
mapping strategy, which can be the form of the following: U ξ = U − F , where F is a template matrix
with entries all of 128, U ξ is a mapping of U , and U represents the encrypted image from the above
steps.

Step 7: Make use of the measurement matrix that was produced in Step 4. Another measurement
matrix is produced at random. To sample the mapping of the confused image, 2D CS is applied.
Y ξ = AU ξBT = AUBT − AFBT = Y − YF , where A is Phi1 and B is Phi2, Y , Y ξ and YF denote
2D measurements of U , U ξ and F .

Step 8: To get the bitstream, put Y ξ into the scalar quantization (SQ) encoder.

Step 9: Conduct JPD operations on preprocessed images. Give an ordinary image with a channel
P. Using the matrix generated in Step 3, perform joint permutation, and diffusion operations. The
following Eq. (6) can be used to explain it. It is split up into three sections. Finally, the ciphertext
image C is acquired.
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CIi,j ,j =

⎧⎪⎪⎨
⎪⎪⎩

mod(Mi,j ⊕ (PTj,Ii,j
,Ii,j + PIh,w ,w), F), if i = 1, j = 1

mod(Mi,j ⊕ (PTj,Ii,j
,Ii,j + CIi−1,w ,w), F), if i �= 1, j = 1

mod(Mi,j ⊕ (PTj,Ii,j
,Ii,j + CIi,j−1,j−1), F), if j �= 1

, (6)

here, i and j denote the matrix’s positions.

3.2 Decryption and Reconstruction Algorithm

As depicted in Fig. 4, decryption corresponds to the reverse process of encryption. In particular,
original images are reconstructed using the 2DPG-ED reconstruction technique in the decryption
process.

Figure 4: The procedure flow chart for the image decryption

Step 1: For ciphertext image C, the combined scrambling and diffusion procedures are reversed.
The JPD decryption algorithm can be described by formulas using the index matrices I and T
generated in Step 3 of 3.1, and the mask matrix M.

DTj,Ii,j
,Ii,j =

⎧⎪⎪⎨
⎪⎪⎩

mod(Mi,j ⊕ (CIi,j ,j − DIh,w ,w), F), if i = 1, j = 1

mod(Mi,j ⊕ (CIi,j ,j − DIi−1,w ,w), F), if i �= 1, j = 1

mod(Mi,j ⊕ (CIi,j ,j − CIi,j−1,j−1), F), if j �= 1

. (7)

Step 2: Estimating the Y ξ , referred to as Ŷ ξ , can be restored on the side of the decoder using
inverse quantization. After that, we can use the formula to get Y ’s estimate: Ŷ = Ŷ ξ + YF .

Step 3: To decode the final color image P, the 2DPG-ED algorithm rebuilds the image.
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4 Simulation Results and Analysis

In this study, simulation tests on a 64-bit machine are accomplished using Matlab R2016a. The
Lorenz hyperchaotic system’s starting value is as follows: x0 = 1.1, y0 = 2.2, z0 = 3.3, and w0 = 4.4.
Within the trial, test images of the size 256 × 256 and 512 × 512 are selected for evaluation. Assuming
that universality remains, the compression ratio in the compression sensing process is set to 0.9.

4.1 Evaluation of Encryption and Decryption Effects

The test images include 256 × 256 color images: House, Tree, and 512 × 512 color images: Lena,
Baboon, and Black. It should be noted that due to the limited space of the paper, the size of the
above two types of color images presented in this paper is the same. However, in the actual simulation
experiment, the pixels of these two types of images are different. Fig. 5 shows the experimental results.
There is no observable information about the original image in the concealed image. The size of the
image is different in the compressed encrypted version and the original. The visual differences between
the original and restored images are not very noticeable.

Figure 5: The experimental simulation results are obtained by using the scheme in this paper, where
the original images are situated in the first row, compressed encrypted images are in the second row,
and reconstructed images are in the third row

4.2 Statistic Analysis

Typically, two statistical qualities used in statistical analysis: histogram analysis and correlation
analysis. These statistical properties can be used to assess the efficacy of encryption techniques.

4.2.1 Histogram Analysis

Histogram analysis is a useful tool for evaluating the security and effectiveness of encryption
schemes. Attackers who use statistical analysis to break passwords do so by examining the statistical
trends in both plaintext and ciphertext. To resist statistical attacks, the histogram of the encrypted
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images should exhibit a uniform appearance. Fig. 6 makes it evident that a clear statistical rule is
displayed in the plaintext image histogram. However, the ciphertext image histogram is uniform, and
it is impossible to get any information from it. Experiments have shown that the encryption algorithm
has strong anti-histogram statistical performance.

Figure 6: Histogram analysis, where (a), (f), (k), and (p) are original images, (b), (g), (l), and (q) are
histograms of original images, the remaining images are the three channels histograms of the encrypted
images R, G, and B

4.2.2 Correlation Analysis

Strong correlations exist between neighboring pixels in plaintext images; a pixel often leaks
information about the pixels that surround it. So, to avoid statistical attacks, these strong correlations
must be broken. It can be computed using the formula that follows.

Cor (X) =
(

m∑
i=1

(xi − E (x)) (yi − E (y))

) /√√√√ m∑
i=1

(xi − E (x))
2

m∑
i=1

(yi − E (y))
2,

here, xi and yi represent two pixels chosen at random from the test images, and m is 5000 pairs.

According to Fig. 7, the pixels in the original image are strongly associated with each other.
However, in encrypted images, pixel distribution is uniform and uncorrelated. Table 1 gives the
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correlations between images in ciphertext and plaintext. When calculating correlations, all pixels in
images are involved. From Table 1, we observe that the correlation coefficients of the original images
are all nearly to 1, indicating strong correlations in the original images. On the other hand, all of the
ciphertext images have very low correlations that are almost equal to 0.

Figure 7: Correlation analysis. The last three columns represent the horizontal, vertical, and diagonal
correlations of plaintext and ciphertext images, which correspond to the matching values in the first
column

Table 1: Correlation coefficients analysis

Image Original image Encrypted image

Horizontal
direction

Vertical
direction

Diagonal
direction

Horizontal
direction

Vertical
direction

Diagonal
direction

House256
R 0.9683 0.9734 0.9104 0.0035 0.0011 0.0018
G 0.9807 0.9403 0.9259 0.0027 0.0048 0.0018
B 0.9833 0.9325 0.9632 0.0014 0.0043 0.0015

Tree256
R 0.9570 0.9319 0.9133 −0.0094 −0.0021 −0.0016
G 0.9675 0.9421 0.9294 −0.0081 0.0036 0.0054
B 0.9576 0.9367 0.9230 0.0022 −0.0016 0.0013

Lena512
R 0.9799 0.9880 0.9672 0.0079 0.0064 0.0063
G 0.9708 0.9820 0.9553 −0.0088 0.0087 −0.0050
B 0.9386 0.9583 0.9219 0.0040 0.0070 0.0048

Baboon512
R 0.9250 0.8609 0.8439 0.0023 0.0068 0.0012
G 0.8804 0.7650 0.7365 −0.0022 0.0023 0.0018
B 0.9291 0.8784 0.8587 0.0086 −0.0013 0.0042

4.3 Information Entropy Analysis

In the field of image encryption, information entropy analysis is the process of calculating and
analyzing the entropy of encrypted images. It can evaluate the confidentiality and randomness of the
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image achieved by an encryption algorithm. The theoretical value of the encrypted picture for color
image intensities ranging from 0 to 255 is 8. The computation formula that is employed is H (X) =
− ∑L

i=0 p (i) log2 p (i), here, L denotes the total number of grey levels in the image, and P(i) represents
the probability or likelihood of the occurrence of a specific grey value i.

In Table 2, the values of three channels of color test images are all around 7.997. However, the same
images are used for testing in the [12], and all ciphertext images have a lower information entropy
than the encryption method used in this paper. Therefore, entropy attacks can be resisted with this
encryption scheme.

Table 2: Information entropy analysis

Image Size R G B

House256

Original image 256 × 256 6.4311 6.5389 6.2320
Encrypted image 230 × 230 7.9971 7.9970 7.9971
Reference [12] 230 × 230 7.9960 7.9964 7.9970
Reference [25] 230 × 230 7.9967 7.9965 7.9965

Tree256

Original image 256 × 256 7.2104 7.4136 6.9207
Encrypted image 230 × 230 7.9967 7.9969 7.9968
Reference [12] 230 × 230 7.9962 7.9964 7.9962
Reference [25] 230 × 230 7.9964 7.9964 7.9966

Lena512

Original image 512 × 512 7.2531 7.5940 6.9684
Encrypted image 461 × 461 7.9993 7.9992 7.9992
Reference [12] 461 × 461 7.9991 7.9991 7.9990
Reference [25] 461 × 461 7.9992 7.9991 7.9992

Baboon512

Original image 512 × 512 7.7067 7.4744 7.7522
Encrypted image 461 × 461 7.9992 7.9993 7.9993
Reference [12] 461 × 461 7.9990 7.9991 7.9991
Reference [25] 461 × 461 7.9992 7.9991 7.9992

4.4 Analysis of Resisting Differential Attacks

Differential attacks analyze the differences between pairings of plaintext and the matching
ciphertext to deduce the encryption algorithm’s key or internal structure.

The two metrics used to assess the difference between two images are the Unified Average
Changing Intensity (UACI) and the Number of Pixels Change Rate (NPCR). The calculation formulas
are NPCR = ∑

ij D(i, j)/(M × N) × 100% and UACI = ∑
ij |c1 (i, j) − c2 (i, j)|/255/(M × N) × 100%,

here, M and N stand for the rows and columns of images. Then, the theoretical value for NPCR is
99.6094%. The theoretical value for UACI is 33.4635%. Table 3 confirms that the encryption scheme’s
NPCR and UACI calculation results are nearly to theoretical standard values, proving the algorithm’s
robustness against attacks based on differences.
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Table 3: Differential attacks analysis

Image Ours Reference [12]

R G B R G B

House256
NPCR 99.6110 99.6070 99.6087 99.6330 99.6310 99.6220
UACI 33.4317 33.4702 33.4245 27.2350 27.1270 27.2300

Tree256
NPCR 99.6110 99.6087 99.6030 99.5560 99.6250 99.6190
UACI 33.4315 33.4761 32.4824 30.0800 30.2750 29.9630

Lena512
NPCR 99.6120 99.6091 99.6130 99.6130 99.6210 99.6110
UACI 33.0701 33.5607 32.6035 33.0070 33.0950 33.0730

Baboon512
NPCR 99.6080 99.6140 99.6095 99.6203 99.6144 99.6085
UACI 33.4450 33.5354 33.4520 33.3946 33.5394 33.4437

4.5 Key Analysis

4.5.1 Key Space Analysis

The key space refers to the complete set of possible values that a cryptographic key can take.
Its size has a direct impact on the password system’s security. In the algorithm of this paper, two
hyperchaotic systems make up the key space. Even if only one iteration is performed, the precision of
the computation is 10−15, and the key space in this paper can reach 1015 × 1015 × 1015 × 1015 × 1015 ×
1015 ×1015 ×1015 = 10120. As stated by [31], this cryptosystem is theoretically resistant to violence when
the key space is greater than 2100. As a result, this algorithm is capable of withstanding strong attacks.

4.5.2 Key Sensitivity Analysis

In an ideal encryption system, with the correct key, it is possible to recover ordinary images
completely, and any little alteration to the key will produce entirely different decoded images. In the
experiment, we used one of the keys x0 + 10−14. The decrypted result is shown in Fig. 8. We cannot see
any information objects from it. Therefore, we can deduce that this article’s encryption algorithm key
is so sensitive that even little adjustments to the key will not be able to restore the original image.

Figure 8: Key sensitivity analysis



1988 CMC, 2024, vol.78, no.2

4.6 Robustness Analysis

4.6.1 Anti-Cropping Attack

Certain portions of an image will inevitably sustain damage during processing, transmission, and
storage. A strong encryption method ought to be capable of resisting cropping attacks. To simulate the
process of image destruction, we cropped the ciphertext image, as illustrated in Fig. 9.

Figure 9: Anti-cropping attack analysis. (a)–(d) show cropped images with 1/16 and 1/4 of different
sizes of ciphertext cropped, and (e)–(h) display the reconstructed images that match the ciphertext
image that was attacked with the cropping techniques. The experimental simulation findings illustrate
that the majority of the initial image information remains intact in the encoded and reconstructed
ciphertext image despite the cropping attack. This suggests that the approach may provide a degree of
resistance against cropping attacks

Figs. 9a–9d show cropped images with 1/16 and 1/4 of different sizes of ciphertext cropped, and
Figs. 9e–9h display the reconstructed images that match the ciphertext image that was attacked with
the cropping techniques. The experimental simulation findings illustrate that the majority of the initial
image information remains intact in the encoded and reconstructed ciphertext image despite the
cropping attack. This suggests that the approach may provide a degree of resistance against cropping
attacks.

4.6.2 Anti-Noise Attack

The encryption system ought to be able to fend off malicious noise attacks directed at the
encrypted image. Therefore, as an example, let us consider adding salt and pepper noise. We conducted
a simulation experiment as displayed in Fig. 10.

Figs. 10a–10c illustrate the images depicting salt and pepper noise with concentrations of 0.001,
0.05, and 0.1, respectively. Additionally, Figs. 10d–10f present the reconstructed images that match the
noise-affected ciphertext images. The experimental results indicate that the restored image can reveal
information associated with the original image, suggesting that this approach can withstand noise
attacks.
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Figure 10: Anti-noise attack analysis

4.7 Compression Performance Analysis

The compression performance is assessed through the use of Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM) values. PSNR is one of the indicators for measuring
image quality. In domains like image compression, it is often used to measure signal reconstruction

quality. Mean Square Error (MSE), which is MSE = 1
M × N

M−1∑
i=0

N−1∑
j=0

[P (i, j) − I (i, j)]2, here, P

represents the original image of size, whereas I denotes a noisy image. Then, PSNR is based on the
definition of MSE. PSNR can be defined as: PSNR = 10 × log10

(
2552/MSE

)
.

SSIM is defined as SSIM (x, y) = ((
2μxμy + C1

) (
2σxy + C2

))
/
((

μ2
x + μ2

y + C1

) (
σ 2

x + σ 2
y + C2

))
.

Usually, SSIM with a range of values above 0.9 is considered an image of high quality.

As shown in the experimental results in Table 4, as an example, three channels of color images are
used in this section. A higher PSNR value indicates a lower level of image distortion, resulting in a
reconstructed image that closely resembles the original. As the compression ratio (CR) decreases, the
reconstruction effect becomes worse, but important information can still be distinguished from it.

Table 4: PSNR and SSIM of the original image and reconstructed image

Image CR
PSNR SSIM

R G B R G B

House256
0.9 41.5035 41.5153 40.2329 0.9652 0.9655 0.9577
0.7 37.4520 37.9081 36.4775 0.9193 0.9318 0.9115
0.5 34.3997 34.2699 33.3641 0.8610 0.8771 0.8474

Tree256
0.9 36.9224 36.9596 35.7426 0.9481 0.9548 0.9337
0.7 32.3189 31.8310 31.0656 0.8810 0.9012 0.8588
0.5 28.6948 26.9180 27.8649 0.7909 0.8209 0.7871
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4.8 Running Time Analysis

The results of these evaluations are presented in Table 5, demonstrating that the encryption and
decryption time differs according to the size of the images. The reconstruction time is often longer
than the encryption time owing to this paper’s combination of compressed sensing. Compared to
[12] and [25], the combination of CS technology with the scheme in this paper results in a shorter
encryption time. However, the decryption time is longer due to the extended duration required by the
reconstruction algorithm. After comprehensive consideration, our algorithm has a slight advantage.

Table 5: Running time analysis

Image
Encryption time (s) Decryption time (s)

Ours Reference [12] Reference [25] Ours Reference [12] Reference [25]

House256 0.26834 2.33764 0.55346 2.71117 0.26988 0.45401
Tree256 0.28299 2.07799 0.38486 2.22668 0.27961 0.44971
Lena512 1.28151 3.96321 1.70280 4.23535 1.68899 1.77177
Baboon512 1.28066 4.32917 1.48969 4.36212 1.81652 1.62893

4.9 Ablation Experiment Analysis

This part of this paper underwent ablation experiments and was divided into five parts, and the
effectiveness of each part is evaluated as follows:

(1) Only Arnold scrambling of images is carried out. Image scrambling plays a role in hiding and
protecting image information, which can be encrypted and transmitted and used as a pre-processing
of image processing.

(2) Only JPD encryption of images is carried out. When combined with a hyperchaotic system,
they are indeed commonly employed as encryption methods.

(3) Only CS. Using the CS algorithm to process the image can compress and encrypt the image
simultaneously.

(4) Arnold scrambling and JPD operations are carried out. The encryption performance is
improved when the two image processing techniques are combined.

(5) The scheme of this paper. The combination of the encryption method and compression method
makes image encryption more perfect.

Specifically, take a color picture of House with a size of 256 × 256 as an example. Table 6 includes
the correlation coefficient, with the horizontal value taken as an example. Simulation experiments
have demonstrated the effectiveness of the solution in this paper, which combines chaotic encryption
with CS.

From Table 6, schemes (1)–(4) do not have as good of an encrypting effect as the one suggested in
this study. Although some schemes have short encryption and decryption times, the encryption effect
is poor. Image encryption should not only look at the time but also need to combine ciphertext image
performance. Consequently, the experiment proves the effectiveness of the scheme.
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Table 6: Ablation experiment analysis

Scheme
Encryption
time (s)

Decryption
time (s)

Information entropy Correlation coefficient

R G B R G B

(1) 0.07012 0.05876 6.4311 6.5389 6.2320 0.0183 0.0204 0.0209
(2) 0.26953 0.25946 7.9968 7.9965 7.9964 −0.0137 −0.0233 0.0121
(3) 0.06404 2.65594 6.6179 7.1741 7.3265 0.0296 −0.0155 −0.0180
(4) 0.31406 0.30617 7.9965 7.9968 7.9963 0.0162 −0.0125 0.0354
(5) 0.26834 2.71117 7.9971 7.9970 7.9971 0.0035 0.0027 0.0014

5 Conclusions

This work introduces a technique for color image compression and encryption that combines the
hyperchaotic system with 2D CS. Firstly, this algorithm scrambles the original image. Subsequently,
the scrambled image is compressed and encrypted simultaneously. Finally, for the sake of encryption
security, the compressed and encrypted images are double-encrypted to achieve the ciphertext image.
While decrypting, a reasonable image reconstruction algorithm is adopted to improve the reconstruc-
tion effect and reduce computational complexity. Experimental results show that it effectively resists
several common attacks. Compared with existing advanced image encryption schemes, the proposed
in this paper outperforms other schemes in performance and attack resistance. The validity of the
encryption scheme has been verified. However, the decryption time is long, and we must improve it in
our future work.
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